FOURTH EDITION

A FIRST
BOOK OF

Gary Bronson

A First Book of

C++

Fourth Edition

Gary Bronson
Fairleigh Dickenson University

~% COURSE TECHNOLOGY
L 4

1 CENGAGE Learning

Australia « Brazil « Japan « Korea « Mexico ¢ Singapore « Spain ¢ United Kingdom « United States

)

(4
1

L4
»

COURSE TECHNOLOGY

CENGAGE Learning

A First Book of C++, Fourth Edition
Gary Bronson

Executive Editor: Marie Lee
Acquisitions Editor: Brandi Shailer
Senior Product Manager: Alyssa Pratt
Development Editor: Lisa M. Lord
Copyeditor: Michael Beckett
Proofreader: Camille Kiolbasa
Indexer: Michael Brackney

Editorial Assistant: Jacqueline Lacaire
Content Project Manager: Lisa Weidenfeld

Associate Marketing Manager: Shanna
Shelton

Art Director: Faith Brosnan
Print Buyer: Julio Esperas
Cover Photo: ©istockphoto.com/xmanphoto

Compositor: GEX Publishing Services

Some of the product names and company
names used in this book have been used

for identification purposes only and may be
trademarks or registered trademarks of their
respective manufacturers and sellers.

Any fictional data related to persons or com-
panies or URLs used throughout this book

is intended for instructional purposes only.
At the time this book was printed, any such
data was fictional and not belonging to any
real persons or companies.

Course Technology, a part of Cengage
Learning, reserves the right to revise this
publication and make changes from time to
time in its content without notice.

The programs in this book are for instruc-
tional purposes only.

Printed in the United States of America
1234567161514131211

© 2012 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited

to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions
Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2010939813
ISBN-13: 978-1-111-53100-3
ISBN-10: 1-111-53100-5

Course Technology

20 Channel Center Street
Boston, MA 02210

USA

They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com

www.cengage.com/permissions
www.cengage.com/coursetechnology
www.cengagebrain.com

BRIEF TABLE OF CONTENTS

Part One

Fundamentals of C++ Programming 1
Chapter 1

Getting Started 3
Chapter 2

Data Types, Declarations, and Displays 37
Chapter 3

Assignment and Interactive Input 79
Chapter 4

Selection 137
Chapter 5

Repetition 179
Chapter 6

Modularity Using Functions 225
Chapter 7

Arrays 291
Chapter 8

Arrays and Pointers 341
Chapter 9

I/0 Streams and Data Files 387
Part Two

Object-Oriented Programming 431
Chapter 10

Introduction to Classes 433
Chapter 11

Adding Functionality to Your Classes 491

Brief Table of Contents ii

Brief Table of Contents

Chapter 12

Extending Your Classes 539
Chapter 13

The Standard Template Library 573
Part Three

Additional Topics 603
Chapter 14

The string Class and Exception Handling 605
Chapter 15

Strings as Character Arrays 665
Chapter 16

Data Structures 701
Appendixes

Appendix A

Operator Precedence Table 729
Appendix B

ASCII Character Codes 731

Appendix C

Bit Operations
Appendix D

Online Only

Floating-Point Number Storage

Appendix E

Online Only

Solutions to Selected Exercises

Index

733

753

CONTENTS

Part One
Fundamentals of C++ Programming 1
Chapter 1
Getting Started 3
1.1 Introduction to Programming 3
Algorithms and Procedures 5
Classes and Objects 9
Program Translation 9
1.2 Function and Class Names 12
The main () Function 15
1.3 The cout Object 18
1.4 Programming Style 22
Comments 23
1.5 Common Programming Errors 26
1.6 Chapter Summary 27
1.7 Chapter Supplement: Software Development 28
Phase I: Development and Design 28
Phase Il: Documentation 32
Phase Ill: Maintenance 33
Backup 33
Chapter 2
Data Types, Declarations, and Displays 37
2.1 Data Types 37
Integer Data Types 38
Determining Storage Size 42
Floating-Point Types 44
Exponential Notation 45
2.2 Arithmetic Operations 48
Expression Types 51
Integer Division 52
Negation 52
Operator Precedence and Associativity 53
2.3 Variables and Declarations 57
Declaration Statements 59
Multiple Declarations 62
Memory Allocation 64
Contents \

Contents

2.4 Common Programming Errors 70
2.5 Chapter Summary 71
2.6 Chapter Supplement: Bits, Bytes, and Binary Number Representations 72
Bits and Bytes 72
Binary, Hexadecimal, and Octal Numbers 74
Chapter 3
Assignment and Interactive Input 79
3.1 Assignment Operators 79
Coercion 84
Assignment Variations 85
Accumulating 86
Counting 88
3.2 Formatted Output 93
The setiosflags () Manipulator 97
Hexadecimal and Octal I/O 99
3.3 Mathematical Library Functions 106
Casts 111
3.4 Interactive Keyboard Input 117
A First Look at User-Input Validation 121
3.5 Symbolic Constants 127
Placement of Statements 128
3.6 Common Programming Errors 132
3.7 Chapter Summary 132
3.8 Chapter Supplement: Errors, Testing, and Debugging 133
Compile-Time and Runtime Errors 134
Syntax and Logic Errors 134
Testing and Debugging 135
Chapter 4
Selection 137
4.1 Relational Expressions 137
Logical Operators 139
A Numerical Accuracy Problem 142
4.2 The if-else Statement 143
Compound Statements 146
Block Scope 148
One-Way Selection 149
Problems Associated with the if-else Statement 151
4.3 Nested if Statements 158

The if-else Chain 159

Contents vii

4.4 The switch Statement 167
4.5 Common Programming Errors 173
4.6 Chapter Summary 174
4.7 Chapter Supplement: A Closer Look at Testing 176
Chapter 5
Repetition 179
5.1 The while Statement 180
5.2 Interactive while Loops 188
Sentinels 194
break and continue Statements 197
The Null Statement 198
5.3 The for Statement 201
Interactive for Loops 208
Nested Loops 209
5.4 The do-while Statement 217
Validity Checks 219
5.5 Common Programming Errors 220
5.6 Chapter Summary 222
Chapter 6
Modularity Using Functions 225
6.1 Function and Parameter Declarations 226
Function Prototypes 227
Calling a Function 228
Defining a Function 229
Placement of Statements 234
Function Stubs 234
Functions with Empty Parameter Lists 235
Default Arguments 236
Reusing Function Names (Overloading) 237
Function Templates 238
6.2 Returning a Single Value 244
Inline Functions 250
Templates with a Return Value 251
6.3 Returning Multiple Values 257
Passing and Using Reference Parameters 258
6.4 Variable Scope 267
Scope Resolution Operator 271

Misuse of Globals 272

viii

Contents

6.5 Variable Storage Category 276
Local Variable Storage Categories 277
Global Variable Storage Categories 280

6.6 Common Programming Errors 285

6.7 Chapter Summary 285

6.8 Chapter Supplement: Generating Random Numbers 287
Scaling 289

Chapter 7

Arrays 291

7.1 One-Dimensional Arrays 292
Input and Output of Array Values 296

7.2 Array Initialization 303

7.3 Arrays as Arguments 307

7.4 Two-Dimensional Arrays 313
Larger Dimensional Arrays 319

7.5 Common Programming Errors 323

7.6 Chapter Summary 324

7.7 Chapter Supplement: Searching and Sorting Methods 325
Search Algorithms 325
Sort Algorithms 333

Chapter 8

Arrays and Pointers 341

8.1 Introduction to Pointers 341
Storing Addresses 344
Using Addresses 345
Declaring Pointers 346
References and Pointers 348

8.2 Array Names as Pointers 354
Dynamic Array Allocation 360

8.3 Pointer Arithmetic 364
Pointer Initialization 368

8.4 Passing Addresses 369
Passing Arrays 374
Advanced Pointer Notation 378

8.5 Common Programming Errors 383

8.6 Chapter Summary 385

Contents iX
Chapter 9
I/0 Streams and Data Files 387
9.1 I/0 File Stream Objects and Methods 388
Files 388
File Stream Objects 389
File Stream Methods 390
9.2 Reading and Writing Text Files 403
Reading from a Text File 406
Standard Device Files 411
Other Devices 412
9.3 Random File Access 416
9.4 File Streams as Function Arguments 419
9.5 Common Programming Errors 423
9.6 Chapter Summary 423
9.7 Chapter Supplement: The iostream Class Library 426
File Stream Transfer Mechanism 426
Components of the iostream Class Library 426
In-Memory Formatting 428
Part Two
Object-Oriented Programming 431
Chapter 10
Introduction to Classes 433
10.1 Object-Based Programming 433
A Class Is a Plan 436
From Recipe to Class 436
10.2 Creating Your Own Classes 439
Class Construction 440
Terminology 448
10.3 Constructors 452
Calling Constructors 454
Overloaded and Inline Constructors 455
Destructors 458
Arrays of Objects 459
10.4 Examples 463
Example 1: Constructing a Room Object 463
Example 2: Constructing an Elevator Object 467

Contents

10.5 Class Scope and Duration Categories 473
Static Class Members 474
Friend Functions 478

10.6 Common Programming Errors 482

10.7 Chapter Summary 482

10.8 Chapter Supplement: Thinking in Terms of Objects 484
Representing Problems with Models 485
Modeling Classes 486

Chapter 11

Adding Functionality to Your Classes 491

11.1 Creating Class Operators 491
Assignment Operator 499
Copy Constructors 500
Base/Member Initialization 503
Operator Functions as Friends 504

11.2 How Methods Are Shared 508
The this Pointer 509
The Assignment Operator Revisited 511
Objects as Arguments 514
Notation 515

11.3 Data Type Conversions 519
Built-in to Built-in Conversion 520
Class to Built-in Conversion 520
Built-in to Class Conversion 522
Class to Class Conversion 525

11.4 Two Useful Alternatives: operator () and operator|] 529

11.5 Common Programming Errors 533

11.6 Chapter Summary 533

11.7 Chapter Supplement: Insides and Outsides 535
Abstraction and Encapsulation 537
Code Extensibility 537

Chapter 12

Extending Your Classes 539

12.1 Class Inheritance 540
Access Specifications 541

12.2 Polymorphism 547

12.3 Dynamic Object Creation and Deletion 552

12.4 Pointers as Class Members 562
Assignment Operators and Copy Constructors Reconsidered 565

Contents Xi
12.5 Common Programming Errors 568
12.6 Chapter Summary 568
12.7 Chapter Supplement: UML Class and Object Diagrams 569
Class and Object Diagrams 570
Chapter 13
The Standard Template Library 573
13.1 The Standard Template Library 574
13.2 Linked Lists 579
Using the STL 1ist Class 581
Using User-Defined Objects 586
13.3 Stacks 590
Stack Implementation with the deque Class 592
13.4 Queues 598
Queue Implementation with the deque Class 599
13.5 Common Programming Errors 602
13.6 Chapter Summary 602
Part Three
Additional Topics 603
Chapter 14
The string Class and Exception Handling 605
14.1 The string Class 606
string Class Functions 607
String Input and Output 609
String Processing 613
14.2 Character Manipulation Methods 622
Character I/0 627
A Second Look at User-Input Validation 632
14.3 Exception Handling 634
14.4 Exceptions and File Checking 640
Opening Multiple Files 644
14.5 Input Data Validation 649
14.6 Common Programming Errors 656
14.7 Chapter Summary 656
14.8 Chapter Supplement: Namespaces and Creating a Personal Library 657

xii

Contents

Chapter 15
Strings as Character Arrays 665
15.1 C-String Fundamentals 666
C-String Input and Output 666
C-String Processing 670
15.2 Pointers and C-String Library Functions 675
Library Functions 681
Character-Handling Functions 684
Conversion Functions 688
15.3 C-String Definitions and Pointer Arrays 691
Pointer Arrays 693
15.4 Common Programming Errors 698
15.5 Chapter Summary 698
Chapter 16
Data Structures 701
16.1 Single Structures 702
16.2 Arrays of Structures 708
16.3 Structures as Function Arguments 712
Passing a Pointer 716
Returning Structures 718
16.4 Dynamic Structure Allocation 721
16.5 Unions 724
16.6 Common Programming Errors 727
16.7 Chapter Summary 728
Appendixes
Appendix A
Operator Precedence Table 729
Appendix B
ASCII Character Codes 731
Appendix C

Bit Operations
Appendix D

Online Only

Floating-Point Number Storage
Appendix E

Online Only

Solutions to Selected Exercises
Index

733
753

PREFACE

The main goal of this fourth edition of A First Book of C++ remains the same as in previous
editions: to introduce, develop, and reinforce well-organized programming skills using C++.
All topics are presented in a clear, unambiguous, and accessible manner to beginning students.
Students should be familiar with fundamental algebra, but no other prerequisites are assumed.

Therefore, like the first three editions, this new edition begins by providing a strong foun-
dation in structured programming. This foundation is then expanded to an object-oriented
design and programming approach in a pedagogically sound, achievable progression. In addi-
tion to a number of minor changes throughout the book, the major changes in this edition are
the following:

e Part I has been restructured to include arrays, files, and pointers, so it can be used as
the basis for a complete introductory semester course in C++.

e The four chapters covering object-oriented programming have been revised and
moved to Part II so that they form a logical continuation from structured program-
ming to object-oriented programming.

e More than 50 new exercises have been added, and all exercises are labeled to indicate
their function (Review, Practice, Program, Modify, Debug, Desk check, or For thought).

e Three new Chapter Supplements have been added to introduce the fundamentals of
object-oriented design and the Unified Modeling Language (UML).

e A complete set of case studies has been added and is available on the Cengage Web
site, login.cengage.com, for instructors to distribute.

The following features from the third edition have been retained:

e Fundamentals of software engineering are discussed from both procedural and
object-oriented viewpoints.

e Each chapter contains a Common Programming Errors section that describes prob-
lems beginning C++ programmers typically encounter.

e The ANSI/ISO C++ iostream library and namespace mechanism are used in all
programs.

e Exception handling is discussed in a separate section, with practical applications of
exception handling included throughout the book.

e The C++ string class is covered.

e A thorough discussion is included of input data validation and functions to check the
numerical data type of input items and allow reentering invalid numerical types.

In practical terms, this book has been written to support both a one- and two-semester techni-
cal C++ programming course; the only prerequisite is that students should be familiar with
fundamental algebra. This book is constructed to be flexible enough so that instructors
can mold the book to their preferences for topic sequence. This flexibility is achieved in the
following ways.

Part I includes the basic structured syntax, flow control, and modularity topics needed for
a thorough understanding of C++’s structural features. With the topics of arrays (Chapter 7)
and files (Chapter 9) moved to Part I, this part now provides a comprehensive one-semester

Preface Xxiii

Xiv

Preface

course. As Chapters 7 and 9 have been written to depend only on Chapters 1 through 6, their
order of presentation (arrays first and files second, or vice versa) is entirely up to the instruc-
tor’s discretion. With time permitting, the basics of classes, introduced in Chapter 10, can also
be covered to create a one-semester course with an introduction to object-oriented program-
ming. Figure 1 illustrates this one-semester topic dependency, and Figure 2 shows the topic
dependency chart for the entire book.

Arrays
> Chapter 7 ’
Part |
Files
Chapters N Chapter 9
1to6
Objects

> Chapter 10 ‘

Figure 1 Topic dependency for a one-semester course

Part Il
s, (Chapters 10 to 13)
Object-Oriented
Programming

Part |
Procedural
Programming

Part 111
(Chapters 14 to 16)

Figure 2 Topic dependency chart

Distinctive Features of This Book

Writing Style One thing T have found to be essential in my own classes is that after the
instructor sets the stage in class, the assigned book must continue to encourage, nurture, and
assist students in acquiring and “owning” the material. To do this, the book must be written in
a manner that makes sense to students. My primary concern, and one of the distinctive fea-
tures of this book, is that it has been written for students. Therefore, I believe the writing style
used to convey the concepts is one of the most important aspects of this book.

Preface XV

Software Engineering Rather than simply introduce students to programming in C++, this
book introduces students to the fundamentals of software engineering, from both a proce-
dural and object-oriented viewpoint. It begins with a discussion of these two programming
approaches in Section 1.1 and is reinforced throughout the book.

Introduction to References and Pointers A unique feature of my book A First Book of ANSI €
was introducing pointer concepts early by displaying addresses of variables and then using
other variables to store these addresses. This approach always seemed a more logical method
of understanding pointers than the indirection description in vogue at the time A First Book of
ANSI C was released.

I have since been pleased to see that using an output function to display addresses has
become a standard way of introducing pointers. Although this approach is no longer a unique
feature of this book, I'm proud of its presentation and continue to use it in this book.
References are also introduced early, in Chapter 6, before the introduction of pointers in
Chapter 8.

Program Testing Every C++ program in this book has been compiled and run successfully
and has been quality-assurance tested with Microsoft Visual C++ 2010. Source code for all
programs is available for student download at www.cengagebrain.com. Using this source code
enables students to experiment with and extend the existing programs and modify them more
easily, as required for a number of end-of-section exercises.

Pedagogical Features
"To facilitate the goal of making C++ accessible as a first-level course, the following pedagogi-
cal features have been incorporated into the book.

Point of Information Boxes These shaded boxes in each chapter highlight important con-
cepts, useful technical points, programming tips, and tricks used by professional programmers.

End-of-Section Exercises Almost every section in the book contains numerous and diverse
skill-building and programming exercises. In addition, solutions to selected exercises are given
in Appendix E.

Pseudocode Descriptions Pscudocode is used throughout the book. Flowchart symbols are
introduced but are used only in illustrating flow-of-control constructs.

Common Programming Errors and Chapter Summary Each chapter ends with a section on
common programming errors and a summary of the main topics covered in the chapter.

Appendixes This book includes appendixes on operator precedence, ASCII codes, and solu-
tions to selected exercises. Additional appendixes on bit operations and floating-point number
storage are available for student download at www.cengagebrain.com.

www.cengagebrain.com
www.cengagebrain.com

XVi

Preface

Note to students: Microsoft offers a free C++ compiler and development system called
Microsoft Visual C++ Express 2010. To get this development system, go to www.microsoft.com/
express/Downloads/#2010-Visual-CPP and select English as the language. The vc_web file is
downloaded automatically to your Downloads folder. (If you don’t have this folder, do a search
to see where the file was downloaded.) After this file is downloaded, double-click it to install
Visual C++ Express 2010.

All programs in this book can be run as Visual C++ Express 2010 CLLR Console Applications
or Win32 Console Applications programs, with two additions:

e 'The code line #include "stdafx.h" must be added at the beginning of the
program.
e The code line cin.ignore(); must be included before the return statement.

These added code lines hold the window open after the program runs so that you can view it.
Pressing Enter terminates the program and closes the window. For example, to compile and
run Program 1.1 in this book, you should enter the program in Visual C++ Express 2010 as
follows:

#include "stdafx.h" // needed for Visual C++ Express 2010
#include <iostream>
using namespace std;

int main()

{

cout << "Hello there world!";
cin.ignore(); // needed for Visual C++ Express 2010

return 0;

}

All the solution files provided for this book (and available to instructors) include these two
extra code lines. In programs requiring user input, a second cin.ignore() statement is
included to prevent the Enter key used when entering data from closing the window.

Supplemental Materials

The following supplemental materials are available to instructors when this book is used in a

classroom setting. Most of the materials are also available on the Instructor Resources CD.
Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this book

includes the following:

e Additional instructional material to assist in class preparation, including suggestions
for lecture topics
e Solutions to all end-of-section exercises

ExamView. This book is accompanied by ExamView, a powerful testing software package
that allows instructors to create and administer printed, computer (ILAN-based), and Internet
exams. ExamView includes hundreds of questions that correspond to the topics covered in this

www.microsoft.com/express/Downloads/#2010-Visual-CPP
www.microsoft.com/express/Downloads/#2010-Visual-CPP

Preface XVvii

book, enabling students to generate detailed study guides that include page references for
further review. These computer-based and Internet testing components allow students to take
exams at their computers and save instructors time because each exam is graded automati-
cally. The Test Bank is also available in WebC'T" and Blackboard formats.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each
chapter. They are included as a teaching aid for classroom presentations, to make available to
students on the network for chapter review, or to be printed for classroom distribution.
Instructors can add their own slides for additional topics they introduce to the class.

Source Code. T'he source code for this book is available for students at www.cengagebrain.com
and is also available on the Instructor Resources CD.

Solution Files. T'he solution files for all programming exercises are available at /ogin.cengage.com
and on the Instructor Resources CD.

Case Studies. A complete set of case studies, keyed to Chapters 1 through 10, are available
to instructors at Jogin.cengage.com.

www.cengagebrain.com

XViii

Preface

1o Rochelle, David, Matthew, Jeremy, and Winston Bronson

Acknowledgments

"T'he writing of this fourth edition is a direct result of the success (and limitations) of the previ-
ous editions. In this regard, my most heartfelt acknowledgment and appreciation is to the
instructors and students who found the previous editions to be of service in their quests to
teach and learn C++.

Next, [would like to thank Alyssa Pratt, my Senior Product Manager at Course Technology.
In addition to her continuous faith and encouragement, her ideas and partnership were instru-
mental in creating this book. After the writing process was completed, the task of turning the
final manuscript into a book depended on many people other than myself. For this, I espe-
cially want to thank my developmental editor, Lisa Lord, who provided an outstanding job.
Her editing so dovetailed with both the spirit and idiosyncrasies of my own writing style that
it was an absolute pleasure working with her. She stayed true to what I was attempting to
achieve while patiently going through both the technical and grammatical content. A truly
incredible feat! This editing was supplemented by the equally detailed work of my colleague
Professor Joan Zucker Hoffman. Finally, I would like to thank Serge Palladino from Course
"Technology’s MQA Department, who was the validation tester for this book, as well as GEX
Publishing Services, especially the interior designer. The dedication of this team of people was
extremely important to me, and I am very grateful to them.

The following reviewers provided extensive, extremely useful, and detailed information
and corrections that made this edition better and more accurate. No matter how careful I was,
each reviewer pointed out something that I missed or could be stated better. I am very thank-
ful to them. Naturally, all errors rest squarely on my shoulders, but these reviewers made the
load much easier: Lynne Band, Middlesex Community College, and Alexandra Vaschillo, Lake
Washington Technical College.

I would also like to acknowledge, with extreme gratitude, the wonderful academic envi-
ronment for learning and teaching created at Fairleigh Dickinson University—starting with
the President, Dr. Michael Adams, followed through in the academic departments by the
university and campus provosts, Dr. Joseph Kiernan and Dr. Kenneth Greene, and finally to
the encouragement and support provided by my dean, Dr. William Moore, and my chairper-
son, Dr. Paul Yoon. Without their support, this book could not have been written.

Finally, I deeply appreciate the patience, understanding, and love provided by my friend,
wife, and partner, Rochelle.

Gary Bronson

“One

Fundamentals of
C++ Programming

'\}\ | — "!—-—-‘"K\\/

&

Getting Started

Data Types, Declarations,
and Displays

Assignment and Interactive
Input

Selection

Repetition

Modularity Using Functions
Arrays

Arrays and Pointers
I/O Streams and Data Files

Chapter

1.1 Introduction to Programming
1.2 Function and Class Names
1.3 The cout Object Getting Started
1.4 Programming Style

1.5 Common Programming Errors
1.6 Chapter Summary

1.7 Chapter Supplement: Software
Development

This chapter explains the basic structure of a C++ program and how to develop a working first program.
An additional element required for programming a computer successfully is understanding what an
algorithm does, how programs can be built with a modular design, and what constitutes a “good” pro-
gram, and these topics are covered in this chapter. The goal of all professional programmers is to create
readable, efficient, reliable, and maintainable programs. One method for helping you develop such pro-
grams is explained in Section 1.7.

1.1 Introduction to Programming

A computer is a machine, and like other machines, such as automobiles and lawn mowers, it
must be turned on and then controlled to do the task it was meant to do. In an automobile, the
driver, who sits inside and directs the car, provides control. In a computer, a computer program
provides control. More formally, a computer program is a structured combination of data and
instructions used to operate a computer to produce a specific result. Another term for a com-
puter program is software, and both terms are used interchangeably in this book.

Getting Started

Programming is the process of writing a computer program in a language the computer can
respond to and other programmers can understand. The set of instructions, data, and rules used
to construct a program is called a programming language.

Programming languages are usefully classified by level and orientation. Languages
using instructions resembling written languages, such as English, are referred to as high-
level languages. Visual Basic, C, C++, and Java are examples of high-level languages.! The
final program written in these languages can be run on a variety of computer types, such as
those manufactured by IBM, Apple, and Hewlett-Packard. In contrast, low-level languages
use instructions that are tied to one type of computer.z Although programs written in low-
level languages are limited, in that they can run only on the type of computer for which they
were written, they do permit direct access to specialized internal hardware features in a man-
ner not possible with high-level languages. They can also be written to run faster than pro-
grams written in high-level languages.

In addition to programming languages being classified as high or low level, they’re also
classified by orientation, as procedural or object oriented. Until the 1990s, high-level program-
ming languages were predominantly procedural. In a procedural language, instructions are used
to create self-contained units, referred to as procedures. The purpose of a procedure is to accept
data as input and to transform the data in some manner so as to produce a specific result as an
output. Effectively, each procedure moves the data one step closer to the final output, along
the path shown in Figure 1.1.

Process
Input the s\, Output

resul
data data esults

Figure 1.1 Procedure-oriented program operations

The programming process in Figure 1.1 mirrors the input, processing, and output hard-
ware units used to construct a computer. This similarity wasn’t accidental because high-level
programming languages were designed to match and, as optimally as possible, control corre-
sponding hardware units. In C++, a procedure is referred to as a function.

Currently, an object-oriented approach has taken center stage. One motivation for object-
oriented languages was the development of graphical screens and support for graphical user
interfaces (GUIs), capable of displaying windows containing both graphics and text. In a GUI
environment, each window is considered a separate object with associated characteristics, such
as color, position, and size. With an object-oriented approach, a program must first define the
objects it’s manipulating. This definition must include descriptions of the objects’ general
characteristics and specific operations to manipulate them. These operations, for example,
could include changing an object’s size and position and transferring data between objects.
Equally important is that object-oriented languages tend to support reusing existing code
more casily, which removes the need to revalidate and retest new or modified code.

1C++ is sometimes classified as a middle-level language to convey that, although it’s written to be a high-level language, it can also
take advantage of machine features that historically could be accessed only with low-level languages.
2In actuality, a low-level language is defined for the processor around which the computer is constructed.

Chapter 1 5
Introduction to Programming

C++, which is classified as an object-oriented language, contains features of both proce-
dural and object-oriented languages. The reason for C++’s dual nature is that it began as an
extension to C, which is a procedural language developed in the 1970s at AT&T Bell
Laboratories. In the early 1980s, Bjarne Stroustrup (also at AT&T) used his background in
simulation languages to develop C++. A central feature of simulation languages is that they
model real-life situations as objects that respond to stimuli in well-defined ways. This object
orientation, along with other procedural improvements, was combined with existing C features
to form the C++ language.

Algorithms and Procedures

Because algorithms are central to C++’s procedural side, understanding what an algorithm does
is essential in learning C++. From a procedural point of view, before writing a program, a pro-
grammer must clearly understand the data to be used, the intended result, and the procedure
used to produce this result. This procedure is referred to as an algorithm. More precisely, an
algorithm is a step-by-step sequence of instructions that describe how to perform a computation.

Only after you clearly understand the data you’re using and the algorithm (the specific
steps to produce the result) can you write the program. Seen in this light, procedure-oriented
programming is translating a selected algorithm into a computer program by using a program-
ming language, such as C++.

"To understand how an algorithm works, take a look at a simple problem: A program must
calculate the sum of all whole numbers from 1 through 100. Figure 1.2 illustrates three meth-
ods you could use to find the required sum. Each method constitutes an algorithm.

Most people wouldn’t bother to list the possible alternatives in a detailed step-by-step
manner, as shown here, and then select one of the algorithms to solve the problem. Most
people, however, don’t think algorithmically; they tend to think heuristically. For example, if
you have to change a flat tire on your car, you don’t think of all the steps required—you simply
change the tire or call someone ¢lse to do the job. This is an example of heuristic thinking.

Unfortunately, computers don’t respond to heuristic commands. A general statement such
as “Add the numbers from 1 through 100” means nothing to a computer because it can respond
only to algorithmic commands written in a language it understands, such as C++. To program
a computer successfully, you must understand this difference between algorithmic and heuris-
tic commands. A computer is an “algorithm-responding” machine; it’s not an “heuristic-
responding” machine. You can’t tell a computer to change a tire or to add the numbers from 1
through 100. Instead, you must give it a detailed, step-by-step sequence of instructions that
collectively form an algorithm. For example, the following sequence of instructions forms a
detailed method, or algorithm, for determining the sum of the numbers from 1 through 100:

Set n equal to 100

Set a equal to 1

Set b equal to 100
Calculate sum =n (a + b)/2
Print the sum

These instructions are not a computer program. Unlike a program, which must be written
in a language the computer can respond to, an algorithm can be written or described in various
ways. When English-like phrases are used to describe the steps in an algorithm, as in this

Getting Started

example, the description is called pseudocode. When mathematical equations are used, the
description is called a formula. When diagrams with the symbols shown in Figure 1.3 are used,
the description is called a flowchart. Figure 1.4 shows using these symbols to depict an algo-
rithm for determining the average of three numbers.

Method 1 - Columns: Arrange the numbers from 1 to 100 in a column and add
them

hrwWN PR

98
99
+100
5050

Method 2 - Groups: Arrange the numbers in groups that sum to 101 and multiply
the number of groups by 101

1+100=101)
2 +99=101
3+98=101
4+97=101 (50 groups

. (50 x 101=5050)
49 + 52=101
50 + 51=101)

Method 3 - Formula: Use the formula

sum = @+b)

n= number of terms to added (100)
a= first number to be added (1)
b= last number to be added (100)

_ 100(1 + 100) _
2

sum 5050

Figure 1.2 Summing the numbers 1 through 100

Chapter 1
Introduction to Programming

Symbol Name Description
a’ Terminal Indicates the beginning or end of a program
Input/output Indicates an input or output operation
Process Indicates computation or data manipulation

N Flow lines Used to connect the other flowchart symbols
| and indicate the logic flow

Decision Indicates a program branch point

Loop Indicates the initial, limit, and increment
values of a loop

Predefined process Indicates a predefined process, as in calling
a function
y_ Connector Indicates an entry to, or exit from, another

part of the flowchart or a connection point

Report Indicates a written output report

Figure 1.3 Flowchart symbols

8

Getting Started

Starﬁ
1

Input
three
values

1

Calculate
the
average

1

Display
the
average

1
Endﬁ

Figure 1.4 Flowchart for calculating the average of three numbers

Except for illustrating extremely simple program structures, flowcharts have fallen out of
favor among professional programmers because they’re cumbersome to revise and can support
unstructured programming practices. In their place, pseudocode has gained increasing accep-
tance, which uses short English phrases to describe an algorithm. Here’s an example of accept-
able pseudocode for describing the steps to compute the average of three numbers:

Input the three numbers into the computer’s memory
Calculate the average by adding the numbers and dividing the sum by 3

Display the average

As mentioned, before you can write an algorithm by using computer-language statements,
you must first select an algorithm and understand the required steps. Writing an algorithm
with computer-language statements is called coding the algorithm (see Figure 1.5).

Select an Translate the
. algorithm &, algorithm
Requirements (step-by-step into C++
procedure) (coding)

Figure 1.5 Coding an algorithm

Chapter 1 9
Introduction to Programming

Classes and Objects

We live in a world full of objects—planes, trains, cars, cell phones, books, computers, and so
on—so it shouldn’t be surprising that programming languages would eventually be based on
objects. The most basic object in object-oriented C++ programming is a data object, a set of
one or more values packaged as a single unit. For example, a student’s name and grade point
average can be considered a data object; in this case, the object consists of two pieces of data.
Similarly, a name, street address, city, state, and zip code can be packaged as an object, one that
would be useful for a program used to print address labels. Finally, a multiplication table, such
as the 10s table, can be considered a data object—in this case, a specific instance of one table
in a set of multiplication tables.

A central concept in all object-oriented programming languages is the difference between
a specific object and the larger set of which it’s a member. To make this concept clearer, con-
sider a car. From an object viewpoint, a specific car is simply an object of a more general class
of car. Therefore, a particular Ford Taurus with its own specific attributes of color, engine size,
body type, and so on can be considered one car object from the broader class of all possible
Ford Tauruses that could have been built. The manufacturer holds the plan for building a
particular car. Only when this plan is put into action and a car is actually built does a specific
object come into existence. The concept of creating an object from a larger defining set, or
class, of object types is fundamental to all object-oriented programming languages, such as
C++. A specific object is created from the object type or, more accurately speaking, from a class.

"This book discusses both aspects of the C++ language: procedural and object oriented. You
start with procedural aspects because C++ is based on the procedural language C; you can’t
write a C++ program without relying on some procedural code. In fact, many useful programs
can be written entirely as procedural programs. After you have a firm grasp of C++’s proce-
dural elements, you can extend these elements to create object-oriented programs with
classes and objects.

As you become more fluent in C++, you’ll begin creating your own classes and objects.
However, as you see later in this chapter and in Chapter 3, two objects—cin for input of data
values and cout for output of data values—are provided in C++. You use these two objects
extensively in your early work.

Program Translation
After an algorithm or a class is written in C++, it still can’t be run on a computer without further
translation because all computers’ internal language consists of a series of 1s and Os, called
machine language. Generating a machine-language program that the computer can run requires
translating the C++ program, referred to as a source program, into the computer’s machine
language (see Figure 1.6).

10

Getting Started

Type in
the C++ program

R

Editor
<L

The
C++
source
program

Py =

Compiler

- b

The
C++
object
program

4L

Other
object
files
(library)

Linker

A4 A4

JL

An
executable
program

Figure 1.6 Creating an executable C++ program

The translation into machine language can be done in two ways. When each statement in
the source program is translated separately and executed immediately after translation, the
programming language is called an interpreted language, and the program doing the translation
is an interpreter. Examples of interpreted languages are BASIC and Perl.

When all statements in a source program are translated as a complete unit before any state-
ment is executed, the programming language is called a compiled language. In this case, the
program doing the translation is called a compiler. Because C++ is a compiled language, a C++
source program is translated as a unit into machine language.

Figure 1.7 shows the relationship between a program in C++ source code and its compi-
lation into a machine-language object program. The source code is entered by using an editor
program, a word-processing tool that’s part of the development environment a compiler

Chapter 1 1
Introduction to Programming

provides.3 Remember, however, that you begin entering code only after you have analyzed an
application and planned the program’s design carefully.

C++ source Translation A machine-
code program > language
(compiler) program

Figure 1.7 Source programs must be translated

After the C++ source code has been entered, translating the program into a machine-
language program begins with the compiler. The output the compiler produces is called an
object program (shown in Figure 1.6). It’s simply a machine-language version of the source
program that the computer can run, with one more processing step required.

Most C++ programs contain statements using preprogrammed routines for input and out-
put and other machine-dependent services. Additionally, a large C++ program might be stored
in two separate program files, with each file compiled separately. Any additional code must be
combined to form a single program before the program can be run, and a linker program per-
forms this step. The result of the linking process is a machine-language program, ready for
execution and containing all the code your program requires. This final program is called an
executable program.

EXERCISES 1.1

1. (Definitions) Define the following terms:

a. Computer program j- Message

b. Programming language k. Response

¢. Programming . Class

d. Algorithm m. Source program

e. Pscudocode n. Compiler

f. Flowchart o. Object program

8. Procedure p. Executable program
h. Object q. Interpreter

i. Method

2. (Practice) Determine a step-by-step procedure (list the steps) for each of the following tasks:

No Note: There's no single correct answer for each task. This exercise is designed to give you practice in
Te converting heuristic commands into equivalent algorithms and understanding the differences between
the thought processes involved.

3The source code you enter is manipulated and stored as ASCII text (see Section 2.1), so if you’re using a commercial word-processing
program, you must save source code files in text format.

12

Getting Started

a. Fix a flat tire.

b. Make a phone call.

c. Go to the store and purchase a loaf of bread.
d. Roast a turkey.

. (Practice) Determine and write an algorithm (list the steps) to interchange the contents of

two cups of liquid. Assume that a third cup is available to hold the contents of either cup tem-
porarily. Each cup should be rinsed before any new liquid is poured into it.

. (Practice) Write a detailed set of instructions in English to calculate the dollar amount of

money in a piggybank that contains /4 half-dollars, ¢ quarters, 7 nickels, # dimes, and p pennies.

. (Practice) Write a set of detailed, step-by-step instructions in English to find the smallest

number in a group of three integer numbers.

. (Practice) a. Write detailed, step-by-step instructions in English to calculate the fewest num-

ber of dollar bills needed to pay a bill of amount TOTAL. For example, if TOTAL were $98,
the bills would consist of one $50 bill, two $20 bills, one $5 bill, and three $1 bills. For this
exercise, assume that only $100, $50, $20, $10, $5, and $1 bills are available.

b. Repeat Exercise 6a, but assume the bill is to be paid only in $1 bills.

. (Practice) a. Write an algorithm to locate the first occurrence of the name JEAN in a list of

names arranged in random order.

b. Discuss how you could improve your algorithm for Exercise 7a if the list of names were
arranged in alphabetical order.

. (Practice) Determine and write an algorithm to sort three numbers in ascending (from lowest

to highest) order. How would you solve this problem heuristically?

. (Practice) Define an appropriate class for each of the following specific objects:

a. The number 5

b. A square measuring 4 inches by 4 inches
c. This C++ book

d. A 1955 Ford Thunderbird car

e. The last ballpoint pen you used

10. (Practice) a. What operations should the following objects be capable of doing?

1. A 1955 Ford Thunderbird car
ii. The last ballpoint pen you used

b. Do the operations determined for Exercise 10a apply only to the particular object listed, or
are they more general and applicable to all objects of the type listed?

1.2 Function and Class Names

A well-designed program is constructed by using a design philosophy similar to one for con-
structing a well-designed building. It doesn’t just happen; it depends on careful planning and

Chapter 1 13
Function and Class Names

execution. As with buildings, an integral part of designing a program is its structure. Programs
with a structure consisting of interrelated segments (called modules), arranged in a logical order
to form an integrated and complete unit, are referred to as modular programs (see Figure 1.8).
Modular programs are easier to develop, correct, and modify than programs constructed in
some other manner.

Module 1

Module 2 Module 3

Module 4 Module 5 Module 6

Figure 1.8 A well-designed program is built by using modules

In C++, modules can be classes or functions. A function, as you have seen, is the name
given to a procedure in C++. It’s composed of a sequence of C++ language instructions. It
helps to think of a function as a small machine that transforms the data it receives into a fin-
ished product. For example, Figure 1.9 illustrates a function that accepts two numbers as
inputs and multiplies the two numbers to produce a result. The interface to the function is its
inputs and results. The method by which inputs are converted to results is encapsulated and
hidden within the function. In this regard, the function can be thought of as a single unit pro-
viding a special-purpose operation.

First Second
number number

i

N Result

Figure 1.9 A multiplying function

14

Getting Started

A similar analogy is suitable for a class. A class, which encapsulates both data and opera-
tions, can be thought of as a complete processing plant containing all the raw materials (the
data being operated on) and all the machines (functions) needed for input, output, and pro-
cessing of these materials.

An important requirement for designing a good function or class is giving it a name that
conveys some idea of what the function or class does. The names allowed for functions and
classes are also used to name other elements of the C++ language and are collectively referred
to as identifiers. Identifiers can be made up of any combination of letters, digits, and under-
scores () selected according to the following rules:

1. The first character of the name must be a letter or an underscore.

2. Only letters, digits, or underscores can follow the first letter. Blank spaces aren’t
allowed; separate words in a multiple-word identifier are indicated by capitalizing the
first letter of one or more of the words. (Although underscores can also be used for this
purpose, they are increasingly being used only for compiler-dependent identifiers.)

3. An identifier name can’t be one of the keywords listed in Table 1.1. (A keyword is a
word the language sets aside for a special purpose and can be used only in a specified
manner.4)

4. The maximum number of characters in an identifier is 1024.5

Table 1.1 Keywords in C++

auto delete goto public this
break do if register template
case doubles inline return typedef
catch else int short union
char enum long signed unsigned
class extern new sizeof virtual
const float overload static void
continue for private struct volatile
default friend protected switch while
Examples of valid C++ identifiers are the following:
grosspay taxCalc addNums degToRad
multByTwo salestax netpay bessel

These are examples of invalid identifiers:

4ab3 (Begins with a number, which violates rule 1.)
e*6 (Contains a special character, which violates rule 2.)
while (Consists of a keyword, which violates rule 3.)

In addition to conforming to C++’s identifier rules, a C++ function name must @/ways be
followed by parentheses. Also, a good function name should be a mnemonic (pronounced

4Keywords in C++ are also reserved words, which means they must be used only for their specified purpose. Attempting to use them
for any other purpose generates an error message.
5The ANSI standard requires that C++ compilers provide at least this number of characters.

Chapter 1 15
Function and Class Names

Point of Information

Tokens

In a computer language, a token is the smallest unit of the language that has a unique
meaning to the compiler. Therefore, keywords, programmer-defined identifiers, and all
special mathematical symbols, such as + and -, are considered tokens of the C++ lan-
guage. Separating characters in a multicharacter token with intervening characters or
white space results in a compiler error.

“knee-mon-ic”), which is a word designed as a memory aid. For example, the function name
degToRad () is a mnemonic for a function that converts degrees to radians. The name helps
identify what the function does. Function names that aren’t mnemonics should not be used
because they convey no information about what the function does. Following are some exam-
ples of valid function names, including their required parentheses, that don’t convey any useful
information about their purpose. Names of this sort should 7ever be used in a C++ program.

easy() arf() tinker() theForce() mike ()

Function names can also consist of mixed uppercase and lowercase letters, as in
locateMaximum(). This convention is becoming increasingly common in C++, although it’s
not required. Identifiers in all uppercase letters are usually reserved for symbolic constants,
covered in Section 3.5.

If you do mix uppercase and lowercase letters, be aware that C++ is a case-sensitive lan-
guage, meaning the compiler distinguishes between uppercase and lowercase letters.
Therefore, in C++, the names TOTAL, total, and TotaL are three different identifiers.

The main() Function

A distinct advantage of using functions—and, as you see in Part 11, classes—is that you can
plan the program’s overall structure in advance. You can also test and verify each function’s
operation separately to ensure that it meets its objectives.

For functions to be placed and executed in an orderly fashion, each C++ program must
have one, and only one, function named main. The main() function is referred to as a
driver function because it tells the other functions the sequence in which they execute (see
Figure 1.10).6

Figure 1.11 shows the main() function’s structure. The first line of the function—in this
case, int main()—is referred to as a function header line. This line is always the first line of
a function and contains three pieces of information:

e What type of data, if any, is returned from the function
e The name of the function
e What type of data, if any, is sent to the function

SFunctions executed from main () can, in turn, execute other functions. Each function, however, always returns to the function that
initiated its execution. This is true even for main (), which returns control to the operating system that was in effect when main ()
was initiated.

16

Getting Started

main()
You go first
1st
: module
I'm done
You go second
2nd
: module
I'm done
You go third
> 3rd
L module
" I'm done
You go last
{ Last
" I'm done module

Figure 1.10 The main () function directs all other functions

The function name An empty argument list

Type of returned value —>int main(')

{

The function body program statements in here;

return 0;

}
Figure 1.11 The structure of amain () function

The keyword before the function name defines the type of value the function returns
when it has finished operating. When placed before the function’s name, the keyword int
(listed in Table 1.1), for example, means the function returns an integer value. Similarly, empty
parentheses following the function name indicate that no data is transmitted to the function
when it runs. (Data transmitted to a function at runtime is referred to as an argument of the
function.) The braces, { and }, determine the beginning and end of the function body and
enclose the statements making up the function.

You’ll be naming and writing many of your own C++ functions. In fact, the rest of Part I is
primarily about the statements required to construct useful functions and how to combine
functions and data into useful programs. Each program, however, must have one and only one
main () function. Until you learn how to pass data to a function and return data from a function

Chapter 1
Function and Class Names

17

Point of Information

Executable and Nonexecutable Statements

You'll be introduced to many C++ statements in this book that can be used to create
functions and programs. All statements in a function, however, belong to two broad
categories: executable statements and nonexecutable statements.

An executable statement causes the computer to perform some specific action
when the program runs. For example, a statement telling the computer to display output
or add numbers is an executable statement. Executable statements must always end with
a semicolon.

A nonexecutable statement describes some feature of the program or its data but
doesn't cause the computer to perform any action when a program runs. An example of
a nonexecutable statement is a comment (described in Section 1.4). A comment is
intended for use by anyone reading the program. The compiler ignores all comments
when it translates source code.

The statements inside the braces determine what the function does. All statements
causing the computer to perform a specific action when the function is executed must
end with a semicolon (;). These statements are executable statements and are described
in more detail as you progress in your understanding of C++.

(the topics of Chapter 6), the header line shown in Figure 1.11 serves for all the programs you

need to write. Until they’re explained more fully, simply regard the first two lines
int main()
{
as indicating “the program begins here,” and regard the last two lines
return 0;

}

as designating the end of the program. Fortunately, many useful functions and classes have
already been written for you. Next, you see how to use an object created from one of these

classes to create your first working C++ program.

EXERCISES 1.2

monic names that convey some idea of their purpose. If the identifier names are invalid,
state why.

1m1234 newBal abcd Al12345 1A2345
power absval invoices do while
add_5 taxes netPay 12345 int

newBalance a2b3c4d5 sales_tax amount Staxes

1. (Practice) State whether the following are valid identifiers and if so, whether they’re mne-

18

.

Getting Started

(Practice) Assume the following functions have been written:
getLength(), getWidth(), calcArea(), displayArea()

a. Based on their names, what do you think each function might do?
b. In what order do you think a main() function might execute these functions (based on
their names)?

(Practice) Assume the following functions have been written:
inputPrice(), calcSalestax(), calcTotal()

a. Based on their names, what do you think each function might do?
b. In what order do you think a main() function might execute these functions (based on
their names)?

(Practice) Determine names for functions that do the following:
a. Find the average of a set of numbers.

b. Find the area of a rectangle.

c. Find the circumference of a circle.

d. Find the maximum value in a set of numbers.

e. Convert an uppercase letter to a lowercase letter.

f. Sort a set of numbers from lowest to highest.

8. Alphabetize a list of names.

(Practice) Just as the keyword int can be used to signify that a function returns an integer,
the keywords void, char, float, and double can be used to signify that a function returns no
value, a character, a floating-point number, and a double-precision number, respectively. Using
this information, write header lines for a function named abs () that receives no arguments but
returns the following:

a. No value

b. A character

c. A floating-point number

d. A double-precision number

1.3 The cout Object

One of the most versatile and commonly used objects in C++ is cout (pronounced “see out”
and derived from console ouzput). It’s an output object that sends whatever data is passed to it
to the standard display device, which is a computer screen in most systems. For example, if the
data Hello there world! is passed to cout, this data is printed (displayed) on your screen.
"To pass this data to the cout object, simply place the insertion symbol, <<, after the object’s
name and before the message, as shown:

cout << "Hello there world!"

Now try putting all this together. Take a look at Program 1.1, which is a working C++
program that can be run on your computer.

Chapter 1 19
The cout Object

Program 1.1

#include <iostream>
using namespace std;

int main()
{

cout << "Hello there world!";

return 0;

The first line of the program is a preprocessor command that uses the reserved word
include:

#include <iostream>

Preprocessor commands begin with a pound sign (#) and perform some action before the
compiler translates the source program into machine code. Specifically, the #include prepro-
cessor command causes the contents of the named file—in this case, iostream—to be
inserted wherever the #include command appears in the program. The iostream file is part
of the standard library that contains, among other code, two classes: istream and ostream.
These two classes provide data declarations and methods used for data input and output,
respectively. The iostream file is called a header file because a reference to it is always placed
at the top, or head, of a C++ program by using the #include command. You might be wonder-
ing what the iostream file has to do with this simple program. The answer is that the cout
object is created from the ostream class. Therefore, the iostream header file must be
included in all programs using cout. As shown in Program 1.1, preprocessor commands don’t
end with a semicolon.

Following the preprocessor #include command is a statement containing the reserved
word using. The following statement, for example, tells the compiler where to find header
files in the absence of an explicit designation:

using namespace std;

You can think of a namespace as a file the compiler accesses when it’s looking for prewrit-
ten classes or functions. Because the iostream header file is contained in a file named std
(for the standard library), the compiler automatically uses iostream’s cout object from this
namespace whenever cout is referenced.” By using namespaces, you can create your own
classes and functions with the same names the standard library provides and place them in
differently named namespaces. You can then tell the program which class or function to use by
specifying the namespace where you want the compiler to look for the class or function.

The using statement is followed by the start of the program’s main() function, which
begins with the header line described previously. The body of the function, enclosed in braces,

7Section 14.8 describes how to create your own namespace.

20

Getting Started

Point of Information

What Is Syntax?

A programming language’s syntax is the set of rules for formulating statements that are
grammatically correct for the language. In practice, it means a C++ statement with cor-
rect syntax has the proper form (types of words and order of words) specified for the
compiler. If statements are in the proper form, the compiler accepts them and doesn’t
generate an error message.

Note, however, that a statement or program can be syntactically correct yet logically
incorrect. In other words, the statement or program is structured correctly but produces
an incorrect result. It's similar to an English statement that's grammatically correct but
makes no sense, such as “The tree is a ragged cat.”

consists of only two statements. The first statement in main() sends one message to the cout
object: the string "Hello there world!".

Because cout is an object of a prewritten class, you don’t have to create it; it’s available
for use just by activating it correctly. Like all C++ objects, cout can perform only certain well-
defined actions. For cout, this action is to assemble data for output display. When a string of
characters is passed to cout, the object makes sure the string is displayed onscreen correctly,
as shown in this output from Program 1.1:

Hello there world!

Strings in C++ are any combination of letters, numbers, and special characters enclosed in
quotation marks ("string in here"). The quotation marks are used to delimit (mark) the
beginning and ending of the string and aren’t considered part of the string. Therefore, the
string of characters making up the message sent to cout must be enclosed in quotation marks,
as was done in Program 1.1.

Now examine another program to understand cout’s versatility. Read Program 1.2 to
determine what it does.

Program 1.2

#include <iostream>

using namespace std;

int main()

cout << "Computers, computers everywhere";
cout << "\n as far as I can C";

return 0;

Chapter 1 21
The cout Object

When Program 1.2 is run, the following is displayed:

Computers, computers everywhere
as far as I can C

You might be wondering why the \n didn’t appear in the output. The characters \ and n,
when used together, are called a newline escape sequence. They tell cout to send instructions to
the display device to move to the beginning of a new line. In C++, the backslash (\) character
provides an “escape” from the normal interpretation of the character following it and alters its
meaning. If the backslash were omitted from the second cout statement in Program 1.2, the n
would be printed as the letter “n,” and the program would output the following:

Computers, computers everywheren as far as I can C

Newline escape sequences can be placed anywhere in the message passed to cout. See
whether you can determine the display Program 1.3 produces.

Program 1.3

#include <iostream>
using namespace std;

int main()
{

cout << "Computers everywhere\n as far as\n\nI can see.";

return 0;

This is the output for Program 1.3:

Computers everywhere
as far as

I can see.

! EXERCISES 1.3

1. (Program) Enter and run Program 1.1 on a computer. (Nofe: You must understand the pro-
cedures for entering and running a C++ program on the particular computer installation
you’re using.)

2. (Program) a. Using cout, write a C++ program that prints your name on one line, your street
address on a second line, and your city, state, and zip code on the third line.

b. Run the program you wrote for Exercise 2a on a computer.

22

Getting Started

. (Program) a. Write a C++ program to display the following verse:

Computers, computers everywhere
as far as I can see.
I really, really like these things,
Oh joy, Oh joy for me!
b. Run the program you wrote for Exercise 3a on a computer.

. (Practice) a. How many cout statements would you use to display the following?

PART NO. PRICE
T1267 $6.34
T1300 $8.92
T2401 $65.40
T4482 $36.99

b. What’s the minimum number of cout statements that could be used to print the table in
Exercise 4a?

c. Write a complete C++ program to produce the output shown in Exercise 4a.

d. Run the program you wrote for Exercise 4c on a computer.

. (For thought) In response to a newline escape sequence, cout positions the next displayed

character at the beginning of a new line. This positioning of the next character actually repre-
sents two distinct operations. What are they?

1.4 Programming Style

C++ programs start execution at the beginning of the main () function. Because a program can
have only one starting point, every C++ program must contain one and only one main()
function. As you have seen, all the statements making up the main() function are then
included within the braces following the function name. Although the main() function must
be present in every C++ program, C++ doesn’t require placing the word main, the parentheses,
or the braces in any particular form. The form used in the previous section

int main()

{
program statements in here;
return 0;

}

was chosen strictly for clarity and ease in reading the program but is not required. For example,
this general form of a main () function also works:

int main
(
) { first statement;second statement;
third statement;fourth
statement;
return 0;}

Chapter 1 23
Programming Style

Notice that you can put more than one statement on a line or place a statement on more
than one line. Except for strings, quotation marks, identifiers, and keywords, C++ ignores all
white space. (White space refers to any combination of blank spaces, tabs, or new lines.) For
example, changing the white space in Program 1.1 and making sure not to split the string
Hello there world! across two lines results in the following valid program:

#include <iostream>
using namespace std;

int main
(

){

cout <<

"Hello there world!";
return 0;

Although this version of main() does work, it’s an example of poor programming style
because it’s difficult to read and understand. For readability, the main() function should
always be written in this standard form:

int main()

{
program statements in here;
return 0;

In this standard form, the function name starts at the left margin (call this column 1) and
is placed with the required parentheses on a line by itself. The opening brace of the function
body follows in column 1 on the next line, directly under the first letter of the line containing
the function’s name. Similarly, the closing function brace is placed by itself in column 1 (lined
up with the opening brace) as the last line of the function. This structure highlights the func-
tion as a single unit.

Within the function, all program statements are indented at least two spaces. Indentation
is another sign of good programming practice, especially if the same indentation is used for
similar groups of statements. Notice in Program 1.2 that the same indentation was used for
both cout statements.

As you progress in your understanding and mastery of C++, you’ll develop your own
indentation standards. Just keep in mind that the final form of your programs should be con-
sistent and always aid others in reading and understanding your programs.

Comments

Comments are explanatory remarks made in a program. When used carefully, comments can
be helpful in clarifying the overall program’s purpose, explaining what a group of statements
is meant to accomplish, or explaining what one line is intended to do. C++ supports two types
of comments: line and block. Both types can be placed anywhere in a program and have no
effect on program execution. The compiler ignores all comments—they are there only for the
convenience of those reading the program.

24 Getting Started

A line comment begins with two slashes (//) and continues to the end of the line. For
example, the following are line comments:

// this is a comment
// this program prints out a message
// this program calculates a square root

The symbols //, with no white space between them, designate the start of the line com-
ment. The end of the line on which the comment is written designates the end of the comment.

A line comment can be written on a line by itself or at the end of the line containing a
program statement. Program 1.4 shows using line comments in a program.

Program 1.4

// this program displays a message
#include <iostream>
using namespace std;

int main()
{

cout << "Hello there world!"; // this produces the display
return 0;

The first comment appears on a line by itself at the top of the program and describes what
the program does. This location is generally a good place to put a short comment describing
the program’s purpose. If more comments are required, they can be added, one per line. When
a comment is too long to be contained on one line, it can be separated into two or more line
comments, with each comment preceded by two slashes (//). For example, the following com-
ment generates a C++ error message because the second line doesn’t start with the // symbols:

// this comment is invalid because it
extends over two lines

This comment is correct, written as follows:

// this comment is used to illustrate a
// comment that extends across two lines

Comments extending across two or more lines are, however, more conveniently written as
block comments than as multiple-line comments. Block comments begin with the symbols /*
and end with the symbols */, as in this example:

/* This is a block comment that
spans
three lines */

Chapter 1 25
Programming Style

In C++, a program’s structure is intended to make it readable and understandable, so
extensive comments aren’t necessary. This guideline is reinforced by selecting function names
carefully to convey their purpose, as discussed previously. However, if the program element’s
purpose still isn’t clear from its structure, name, or context, include comments where clarifica-
tion is needed.

Obscure code with no comments is a sure sign of bad programming, especially when other
people must maintain or read the program. Similarly, excessive comments are a sign of bad
programming because not enough thought was given to making the code self-explanatory.
Typically, any program you write should begin with comments including a short program
description, your name, and the date the program was written or last modified. For space con-
siderations and because all programs in this book were written by the author, these initial
comments are used only for short program descriptions when they aren’t provided as part of
the accompanying text.

EXERCISES 1.4

. (Debug) a. Will the following program work?

#include <iostream>
using namespace std;
int main() {cout << "Hello there world!"; return 0;}

b. Even if the program in Exercise 1a works, explain why it’s not a good program.

(Modify) Rewrite the following programs to conform to good programming practice and cor-
rect syntax:
a. #include <iostream>
int main(
) {
cout <<
"The time has come"
; return 0;}
b. #include <iostream>
using namespace std;
int main
(){cout << "Newark is a city\n";cout <<
"In New Jersey\n"; cout <<
"It is also a city\n"
; cout << "In Delaware\n"
; return 0;}
C. #include <iostream>
using namespace std;
int main() {cout << Reading a program\n";cout <<
"is much easier\n"
cout << "if a standard form for main() is used\n")

cout =

.
r
.
r

26 Getting Started

<<"and each statement is written\n";cout
<< "on a line by itself\n")

; return 0;}

d. #include <iostream.h>

using namespace std;

int main

(){ cout << "Every C++ program"

; cout

<<"\nmust have one and only one"

7

cout << "main() function"

7

cout <<

"\n the escape sequence of characters")
; cout <<

"\nfor a newline can be placed anywhere"

; cout

<<"\n within the message passed to cout"
; return 0;}

3. (For thought) a. When used in a message, the backslash character alters the meaning of the
character immediately following it. If you want to print the backslash character, you have to
tell cout to escape from the way it normally interprets the backslash. What character do you
think is used to alter the way a single backslash character is interpreted?

b. Using your answer to Exercise 3a, write the escape sequence for printing a backslash.

4. (For thought) a. A token of a computer language is any sequence of one or more characters
that has a unique meaning to the compiler. Separating characters with intervening characters
or white space results in a compiler error. Using this definition of a token, determine whether
escape sequences, function names, and keywords listed in Table 1.1 are tokens of the C++
language.

b. Discuss whether adding white space to a message alters the message and whether mes-
sages can be considered tokens of C++.

c. Using the definition of a token in Exercise 4a, determine whether the following statement
1s true: “Except for tokens of the language, C++ ignores all white space.”

1.5 Common Programming Errors

Part of learning any programming language is making the elementary mistakes commonly
encountered when you begin using the language. These mistakes tend to be frustrating
because each language has its own set of common programming errors lying in wait for the
unwary. The errors commonly made when first programming in C++ include the following:

1. Omitting the parentheses after main().
2. Omitting or incorrectly typing the opening brace, {, that signifies the start of a
function body.

Chapter 1 27
Chapter Summary

(o8]

. Omitting or incorrectly typing the closing brace, }, that signifies the end of a function.
. Omitting the semicolon at the end of each C++ executable statement.

Adding a semicolon after the #include <iostream> preprocessor command.

. Misspelling the name of an object or function, such as typing cot instead of cout.

. Forgetting to enclose a string sent to cout with double quotation marks.

. Forgetting the \n to indicate a new line.

SN NET S

The third, fourth, fifth, and sixth errors in this list tend to be the most common. A worth-

while practice is writing a program and introducing each error, one at a time, to see what error
messages your compiler produces. When these error messages appear as a result of inadvertent
errors, you’ll have had experience in understanding the messages and correcting the errors.

1.6 Chapter Summary

1.

A computer program is a self-contained unit of instructions and data used to operate a com-
puter to produce a specific result.

. An algorithm is a step-by-step procedure that must terminate; it describes how a computa-

tion or task is to be performed.

. A C++ program consists of one or more modules called functions. One of these functions must

be called main(). The main() function identifies the starting point of a C++ program.

. The simplest C++ program consists of the single function main () and has this form:

#include <iostream>
using namespace std;

int main()

{

program statements in here;

return 0;

}

T'his program consists of a preprocessor #include statement, a using statement, a header
line for the main() function, and the body of the main() function. The body of the func-
tion begins with the opening brace, {, and ends with the closing brace, }.

. All executable C++ statements within a function body must be terminated by a semicolon.

. Many functions and classes are supplied in a standard library provided with each C++ com-

piler. One set of classes, used to create input and output capabilities, is defined in the
iostream header file.

. The cout object is used to display text or numerical results. A stream of characters can be

sent to cout by enclosing the characters in quotation marks and using the insertion symbol,
<<, as in the statement cout << "Hello World!";. The text in the string is displayed
onscreen and can include newline escape sequences for controlling the format.

28

Getting Started

1.7 Chapter Supplement: Software Development

At its most basic level, a program is a solution developed to solve a particular problem, written
in a form that can be run on a computer. Therefore, writing a program is almost the last step
in a process that first determines the problem to be solved and the method to be used in the
solution. Each field of study has its own name for the systematic method of designing solutions
to solve problems. In science and engineering, the approach is referred to as the scientific
method, and in quantitative analysis, the approach is called the systems approach. Professional
software developers use the software development procedure for understanding the problem to
be solved and for creating an effective, suitable software solution. This procedure, shown in
Figure 1.12, consists of three overlapping phases:

1. Development and design
2. Documentation
3. Maintenance

N l Maintenance |
I |
Program | Documentation i
life cycle ! !
stages Development
and design |
1
N
1‘ Time 1‘
Request for Program no
a program longer used

Figure 1.12 The three phases of software development

As a discipline, software engineering is concerned with creating readable, efficient, reli-
able, and maintainable programs and systems, and it uses the software development procedure
to achieve this goal.

Phase I: Development and Design

Phase I begins with a statement of a problem or a specific request for a program, which is referred
to as a program requirement. After a problem has been stated or a specific request for a program
solution has been made, the development and design phase begins. This phase consists of four
well-defined steps, as illustrated in Figure 1.13 and summarized in the following sections.

Chapter 1 29
Chapter Supplement: Software Development

D .
| Testing |
Development | Coding |
and 1 |
design Design
steps | |
AnalysisI
N

Time

Figure 1.13 The development and design steps

Step 1: Analyze the Problem

The analysis of a problem can consist of up to two parts. The first part is a basic analysis that
must be performed on all problems; it consists of extracting the complete input and output
information supplied by the problems. For this analysis, you must:

1. Determine and understand the output items the program must produce.
2. Determine the input items.

Together, these two items are referred to as the problem’s input/output (1/0). Only after
determining a problem’s I/O can you select specific steps for transforming inputs into outputs.
At this point, doing a hand calculation to verify that the output can indeed be obtained from
the inputs is sometimes necessary and/or useful. Clearly, if you have a formula that relates
inputs to the output, you can omit this step. If the required inputs are available and the desired
outputs can be produced, the problem is said to be clearly defined and can be solved.

For a variety of reasons, completing a basic analysis might not be possible. If so, an
extended analysis might be necessary. An extended analysis simply means you must gather
more information about the problem so that you thoroughly understand what’s being asked for
and how to achieve the result. In this book, any additional information required to understand
the problem is supplied along with the problem statement.

Step 2: Develop a Solution

Next, you select the exact set of steps, called the algorithm, to use for solving the problem.
Typically, you find the solution by a series of refinements, starting with the initial algorithm
you find in the analysis step, until you have an acceptable and complete algorithm. This algo-
rithm must be checked, if it wasn’t in the analysis step, to make sure it produces the required
outputs correctly. The check is usually carried out by doing one or more hand calculations that
haven’t been done already.

For small programs, the selected algorithm might be extremely simple and consist of only
one or more calculations. More typically, you need to refine the initial solution and organize it
into smaller subsystems, with specifications for how the subsystems interface with each other.
"To achieve this goal, the algorithm’s description starts from the highest level (top) requirement
and proceeds downward to the parts that must be constructed to meet this requirement. To

30

Getting Started

make this explanation more meaningful, think of a computer program that must track the
number of parts in inventory. The required output for this program is a description of all parts
carried in inventory and the number of units of each item in stock; the given inputs are the
initial inventory quantity of each part, the number of items sold, the number of items returned,
and the number of items purchased.

For these specifications, a designer could initially organize the program’s requirements
into the three sections shown in Figure 1.14. This figure is referred to as both a top-level
structure diagram and a first-level structure diagram because it represents the first overall
structure of the program the designer has selected.

Inventory
control
program
—
eDritr?/ Calcul_ation Rep.ort
. section section
section

Figure 1.14 A first-level structure diagram

After an initial structure is developed, it’s refined until the tasks in the boxes are com-
pletely defined. For example, the data entry and report modules shown in Figure 1.14 would
be refined further. The data entry module certainly must include provisions for entering data.
Because planning for contingencies and human error is the system designer’s responsibility,
provisions must also be made for changing incorrect data after an entry is made and for delet-
ing previous entries. Similar subdivisions for the report module can be made. Figure 1.15 is a
second-level structure diagram for an inventory-tracking system that includes these further
refinements.

Inventory
control
program
)
)) |
Dl Calculation Report
ent!'y section section
section
1 1
| -
Enter Change Delete Screen Printer
data data data reports reports

Figure 1.15 A second-level structure diagram with refinements

Chapter 1 31
Chapter Supplement: Software Development

The process of refining a solution continues until the smallest requirement is included.
Notice that the design produces a treelike structure, in which the levels branch out as you
move from the top of the structure to the bottom. When the design is finished, each task des-
ignated in a box is typically coded with separate sets of instructions that are executed as
they’re called on by tasks higher up in the structure.

Step 3: Code the Solution (Write the Program)

"This step consists of actually writing a C++ program that corresponds to the solution devel-
oped in Step 2. If the analysis and solution steps have been performed correctly, the coding
step becomes rather mechanical in nature. In a well-designed program, the statements making
up the program, however, conform to certain well-defined patterns or structures that have been
defined in the solution step. These structures control how the program executes and consist
of the following types:

Sequence
Selection
[teration
Invocation

Sequence defines the order in which the program executes instructions. Specifying which
instruction comes first, which comes second, and so on is essential if the program is to achieve
a well-defined purpose.

Selection provides the capability to make a choice between different operations, depend-
ing on the result of some condition. For example, the value of a number can be checked before
a division is performed. If the number isn’t zero, it can be used as the denominator of a division
operation; otherwise, the division isn’t performed and the user is issued a warning message.

Iteration, also referred to as “looping” and “repetition,” makes it possible to repeat the
same operation based on the value of a condition. For example, grades might be entered and
added repeatedly until a negative grade is entered. In this case, the entry of a negative grade
is the condition that signifies the end of the repetitive input and addition of grades. At that
point, an average for all grades entered could be calculated.

Invocation involves invoking, or summoning, a set of statements as it’s needed. For exam-
ple, computing a person’s net pay involves the tasks of obtaining pay rates and hours worked,
calculating the net pay, and providing a report or check for the required amount. Each task is
typically coded as a separate unit that’s called into execution, or invoked, as it’s needed.

Step 4: Test and Correct the Program

The purpose of testing is to verify that a program works correctly and actually fulfills its
requirements. In theory, testing would reveal all existing program errors. (In computer termi-
nology, a program error is called a bug.8) In practice, finding all errors would require checking
all possible combinations of statement execution. Because of the time and effort required, this
goal is usually impossible, except for extremely simple programs. (Section 4.7 explains why
this goal is generally considered impossible.)

8The derivation of this term is rather interesting. When a program stopped running on the Mark I at Harvard University in September
1945, Grace Hopper traced the malfunction to a dead insect that had gotten into the electrical circuits. She recorded the incident in
her logbook as “Relay #70. . . . (moth) in relay. First actual case of bug being found.”

32

Getting Started

Because exhaustive testing isn’t feasible for most programs, different philosophies and
methods of testing have evolved. At its most basic level, however, testing requires a conscious
effort to make sure a program works correctly and produces meaningful results. This effort
means giving careful thought to what the test is meant to achieve and to the data used in the
test. If testing reveals an error (bug), the process of debugging, which includes locating, cor-
recting, and verifying the correction, can be initiated. Realize that although testing might
reveal the presence of an error, if doesn’t necessarily indicate the absence of one. Therefore, the fact
that a test revealed one bug does 7ot indicate that another one isn’t lurking somewhere else in
the program.

"To catch and correct errors in a program, developing a set of test data for determining
whether the program produces correct answers is important. In fact, often an accepted step in
formal software development is to plan test procedures and create meaningful test data before
writing the code. Doing this step first helps you be more objective about what the program
must do because it circumvents the subconscious temptation after coding to avoid test data
that would reveal a problem with your program. The procedures for testing a program should
examine every possible situation in which the program will be used. The program should be
tested with data in a reasonable range as well as at the limits and in areas where the program
should tell users the data is invalid. Developing good test procedures and data for sophisti-
cated problems can be more difficult than writing the program code.

Table 1.2 lists the comparative amount of effort that’s typically expended on each devel-
opment and design step in large commercial programming projects. As this listing shows, cod-
ing is not the major effort in Phase I. Many new programmers have trouble because they
spend most of their time writing the program and don’t spend enough time understanding the
problem or designing a suitable solution. (Note in the table that 50% of total development
time is spent on testing, with many programmers testing only code that others have written.)
"To help you avoid making the same mistake, remember the programming proverb “It’s impos-
sible to write a successful program for a problem or application that’s not fully understood.”
An equally valuable proverb is “T'he sooner you start coding a program, the longer it usually
takes to complete.”

Table 1.2 Effort Expended in Phase |

Step Effort
Analyze the problem 10%
Develop a solution 20%
Code the solution (write the program) 20%
Test the program 50%

Phase Il: Documentation

Because of inadequate documentation, so much work becomes useless or lost and many tasks
must be repeated, so documenting your work is one of the most important steps in problem
solving. Many critical documents are created during the analysis, design, coding, and testing
steps. Completing the documentation phase requires collecting these documents, adding user-
operating material, and presenting documentation in a form that’s most useful to you and your
organization.

Chapter 1 33
Chapter Supplement: Software Development

Although not everybody classifies them in the same way, every problem solution has five
main documents:

e Program description

e Algorithm development and changes
e Well-commented program listing

e Sample test runs

e Users’ manual

Putting yourself in the shoes of a person who might use your work—anyone from assis-
tants to programmers/analysts and management—should help you strive to make the content
of important documentation clear. The documentation phase formally begins in the develop-
ment and design phase and continues into the maintenance phase.

Phase lll: Maintenance

This phase is concerned with the ongoing correction of problems, revisions to meet changing
needs, and addition of new features. Maintenance is often the major effort, the primary source
of revenue, and the longest lasting of all the phases. Development might take days or months,
but maintenance could continue for years or decades. The better the documentation is, the

more efficiently maintenance can be performed, and the happier customers and end users
will be.

Backup

Although not part of the formal design process, making and keeping backup copies of the
program at ecach step of the programming and debugging process are critical. Deleting or
changing a program’s current working version beyond recognition can happen quite easily.
With backup copies, you can recover the last stage of work with little effort. The final working
version of a useful program should be backed up at least twice. In this regard, another useful
programming proverb is “Backup is unimportant if you don’t mind starting over again.” Many
organizations keep at least one backup on site, where it can be retrieved easily, and another
backup copy in a fireproof safe or at a remote location.

EXERCISES FOR SECTION 1.7

Note: In each of these exercises, a programming problem is given. Read the problem statement first and
then answer the questions pertaining to the problem. Do not attempt to write a program to solve the
problems. Instead, simply answer the questions following the program specifications.

. (Practice) A C++ program is required that calculates the amount, in dollars, contained in a
piggybank. The bank contains half dollars, quarters, dimes, nickels, and pennies.
a. For this programming problem, how many outputs are required?
b. How many inputs does this problem have?
c. Write an algorithm for converting the input items into output items.
d. Test the algorithm written for Exercise 1c¢ using the following sample data: half dollars 0,
quarters 17, dimes 24, nickels 16, and pennies 12.

34

Getting Started

. (Practice) A C++ program is required to calculate the value of distance, in miles, given this

relationship:
distance = average - speed x time

. For this programming problem, how many outputs are required?
. How many inputs does this problem have?
. Write an algorithm for converting the input items into output items.

o6 o

. Test the algorithm written for Exercise 2¢ using the following sample data: speed is 55 miles
per hour and time is 2.5 hours.

e. How must the algorithm you wrote in Exercise 2¢ be modified if the elapsed time is given

in minutes instead of hours?

. (Practice) A C++ program is required to determine the value of Ergies, given this relationship:

Ergies = Fergies x Lergies

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 3¢ using the following sample data: Fergies = 14.65
and Lergies = 4.

. (Practice) A C++ program is required to display the following name and address:

Mr. S. Hazlet

63 Seminole Way

Dumont, NJ 07030
a. For this programming problem, how many lines of output are required?
b. How many inputs does this problem have?
c. Write an algorithm for converting the input items into output items.

. (Practice) A C++ program is required to determine how far a car has traveled after 10 seconds,

assuming the car is initially traveling at 60 mph and the driver applies the brakes to decelerate
at a uniform rate of 12 miles/sec2. Use the following formula:

distance = st - (1/2)df?

s is the initial speed of the car.
d is the deceleration.
¢ 1s the elapsed time.
. For this programming problem, how many outputs are required?
. How many inputs does this problem have?
. Write an algorithm for converting the input items into output items.

o6 o

. Test the algorithm written for Exercise 5¢ by using the data given in the problem.

. (Practice) In 1627, Manhattan Island was sold to Dutch settlers for approximately $24. If the

proceeds of that sale had been deposited in a Dutch bank paying 5% interest, compounded

Chapter 1 35
Chapter Supplement: Software Development

annually, what would the principal balance be at the end of 2012? The following display is
required; xxxxxx is the amount calculated by the program:

Balance as of December 31, 2012 is: XXXXXX

a. For this programming problem, how many outputs are required?
b. How many inputs does this problem have?
c. Is the algorithm for converting the input items into output items provided?

. (Practice) A C++ program is required that calculates and displays the weekly gross pay and
net pay of two employees. The first employee is paid an hourly rate of $16.43, and the second
is paid an hourly rate of $12.67. Both employees have 20% of their gross pay withheld for
income tax, and both pay 2% of their gross pay, before taxes, for medical benefits.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 7c, using the following sample data: The first
employee works 40 hours during the week, and the second employee works 35 hours.

. (Program) This is the formula for the standard normal deviate, 2, used in statistical
applications:

2= (X-pu)lo

X is a single value.
refers to a mean value.
o refers to a standard deviation.

Using this formula, write a program that calculates and displays the value of the standard
normal deviate when X = 85.3, # = 80, and o = 4.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 8c, using the data given in the problem.

. (Practice) The equation describing exponential growth is as follows:
y =

Using this equation, a C++ program is required to calculate the value of y.
a. For this programming problem, how many outputs are required?
b. How many inputs does this problem have?
c. Write an algorithm for converting the input items into output items.
d. Test the algorithm written for Exercise 9¢, assuming ¢ is 2.718 and x is 10.

Chapter

2.1 Data Types

2.2 Arithmetic Operations

2.3 Variables and Declarations Data Types,
2.4 Common Programming Errors Declarations, and

2.5 Chapter Summary Displays

2.6 Chapter Supplement: Bits, Bytes,
and Binary Number
Representations

C++ programs can process different types of data in different ways. For example, calculating the bacteria
growth in a polluted pond requires mathematical operations on numerical data, whereas sorting a list of
names requires comparison operations with alphabetical data. This chapter introduces C++'s elementary
data types and the operations that can be performed on them. You also see how to use the cout object to
display the results of these operations.

2.1 Data Types

The objective of all programs is to process data, be it numerical, alphabetical, audio, or video.
Central to this objective is classifying data into specific types. For example, calculating the
interest due on a bank balance requires mathematical operations on numerical data, and alpha-
betizing a list of names requires comparison operations on character-based data. Additionally,
some operations aren’t applicable to certain types of data. For example, it makes no sense to
add names together. To prevent programmers from attempting to perform an inappropriate
operation, C++ allows performing only certain operations on certain types of data.

38

Data Types, Declarations, and Displays

The types of data permitted and the operations allowed for each type are referred to as a
data type. Formally, a data type is defined as a set of values @74 a set of operations that can be
applied to these values. For example, the set of all integer (whole) numbers constitutes a set
of values. This set of numbers, however, doesn’t constitute a data type until a set of operations
is included. These operations, of course, are the familiar mathematical and comparison opera-
tions. The combination of a set of values p/us operations results in a true data type.

C++ categorizes data types as class or built-in types. A class data type (referred to as a
“class,” for short) is a programmer-created data type. This means the programmer defines both
acceptable values and operations, and this type is discussed in Part IT of this book.

A built-in data type is provided as an integral part of the programming language. Built-in data
types are also referred to as primitive types. C++’s built-in numerical data types consist of the basic
numerical types shown in Figure 2.1 and the operations listed in Table 2.1. As "Table 2.1 shows, the
majority of operations for built-in data types use conventional mathematical symbols. For class data
types, most operations, as you see in Part I, are provided as functions.

Numerical data types

Floating-point

Integer types types

Figure 2.1 Built-in data types

Table 2.1 Built-In Data Type Operations

Built-in Data Type Operations

Integer +, -, % /, % = == 1= <= >= sizeof(), and bit
operations (see Appendix C, available online)

Floating-point +, -, %, /, = == 1= <= >= sizeof()

Literal values are used to introduce the built-in data types in C++. A literal value means
the value identifies itself. (Another name for a literal value is a literal or constant.) For exam-
ple, all numbers, such as 2, 3.6, and -8.2, are referred to as literal values because they literally
display their values. Text, such as "Hello World!", is also referred to as a literal value
because the text itself is displayed. You have been using literal values throughout your life but
have known them as numbers and words. In Section 2.3, you see some examples of nonliteral
values—that is, values that don’t display themselves but are stored and accessed by using
identifiers.

Integer Data Types

C++ provides nine built-in integer data types, as shown in Figure 2.2. The essential difference
between these integer data types is the amount of storage used for each type, which affects the
range of values each type is capable of representing. The three most important and common
types used in many applications are int, char, and bool. The other types were provided to

Chapter 2 39
Data Types

accommodate special situations (such as a very small or large range of numbers) and have been
retained for historical reasons. They enabled programmers to maximize memory usage by
selecting the data type using the smallest amount of memory, consistent with an application’s
requirements. When computer memories were small and expensive, compared with today’s
computers, the amount of memory used was a major concern. Although no longer a concern for
most programs, these types still allow programmers to optimize memory usage when necessary.
This optimization is often required in engineering applications, such as control systems used
in home appliances and automobiles.

bool
char
short int
int

Integer data types long int
unsigned char
unsigned short int
unsigned int
unsigned long int

Figure 2.2 C++ integer data types

The int Data Type 'The values supported by the int data type are whole numbers, which
are mathematically known as integers. An integer value consists of digits only and can option-
ally be preceded by a plus (+) or minus (-) sign. Therefore, an integer value can be the number
0 or any positive or negative number without a decimal point. The following are examples of
valid integers:

0 -10 1000 -26351
5 +25 253 +36

As these examples show, integers can contain an explicit sign. However, no commas,
decimal points, or special symbols, such as the dollar sign, are allowed, as in these examples of
invalid integers:

$255.62 3. 1,492.89
2,523 6,243,892 +6.0

Compilers differ in their internal limit on the largest (most positive) and smallest (most
negative) integer values that can be stored in each data type.! The most common storage allo-

cation is 4 bytes for the int data type, which restricts the values used to represent integers
from -2,147,483,648 to 2,147,483,647.2

I'The limits the compiler imposes are found in the 1imits header file and defined as the constants INT_MIN and INT_MAX.
2The magnitude of the most negative number is always one more than the magnitude of the most positive number. The reason is the
twos complement method of integer storage, described in Section 2.6.

40

Data Types, Declarations, and Displays

The char Data Type 'The char data type is used to store single characters, including the
letters of the alphabet (uppercase and lowercase), the digits 0 through 9, and special symbols,
suchas + $. , - and !. A character value is any single letter, digit, or special symbol enclosed
by single quotation marks, as shown in these examples:

A’ |$| b vy vyv vy ‘M’ lql

Character values are typically stored in a computer with the ASCII or Unicode codes. ASCII
(pronounced “as-key”) is the acronym for American Standard Code for Information Interchange.
Both ASCII and Unicode codes assign characters to specific patterns of Os and 1s. Table 2.2 lists
the correspondence between ASCII bit patterns and the lowercase and uppercase letters.

Table 2.2 The ASCII Letter Codes

Lowercase | Binary Lowercase | Binary Uppercase | Binary Uppercase | Binary
Letter Code Letter Code Letter Code Letter Code
01100001 n 01101110 | A 01000001 N 01001110
b 01100010 | o 01101111 B 01000010 | O 01001111
C 01100011 | p 01110000 | C 01000011 | P 01010000
d 01100100 | g 01110001 | D 01000100 | Q 01010001
e 01100101 | r 01110010 | E 01000101 | R 01010010
f 01100110 | s 01110011 | F 01000110 | S 01010011
g 01100111 | t 01110100 | G 01000111 | T 01010100
h 01101000 | u 01110101 H 01001000 | U 01010101
[01101001 | v 01110110 | | 01001001 | V 01010110
j 01101010 | w 01110111 | J 01001010 | W 01010111
k 01101011 X 01111000 | K 01001011 X 01011000
[01101100 | vy 01111001 | L 01001100 | Y 01011001
m 01101101 | z 01111010 | M 01001101 | Z 01011010

The newer Unicode code is used for international applications because it accommodates
character sets for almost all languages, in addition to English. As the first 256 Unicode codes
are the same binary codes as the complete set of 256 ASCII codes (with the addition of eight
leading Os), you needn’t be concerned with which storage code is used for English-language
characters.

Using Table 2.2, you can determine how the characters 'B', 'A', 'R', 'T', 'E', and 'R",
for example, are stored in a computer by using ASCII codes. This sequence of six characters
requires 6 bytes of storage (1 byte for each letter) and is stored as shown in Figure 2.3. (Review
Section 2.6 if you're unfamiliar with the concept of a byte.)

01000010 r 01000001 (01010010 r 01010100 r 01000101 (01010010 ’
B A R T E R
Figure 2.3 The letters BARTER stored in a computer

1 6 bytes of storage N

Chapter 2 41
Data Types

The Escape Character As you’ve seen in Section 1.3, the backslash (\) has a special meaning in
C++ as the escape character. When a backslash is placed in front of a group of characters, it tells the
compiler to escape from the way these characters are normally interpreted. The combination of a
backslash and these characters is called an escape sequence. Table 2.3 lists C++’s most common
escape sequences.

Table 2.3 Escape Sequences

Escape Character
Sequence Represented Meaning ASCIl Code
\n Newline Move to a new line 00001010
\t Horizontal tab Move to the next horizontal tab setting 00001001
\v Vertical tab Move to the next vertical tab setting 00001011
\b Backspace Move back one space 00001000
\r Carriage return Move the cursor to the start of the 00001101
current line; used for overprinting
\f Form feed Issue a form feed 00001100
\a Alert Issue an alert (usually a bell sound) 00000111
\\ Backslash Insert a backslash character (used to place | 01011100
an actual backslash character in a string)
\? Question mark Insert a question mark character 00111111
\'! Single quotation Insert a single-quote character (used to 00100111
place an inner single quote inside a set of
outer single guotes)
\" Double Insert a double-quote character (used to 00100010
guotation place an inner double quote inside a set
of outer double quotes)
\nnn Octal number Consider the number nnn (n is a digit) an Dependent on
octal number nnn
\xhhhh Hexadecimal Consider the number hhhh (h is a digit) a Dependent on
number hexadecimal number hhhh
\0 Null character Insert the null character, which is defined 00000000
as having the value 0

Although each escape sequence in Table 2.3 is made up of two characters, the combination
of these characters, with no intervening white space, causes the compiler to create the single ASCI|
code listed in the table.

The bool Data Type In C++, the bool data type is used to represent Boolean (logical) data,
so i1t’s restricted to one of two values: true or false. This data type is most useful when a
program must examine a condition and take a prescribed course of action, based on whether

42 Data Types, Declarations, and Displays

the condition is true or false. For example, in a sales application, the condition being examined
might be “is the total purchase for $100 or more.” Only when this condition is true is a discount
applied. Because the bool data type uses an integer storage code, however, it has useful impli-
cations that most professional C++ programmers utilize. Chapter 4 covers the practical uses of
Boolean conditions, so the bool data type is discussed in more detail in that chapter.

Determining Storage Size

A unique feature of C++ is that you can see where and how values are stored. As an example,
the C++ operator sizeof () provides the number of bytes (discussed in Section 2.6) used to
store values for the data type given in the parentheses. This built-in operator doesn’t use an
arithmetic symbol to perform its operation. Program 2.1 uses this operator to determine the
amount of storage reserved for the int, char, and bool data types.

Program 2.1

#include <iostream>
using namespace std;

int main()

{
cout << "\nData Type Bytes";
cout << "\n--——-————- ————— "
cout << "\nint " << sizeof(int);
cout << "\nchar " << sizeof(char);
cout << "\nbool " << sizeof(bool);

cout << '\n';

return 0;

In reviewing Program 2.1, notice that the \n character is included at the start of each out-
put string in the first five cout statements. Each time the compiler encounters the newline
escape sequence, as part of a string or as one character, it’s translated as a single character that
forces the display to start at the beginning of a new line. In the final cout statement, the new-
line escape sequence is inserted as a single '\n' character. Although quotation marks can be
used for this final newline insertion, as "\n", doing so designates a string. The single quotes,
as in '\n"', clearly indicate that a single character is being transmitted. From a practical stand-
point, however, both notations (*\n' and "\n") force a new line in the display.

Chapter 2 43
Data Types

Point of Information

The Character '\n' and the String "\n"

The compiler recognizes both '\n' and "\n" as containing the newline character. The
difference is in the data type used. Formally, ' \n" is a character literal, and "\n" is a
string literal. From a practical standpoint, both cause the same thing to happen: A new
line is forced in the output display. In encountering the character value ' \n', however,
the compiler translates it by using the ASCII code 00001010 (see Table 2.3). In encoun-
tering the string value "\n", the compiler translates it by using the same character code
but adds the code for the end-of-string character, *\0 ', which is 00000000.

Good programming practice requires ending the last output display with a newline
escape sequence. This practice ensures that the first line of output from one program
doesn’t end up on the last line displayed by the previously executed program.

The output of Program 2.1 is compiler dependent, meaning each compiler reports the
amount of storage it provides for the data type under consideration. When run on a computer
using Microsoft’s current Visual C++ compiler, for example, the following output is produced:

Data Type Bytes

char 1
bool

For this output, which is the typical storage almost all current C++ compilers provide, you
can determine the range of values that can be stored in each data type. Doing so, however,
requires understanding the difference between a signed and an unsigned data type, discussed
in the next section.

Signed and Unsigned Data Types A signed data type allows storing negative values, the
value 0, and positive values, so int is a signed data type. An unsigned data type provides for
only non-negative values (that is, 0 and positive values). Some applications require only
unsigned numerical values. For example, many date applications store dates in the numerical
form yearmonthday (storing 12/25/2011 as 20111225, for example) and are concerned only with
dates after 0 CE. For these applications, which never require a negative value, an unsigned
data type can be used.

All unsigned integer types, such as unsigned int, provide a range of positive values that,
for all practical purposes, is double the range for their signed counterparts. This extra positive
range is made available by using the negative range of its signed version for additional positive
numbers.

"Table 2.4 lists the range of integer values supported by current C++ compilers for its signed
and unsigned integer data types. As you can see, a long int uses the same amount of storage
(4 bytes) as an int. The only requirement of the ANSI C++ standard is that an int must pro-
vide at least as much storage as a short int, and a long int must provide at least as much
storage as an int. On early desktop computers with a memory capacity limited to thousands of

44

Data Types, Declarations, and Displays

bytes, a short int typically used 1 byte of storage, an int 2 bytes, and a long int 4 bytes.
"T'his storage limited the range of int values from -32,768 to +32,767 and unsigned int values
from 0 to 65,535, thus doubling the number of possible positive values, which was significant.
With the current range of int values in the -2 billion to +2 billion range, doubling positive val-
ues is rarely a consideration. Additionally, a long int is unnecessary now because it uses the
same storage capacity as an int.

Table 2.4 Integer Data Type Storage

Name of Data Type Storage Size Range of Values
char 1 256 characters
bool 1 true (considered as any positive value)

and false (which is a 0)

-32,768 to +32,767

0 to 65,535

-2,147,483,648 to +2,147,483,647
0t0 4,294,967,295
-2,147,483,648 to +2,147,483,647
010 4,294,967,295

short int

unsigned short int
int

unsigned int

long int

BRI ININ

unsigned long int

Floating-Point Types

A floating-point number, more commonly known as a real number, can be the number 0 or any
positive or negative number containing a decimal point. The following are examples of floating-
point numbers:

+10.625 5.0 -6.2 3251.92 0.0 0.33 -6.67 +2.

Notice that the numbers 5.0, 0.0, and +2. are classified as floating-point values, but the
same numbers written without a decimal point (5, 0, +2) would be integer values. As with integer
values, specia symbols, such as the dollar sign and comma, aren’t permitted in real numbers.
Examples of invalid real numbers are as follows:

5,326.25 24 6,459 $10.29 7.007.645

C++ supports three floating-point data types: £loat, double, and long double. T'he dif-
ference between these data types is the amount of storage the compiler uses for each type. Most
compilers use twice the amount of storage for doubles as for £loats, which allows a double to
have approximately twice the precision of a £loat. For this reason, a £1oat value is sometimes
referred to as a single-precision number and a double value as a double-precision number. The
actual storage allocation for each data type, however, depends on the compiler. The ANSI C++
standard requires only that a double have at least the same amount of precision as a float,
and a long double have at least the same amount of storage as a double. Currently, most C++
compilers allocate 4 bytes for £loats and 8 bytes for doubles and long doubles, which pro-
duces the range of numbers listed in Table 2.5.

Chapter 2 45

Data Types
Table 2.5 Floating-Point Data Types
Type Storage Absolute Range of Values (+ and -)
float 4 bytes 1.40129846432481707x1045 to
3.40282346638528860x10+38
double and 8 bytes 4.94065645841246544x107324 10
long double 1.79769313486231570x10+308

In compilers using the same amount of storage for double and long double numbers,
these two data types are identical. (The sizeof () operator in Program 2.1 can always be used
to determine the amount of storage your compiler reserves for these datatypes.) A float literal is
indicated by appending an f or F to the number, and a long double is created by appending
an | or LL to the number. In the absence of these suffixes, a floating-point number defaults to
a double. For example, take a look at the following:

9.234 indicates a double literal.
9.234F indicates a float literal.
9.234L indicates a long double literal.

The only difference in these numbers is the amount of storage the computer can use for
them. Appendix D (available online) describes the binary storage format used for floating-
point numbers and its impact on number precision.

Exponential Notation

Floating-point numbers can also be written in exponential notation, which is similar to scien-
tific notation and is commonly used to express both very large and very small values in com-
pact form. The following examples show how numbers with decimals can be expressed in
exponential and scientific notation:

Decimal Notation Exponential Notation Scientific Notation
162.5 1.625e2 1.625 X 102
63421. 6.3421e4 6.3421 x 104
.00731 7.31e-3 7.31 X 103
.000625 6.25e-4 6.25 X 104

In exponential notation, the letter e stands for “exponent.” The number following the e
represents a power of 10 and indicates the number of places the decimal point should be
moved to obtain the standard decimal value. The decimal point is moved to the right if the
number after the e is positive or moved to the left if the number after the e is negative. For
example, the e2 in 1.625e2 means move the decimal place two places to the right, so the
number becomes 162.5. The e-3 in 7.31e-3 means move the decimal point three places to
the left, so 7.31e-3 becomes .00731.

Certain notations occur frequently enough in computer applications that they have their
own symbols. Table 2.6 lists the most commonly used of these symbols.

46 Data Types, Declarations, and Displays

Point of Information

What Is Precision?

In numerical theory, the term precision typically refers to numerical accuracy. In this con-
text, the statement “This computation is accurate, or precise, to the fifth decimal place”

means the fifth digit after the decimal point has been rounded, and the number is accu-

rate to within £0.00005.

In computer programming, “precision” can refer to a number's accuracy or the num-
ber of significant digits; significant digits are defined as the number of clearly correct
digits plus 1. For example, if the number 12.6874 has been rounded to the fourth deci-
mal place, it's correct to say that this number is precise to the fourth decimal place. In
other words, all digits in the number are accurate except the fourth decimal digit, which
has been rounded. Similarly, this same number has a precision of six digits, which means
the first five digits are correct and the sixth digit has been rounded. Another way of say-
ing this is that the number 12.6874 has six significant digits.

The significant digits in a number need not have any relation to the number of dis-
played digits. For example, if the number 687.45678921 has five significant digits, it's
accurate only to the value 687.46; the last digit is assumed to be rounded. Similarly, dol-
lar values in large financial applications are often rounded to the nearest hundred thou-
sand dollars. In these applications, a displayed dollar value of $12,400,000, for example,
isn't accurate to the closest dollar. If this value is specified as having three significant dig-
its, it's accurate only to the hundred-thousand digit.

Table 2.6 Exponential and Scientific Symbol Names

Exponential

Notation Scientific Notation | Symbol Name
e-12 10-12 pico
e-9 109 n nano
e-6 106 u micro
e-3 103 m milli
e3 103 k kilo
e6 106 M mega
e9 109 G giga
el12 1012 T tera

For example, the storage capacities of flash drives are currently specified in gigabytes
(GB), meaning they contain trillions (109) of bytes. Similarly, computer processing speeds are
specified in the nanosecond (nsec) range, which means a billionth (10-9) of a second.

Chapter 2 47
Data Types

EXERCISES 2.1

. (Practice) Determine data types suitable for the following data:
a. The average of four grades

b. The number of days in a month

c. The length of the Golden Gate Bridge

d. The numbers in a state lottery

e. The distance from Brooklyn, N.Y. to Newark, N.J.

f. The single-character prefix that specifies a component type

. (Practice) Compile and run Program 2.1.

. (Modify) Modify Program 2.1 to determine the storage your compiler uses for all the C++
integer data types.

. (Practice) Show how the name KINGSLEY is stored in a computer that uses the ASCII code
by drawing a diagram similar to Figure 2.3, shown previously.

. (Practice) Repeat Exercise 4, using the letters of your own last name.

6. (Modify) Modify Program 2.1 to determine how many bytes your compiler assigns to the

float, double, and long double data types.

. (Practice) Convert the following numbers from exponential form to standard decimal form:
a. 6.34¢5
b. 1.95162¢2
c. 8.395¢1
d. 2.95¢-3
e. 4.623¢-4

. (Practice) Convert the following numbers from scientific notation to standard decimal form:
a. 2.67 X 103

b. 2.67 X 10-3

c. 1.872 x 109

d. 1.872 X 10"

e. 6.6256 X 10-34

. (Practice) Write the following decimal numbers in scientific notation:
a. 126.
b. 656.23
c. 3426.95
d. 4893.2
e. 321
f. .0123
g. .006789

48

10.

11.

Data Types, Declarations, and Displays

(For thought) Because computers use different representations for storing integer, floating-
point, double-precision, and character values, discuss how a program might alert the computer
to the data types of different values it will be using.

(For thought) Although you have concentrated on operations involving integer and floating-
point numbers, C++ allows adding and subtracting characters and integers. (These operations
are possible with characters because they’re integer data types and are stored by using integer
codes.) Therefore, characters and integers can be mixed in arithmetic expressions. For exam-
ple, if your computer uses the ASCII code, the expression 'a' + 1equals 'b' and 'z' - 1
equals 'y'. Similarly, 'A* + 1 is 'B' and '2' - 1 is 'Y'. With this information as back-
ground, determine the character results of the following expressions. (Assume all characters
are stored by using ASCII codes.)

a. 'm' - 5
b. '™m' + 5
c. 'G'" + 6
d.'¢' -6
e. 'b' + 7
f. 'g -1
g. 'G' -1

Note: To complete the following exercise, you need to understand basic computer storage concepts.
Specifically, if you're unfamiliar with the concepts of bytes and words, refer to Section 2.6 before doing
the next exercise.

. (Practice) Although the total number of bytes varies from computer to computer, memory

sizes of 65,536 to more than several million bytes are common. In computer language, the
letter K represents the number 1024, which is 2 raised to the 10th power, and M represents the
number 1,048,576, which is 2 raised to the 20th power. Therefore, a memory size of 640 KB is
really 640 times 1024 (655,360 bytes), and a memory size of 4 MB is really 4 times 1,048,576
(4,194,304 bytes). Using this information, calculate the actual number of bytes in the following:
. A memory containing 512 MB
. A memory consisting of 256 MB words, with each word consisting of 2 bytes
. A memory consisting of 256 MB words, with each word consisting of 4 bytes
. A thumb drive that specifies 2 MB
. A disk that specifies 250 MB

A disk that specifies 8 GB (Hinz: See Table 2.6.)

o o6 TR

2.2 Arithmetic Operations

The previous section presented the data values corresponding to C++’s built-in data types.
"This section explains the arithmetic operations that can be applied to these values.

Integers and real numbers can be added, subtracted, multiplied, and divided. Although it’s
usually better not to mix integers and real numbers when performing arithmetic operations,
you can get predictable results when using different data types in the same arithmetic expression.

Chapter 2 49
Arithmetic Operations

Surprisingly, you can add and subtract character data and mix it with integer data to produce useful
results. (For example, 'a' + 1 results in the character 'B'.) These operations are possible
because characters are stored by using integer codes.

The following operators used for arithmetic operations are called arithmetic operators:

Operation Operator
Addition +
Subtraction -
Multiplication *
Division /
Modulus division? 53

These operators are also called binary operators, which means the operator requires two
operands to produce a result. An operand can be a literal value or an identifier with an associ-
ated value. A simple binary arithmetic expression consists of a binary operator connecting two
literal values in this form:

literalValue operator literalValue
Examples of simple binary arithmetic expressions include the following:

3+ 7

8 - 3

12.62 + 9.8
0.08 * 12.2
12.6 / 2

The spaces around arithmetic operators in these examples are inserted strictly for clarity
and can be omitted without affecting the value of the expression. However, an expression in
C++ must be entered in a straight-line form, as shown in these examples. For example, the
C++ expression equivalent to 12.6 divided by 2 must be entered as 12.6 / 2, not as the alge-
braic expression shown here:

126
2

You can use cout to display the value of any arithmetic expression. To do this, the value
must be sent to the object. For example, the following statement yields the display 21:

cout << (6 + 15);

Strictly speaking, the parentheses surrounding the expression 6 + 15 aren’t required to
indicate that the value of the expression (that is, 21) is being displayed.# In addition to

3Don’t be concerned at this stage if you don’t understand the term “modulus division.” You learn more about this operator later in the
section “Integer Division.”

4The parentheses aren’t required because the + operator has a higher precedence than the << operator; therefore, the addition is
performed before the insertion.

50

Data Types, Declarations, and Displays

displaying a numerical value, cout can display a string identifying the output, as was done
in Section 2.1. For example, the following statement sends two pieces of data, a string and
a value, to cout:

cout << "The sum of 6 and 15 is " << (6 + 15);

Each set of data sent to cout must be preceded by its own insertion operator, <<. In the
preceding example, the first data sent for display is the string "The sum of 6 and 15 is ",
and the second item sent is the value of the expression 6 + 15. This statement produces the
following display:

The sum of 6 and 15 is 21

The space between the word “is” and the number 21 is caused by the space in the string
sent to cout. As far as cout is concerned, its input is a set of characters sent to be displayed in
the order they’re received. Characters from the input are queued, one behind the other, and
sent to the screen for display. Placing a space in the input makes the space part of the stream
of characters that’s displayed. For example, the statement

cout << "The sum of 12.2 and 15.754 is " << (12.2 + 15.754);
yields the following display:
The sum of 12.2 and 15.754 is 27.954

When multiple insertions are sent to cout, the code can be spread across multiple lines.
Only one semicolon, however, must be used, which is placed after the last insertion and termi-
nates the complete statement. Therefore, the preceding display is also produced by the fol-
lowing statement, which spans two lines:

cout << "The sum of 12.2 and 15.754 is "
<< (12.2 + 15.754);

When you allow a statement to span multiple lines, two rules must be followed: A string
contained in quotation marks can’t be split across lines, and the terminating semicolon should
appear only on the last line. You can always place multiple insertion symbols within a line.

If floating-point numbers have six or fewer decimal digits, they’re displayed with enough
decimal places to accommodate the fractional part of the number. If the number has more than
six decimal digits, the fractional part is rounded to six decimal digits, and if the number has no
decimal digits, neither a decimal point nor any decimal digits are displayed.5

Program 2.2 illustrates using cout to display the results of arithmetic expressions in the
context of a complete program.

5None of this output is defined as part of the C++ language. Rather, it’s defined by a set of classes and routines provided with each
C++ compiler.

Chapter 2 51
Arithmetic Operations

Program 2.2

#include <iostream>
using namespace std;

int main()

{
cout << "15.0 plus 2.0 equals " << (15.0 + 2.0) << endl
<< "15.0 minus 2.0 equals " << (15.0 - 2.0) << endl
<< "15.0 times 2.0 equals " << (15.0 * 2.0) << endl
<< "15.0 divided by 2.0 equals " << (15.0 / 2.0) << endl;
return 0;
}

The output of Program 2.2 is the following:

15.0 plus 2.0 equals 17
15.0 minus 2.0 equals 13
15.0 times 2.0 equals 30
15.0 divided by 2.0 equals 7.5

The only new item used in Program 2.2 is endl, which is an example of a C++ manipula-
tor. A manipulator is an item used to change how an output stream of characters is displayed.
In particular, the endl manipulator causes a newline character (' \n"') to be inserted in the
display first, and then forces all current insertions to be displayed immediately, instead of wait-
ing for more data. (Section 3.2 lists the most commonly used manipulators.)

Expression Types

An expression is any combination of operators and operands that can be evaluated to yield a
value. An expression containing only integer values as operands is called an integer expression,
and the result of the expression is an integer value. Similarly, an expression containing only
floating-point values (single-precision and double-precision) as operands is called a floating-point
expression (also called a “real expression”), and the result of the expression is a floating-point
value. An expression containing integer and floating-point values is called a mixed-mode
expression. When mixing integer and floating-point values in an arithmetic operation, each
operation’s data type is determined by the following rules:

e If both operands are integers, the result of the operation is an integer.
e If one operand is a real value, the result of the operation is a double-precision value.

The result of an arithmetic expression is never a single-precision (£loat) number. This is
because during execution, a C++ program temporarily converts all single-precision numbers to
double-precision numbers when an arithmetic expression is evaluated.

52

Data Types, Declarations, and Displays

Point of Information

The endl Manipulator

On many systems, the end1 manipulator (derived from the term “end line”) and the \n
escape sequence are processed in the same way and produce the same effect. The one
exception is on systems where output is accumulated internally until enough characters
collect to make it advantageous to display them all in one burst onscreen. In these sys-
tems, referred to as “buffered,” the end1 manipulator forces all accumulated output to
be displayed immediately, without waiting for additional characters to fill the buffer area
before being printed. As a practical matter, you wouldn’t notice a difference in the final
display. As a general rule, however, use the \n escape sequence whenever it can be
included in an existing string, and use the end1 manipulator whenever a \n would
appear by itself or to formally signify the end of a specific group of output.

Although this point has no direct bearing on your work in this chapter, it’s worth noting
that the arithmetic operations of addition, subtraction, multiplication, and division are actually
implemented differently for integer and floating-point values. In this sense, arithmetic opera-
tors are considered to be “overloaded.” More formally, an overloaded operator is an operator
whose actual implementation depends on the types of operands encountered. In Part I, when
you see how to modify an operator’s execution, you’ll need this overloading capability.

Integer Division

The division of two integer values can produce rather strange results for the unwary. For
example, the expression 15/2 yields the integer result 7. Because integers can’t contain a frac-
tional part, the value 7.5 can’t be obtained. The fractional part resulting when two integers are
divided—the remainder—is always dropped (truncated). Therefore, the value of 9/4 is 2 and
20/3 is 6.

Often, however, you need to retain the remainder of an integer division. To do this, C++
provides the modulus operator (also referred to as the “remainder operator”), which has the
symbol %. This operator captures the remainder when an integer is divided by an integer; using
a noninteger value with the modulus operator results in a compiler error. The following exam-
ples show how the modulus operator is used:

9 % 4 is 1 (the remainder when 9 is divided by 4 is 1)

17 % 3 is 2 (the remainder when 17 is divided by 3 is 2)

15 % 4 is 3 (the remainder when 15 is divided by the 4 is 3)
14 % 2 is O (the remainder when 14 is divided by 2 is 0)

Negation

In addition to binary operators, C++ provides unary operators, which operate on a single oper-
and. One of these unary operators uses the same symbol as binary subtraction (-). With this
unary operator, the minus sign in front of a single numerical value negates (reverses the sign
of) the number.

Chapter 2
Arithmetic Operations

53

Table 2.7 summarizes the six arithmetic operations described so far and lists the data type

for the result each operator produces, based on the data type of the operands involved.

Table 2.7 Summary of Arithmetic Operators

Operation Operator | Type Operand(s) Result
Symbol

Addition + Binary Both are integers Integer
One operand is not | Double-precision
an integer

Subtraction - Binary Both are integers Integer
One operand is not | Double-precision
an integer

Multiplication * Binary Both are integers Integer
One operand is not | Double-precision
an integer

Division / Binary Both are integers Integer
One operand is not | Double-precision
an integer

Modulus % Binary Both are integers Integer
One operand is not | Compiler error
an integer

Negation - Unary Integer or double Same as operand

Operator Precedence and Associativity

In addition to simple expressions, such as 5 + 12 and .08 * 26.2, you can create more com-
plex arithmetic expressions. C++, like most other programming languages, requires following

certain rules when writing expressions containing more than one arithmetic operator:

¢ Two binary operator symbols must never be placed side by side. For example,5 * % 6

is invalid because two operators, * and %, are placed next to each other.

e Parentheses can be used to form groupings, and all expressions enclosed in parentheses
are evaluated first. In this way, you can use parentheses to alter the evaluation to any
order. For example, in the expression (6 + 4) / (2 + 3),the 6 + 4and 2 + 3 are

evaluated first to yield 10 / 5.The 10 / 5 is then evaluated to yield 2.

e Parentheses can be enclosed by other parentheses. For example, the expression
(2 * (3 + 7)) / 5 is valid and evaluates to 4. When parentheses are included
within parentheses, expressions in the innermost parentheses are always evaluated first.
The evaluation continues from innermost to outermost parentheses until all expressions
in parentheses have been evaluated. The number of closing parentheses,), must always

equal the number of opening parentheses, (, so that no unpaired sets exist.

e Parentheses can’t be used to indicate multiplication; instead, the multiplication
operator, *, must be used. For example, the expression (3 + 4) (5 + 1) isinvalid.

The correct expression is (3 + 4) * (5 + 1).

54

Data Types, Declarations, and Displays

Parentheses should specify logical groupings of operands and indicate the intended order
of arithmetic operations clearly to the compiler and programmers. Although expressions in
parentheses are always evaluated first, expressions containing multiple operators, whether
enclosed in parentheses or not, are evaluated by the priority, or precedence, of the operators.
T'here are three levels of precedence:

1. PI—All negations are done first.

2. P2—Multiplication, division, and modulus operations are computed next. Expressions
containing more than one multiplication, division, or modulus operator are evaluated
from left to right as each operator is encountered. For example, in the expression
35 / 7 % 3 * 4, all operations have the same priority, so the operations are per-
formed from left to right as each operator is encountered. The division is done first,
yielding the expression 5 $ 3 * 4. The modulus operation, 5 % 3, is performed
next, yielding a result of 2. Finally, the expression 2 * 4 is computed to yield 8.

3. P3—Addition and subtraction are computed last. Expressions containing more than one
addition or subtraction are evaluated from left to right as each operator is encountered.

In addition to precedence, operators have an associativity, which is the order in which
operators of the same precedence are evaluated, as described in rule P2. For example, does the
expression 6.0 * 6 / 4yield 9.0, whichis (6.0 * 6) / 4,0r6.0,whichis6.0 * (6 / 4)’
The answer is 9.0 because C++’s operators use the same associativity as in general mathematics,
which evaluates multiplication from left to right, as rule P2 indicates.

Table 2.8 lists the precedence and associativity of the operators discussed in this section.
As you have seen, an operator’s precedence establishes its priority in relation to all other
operators. Operators at the top of Table 2.8 have a higher priority than operators at the bottom
of the table. In expressions with multiple operators of different precedence, the operator with
the higher precedence is used before an operator with lower precedence. For example, in the
expression 6 + 4 / 2 + 3, because the division operator has a higher precedence (P2) than
the addition operator, the division is done first, yielding an intermediate result of 6 + 2 + 3.
The additions are then performed, left to right, to yield a final result of 11.

Table 2.8 Operator Precedence and Associativity

Operator Associativity
Unary - Right to left
* /% Left to right
+ - Left to right

Finally, take a look at using the precedence rules shown in Table 2.8 to evaluate an expres-
sion containing operators of different precedence, such as 8 + 5 = 7 & 2 * 4. Because the
multiplication and modulus operators have a higher precedence than the addition operator,

Chapter 2 55
Arithmetic Operations

these two operations are evaluated first (P2), using their left-to-right associativity, before the
addition is evaluated (P3). Therefore, the complete expression is evaluated as follows:

8 +5 * 7 % 2 * 4 =
8 + 35 % 2 * 4

8 + 1 * 4

8 + 4 = 12

EXERCISES 2.2

1. (Practice) For the following correct algebraic expressions and corresponding incorrect C++
expressions, find the errors and write corrected C++ expressions:

Algebra C++ Expression
a. (2)(3) + (4)(5) (2)(3) + (4)(5)
b. 6 + 18 6 + 18 / 2
2
c. %5 4.5 / 12.2 - 3.1
12.2 - 3.1
d. 4.6(3.0 + 14.9) 4.6 (3.0 + 14.9)
e. (12.1 + 18.9)(15.3 - 3.8) (12.1 + 18.9) (15.3 - 3.8)
2. (Practice) Determine the values of the following integer expressions:
a.3 + 4 * 6 f.20 -2/ (6 + 3)
b.3*4/6+6 8.(20 -2) / 6 + 3
c.2 * 3/ 12 * 8 / 4 h. (20 - 2) / (6 + 3)
d. 10 * (1 + 7 * 3) 1. 50 % 20
€. 20 -2 /6 +3 j- (10 + 3) % 4

3. (Practice) Determine the value of the following floating-point expressions:
.3.0 + 4.0 * 6.0

.3.0 * 4.0 / 6.0+ 6.0

2.0 * 3.0 / 12.0 * 8.0 / 4.0

10.0 * (1.0 + 7.0 * 3.0)

.20.0 - 2.0 / 6.0 + 3.0

20.0 - 2.0 / (6.0 + 3.0)

. (20.0 - 2.0) / 6.0 + 3.0

. (20.0 - 2.0) / (6.0 + 3.0)

S o e o

Data Types, Declarations, and Displays

. (Practice) Evaluate the following mixed-mode expressions and list the data type of the result.
In evaluating the expressions, be aware of the data types of all intermediate calculations.
.10.0 + 15 / 2 + 4.3
.10.0 + 15.0 / 2 + 4.3
.3.0* 4 /6 +6
.3 % 4.0/ 6 + 6
.20.0 -2/ 6+ 3
10 + 17 * 3 + 4
.10 + 17 / 3.0 + 4
.3.0 * (4% 6) + 6
10 + 17 & 3 + 4

S0 o 0 o

-
.

. (Practice) Assume that amount stores the integer value 1, m stores the integer value 50, n stores
the integer value 10, and p stores the integer value 5. Evaluate the following expressions:

a.n / p + 3

b.m / p + n - 10 * amount
Cc.m - 3 * n + 4 * amount
d. amount / 5

e. 18 / p

f. -p * n

g.-m / 20

h

.(m + n) / (p + amount)

o
.

m+ n / p + amount

. (Practice) Repeat Exercise 5, assuming that amount stores the value 1.0, m stores the value
50.0, n stores the value 10.0, and p stores the value 5.0.

. (Practice) Enter, compile, and run Program 2.2.

. (Desk check) Determine the output of the following program:
#include <iostream>
using namespace std;
int main() // a program illustrating integer truncation
{

cout << "answerl is the integer " << 9/4;

cout << "\nanswer2 is the integer " << 17/3;

return 0;

Chapter 2 57
Variables and Declarations

9. (Desk check) Determine the output of the following program:
#include <iostream>
using namespace std;
int main() // a program illustrating the % operator
{
cout << "The remainder of 9 divided by 4 is " << 9 % 4;
cout << "\nThe remainder of 17 divided by 3 is " << 17 % 3;

return 0;

b

10. (Program) Write a C++ program that displays the results of the expressions 3.0 * 5.0,
7.1 * 8.3 - 2.2,and 3.2 / (6.1 * 5). Calculate the value of these expressions manu-
ally to verify that the displayed values are correct.

11. (Program) Write a C++ program that displays the results of the expressions 15 / 4,15 % 4,
and 5 * 3 - (6 * 4). Calculate the value of these expressions manually to verify that the
displayed values are correct.

2.3 Variables and Declarations

All integer, floating-point, and other values used in a program are stored in and retrieved from
the computer’s memory. Conceptually, locations in memory are arranged like the rooms in a
large hotel, and each memory location has a unique address, like room numbers in a hotel.
Before high-level languages such as C++, memory locations were referenced by their addresses.
For example, storing the integer values 45 and 12 in the memory locations 1652 and 2548 (see
Figure 2.4) required instructions equivalent to the following:

Put a 45 in location 1652
Put a 12 in location 2548

Storage for one integer Storage for one integer

——— ———
a5 | 12
1652 2548
\ \

Memory addresses

Figure 2.4 Enough storage for two integers

58

Data Types, Declarations, and Displays

"To add the two numbers just stored and save the result in another memory location, such
as 3000, you need an instruction such as the following:

Add the contents of location 1652
to the contents of location 2548
and store the result in location 3000

Clearly, this method of storage and retrieval is cumbersome. In high-level languages such
as C++, symbolic names, called variables, are used in place of memory addresses. A variable is
simply a name the programmer assigns to refer to computer storage locations. The term “vari-
able” is used because the value stored in the memory locations assigned to the variable can
change, or vary. For each name the programmer uses, the computer keeps track of the memory
address corresponding to that name. In the hotel room analogy, it’s equivalent to putting a
name on a room’s door and referring to the room by this name, such as calling it the Blue Room
instead of Room 205.

In C++ the selection of variable names is left to the programmer, as long as the following
rules are observed:

e 'The variable name must begin with a letter or underscore (_) and can contain only
letters, underscores, or digits. It can’t contain blank spaces, commas, or special sym-
bols,suchas () & , $ # . ! 2. Use initial uppercase letters to separate names consist-
ing of multiple words.

e A variable name can’t be a keyword (see Table 1.1).

These rules are similar to those for selecting function names. Liike function names, vari-
able names should be mnemonics that give some indication of the variable’s purpose. For a
variable used to store a value that’s the total of other values, a good name is sum or total.
Variable names giving no indication of the value stored, such as r2d2, 1inda, and getum,
shouldn’t be used. As with function names, variable names can consist of uppercase and
lowercase letters.

Assume the first memory location shown in Figure 2.5, which has the address 1652, is
given the name numl. The memory location 2548 is given the variable name num2, and mem-
ory location 3000 is given the variable name total.

Variable names

s s L
numl num2 total
as | 12| 57
1652 2548 3000
N \ N

1 1 J
Memory addresses

Figure 2.5 Naming storage locations

Chapter 2 59
Variables and Declarations

Point of Information

Atomic Data

All the variables declared so far have been used to store atomic data values. An atomic
data value is considered a complete entity and can’t be decomposed into a smaller data
type supported by the language. For example, although an integer can be decomposed
into separate digits, C++ doesn't have a numerical digit type. Instead, each integer is
regarded as a complete value and, therefore, is considered atomic data. Because the
integer data type supports only atomic data values, it's said to be an atomic data type.
As you might expect, doubles, chars, and bools are atomic data types, too.

Using these variable names, the operation of storing 45 in location 1652, storing 12 in loca-
tion 2548, and adding the contents of these two locations is accomplished with these C++
statements:

numl = 45;
num2 = 12;
total = numl + num2;

Each of these statements is called an assignment statement because it tells the computer
to assign (store) a value in a variable. Assignment statements always have an equals sign (=)
and one variable name immediately to the left of the =. The value to the right of the equals
sign is determined first; this value is then assigned to the variable to the left of the equals sign.
The blank spaces in assignment statements are inserted for readability. Assignment statements
are explained in more detail in Chapter 3, but for now, just know that you can use them to store
values in variables.

A variable name is useful because it frees programmers from having to think about where
data 1s physically stored in the computer. You simply use the variable name and let the com-
piler worry about where in memory the data is actually stored. Before storing a value in a vari-
able, however, C++ requires clearly declaring the type of data to be stored in it. You must tell
the compiler, in advance, the names of variables used for characters, the names used for inte-
gers, and the names used to store other C++ data types.

Declaration Statements
To name a variable and specify the data type that can be stored in it, you use a declaration
statement, which has this general form:

dataType variableName;

In this form, dataType designates a valid C++ data type, and variableName is the name
you select for the variable. For example, variables used to hold integer values are declared by
using the keyword int to specify the data type and have this form:

int variableName;

60

Data Types, Declarations, and Displays

Therefore, the following declaration statement declares sum as the name of a variable
capable of storing an integer value:

int sum;

In addition, the keyword long is used to specify a long integer.6 For example, the
statement

long datenum;

declares datenum as a variable used to store a long integer. When you’re using the long
qualifier, you can also include the keyword int, so the previous declaration can also be written
as follows:

long int datenum;

Variables used to hold single-precision values are declared by using the keyword float,
and variables used to hold double-precision values are declared by using the keyword double.
For example, the following statement declares £irstnum as a variable used to store a single-
precision number:

float firstnum;

Similarly, the following statement declares that the variable secnum is used to store a
double-precision number:

double secnum;

Although declaration statements can be placed anywhere in a function, typically they’re
grouped together and placed after the function’s opening brace. However, a variable must
always be declared before using it, and like all C++ statements, declaration statements must
end with a semicolon. A simple main () function containing declaration statements right after
the opening function brace has this general form:

#include <iostream>
using namespace std;

int main()
{
declaration statements;

other statements;

return 0;

Program 2.3 uses this form in declaring and using four double-precision variables, with the
cout object used to display one of the variable’s contents.

6Additionally, the keywords unsigned int are used to specify an integer that can store only non-negative numbers, and the keyword
short specifies a short integer.

Chapter 2 61
Variables and Declarations

Program 2.3

#include <iostream>

using namespace std;
int main()

{

double gradel; // declare gradel as a double variable
double grade2; // declare grade2 as a double variable
double total; // declare total as a double variable

double average; // declare average as a double variable

gradel = 85.5;

grade2 97.0;

total = gradel + grade2;

average = total/2.0; // divide the total by 2.0
cout << "The average grade is " << average << endl;

return 0;

The placement of the declaration statements in Program 2.3 is straightforward, although
you’ll see shortly that these four declarations can be combined into a single declaration state-
ment. When Program 2.3 runs, the following output is displayed:

The average grade is 91.25

Notice that when a variable name is inserted in a cout statement, the value stored in the
variable is placed on the output stream and displayed.

Just as integer and real (single-precision, double-precision, and long double) variables
must be declared before they can be used, a variable used to store a single character must also
be declared. Character variables are declared by using the keyword char. For example, the
following declaration specifies that ch is a character variable:

char ch;

Program 2.4 illustrates this declaration and the use of cout to display the value stored in
a character variable.

62

Data Types, Declarations, and Displays

Program 2.4

#include <iostream>
using namespace std;

int main()

{

char ch; // this declares a character variable

ch

= 'a'; // store the letter a in ch

cout << "The character stored in ch is " << ch << endl;

ch

= 'm'; // now store the letter m in ch

cout << "The character now stored in ch is "<< ch << endl;

return 0;

When Program 2.4 runs, this output is produced:

The character stored in ch is a
The character now stored in ch is m

Notice that the first letter stored in the variable ch is a and the second letter stored is m.
Because a variable can be used to store only one value at a time, assigning m to the variable
overwrites the a value automatically.

Multiple Declarations
Variables of the same data type can always be grouped together and declared by using a single
declaration statement, which has this common form:

dataType variableList;
For example, the four separate declarations used in Program 2.3

double gradel;
double grade2;
double total;

double average;

can be replaced with this single declaration statement:
double gradel, grade2, total, average;
Similarly, the two character declarations

char ch;
char key;

Chapter 2 63
Variables and Declarations

can be replaced with this single declaration statement:
char ch, key;

Declaring multiple variables in a single declaration statement requires giving the data
type of variables only once, separating all variable names by commas, and using only one semi-
colon to terminate the declaration. The space after each comma is inserted for readability and
isn’t required.

Declaration statements can also be used to store a value in declared variables. For exam-
ple, the declaration statement

int numl = 15;

both declares the variable numl as an integer variable and sets the value of 15 in the variable.
When a declaration statement is used to store a value in a variable, the variable is said to be ini-
tialized. Therefore, in this example, it’s correct to say the variable numl has been initialized to 15.

Similarly, the following declaration statements declare three double-precision variables
and initialize two of them:

87.0;
93.5;

double gradel

double grade2
double total;

Expressions using constants and/or previously initialized variables can also be used as
initializers. Therefore, the expression 87.5 - 3.0 * factor is a valid initializer only if
factor has been declared and initialized previously. Additionally, multiple initializations can
be made by using a single declaration statement. These declarations, however, should be
clear and, if possible, short, as in the declaration int x, y=0, z=0;.Program 2.3 with dec-
laration initialization becomes Program 2.3a.

Program 2.3a

#include <iostream>
using namespace std;

int main()

{
double gradel = 85.5;
double grade2 = 97.0;
double total, average;

total = gradel + grade2;
average = total/2.0; // divide the total by 2.0

cout << "The average grade is " << average << endl;

return 0;

64

Data Types, Declarations, and Displays

Notice the blank line after the last declaration statement. Inserting a blank line after vari-
able declarations placed at the top of a function body is a good programming practice. It
improves a program’s appearance and readability.

An interesting feature of C++ is that variable declarations can be intermixed and even
contained in other statements; the only requirement is that a variable must be declared before
its use. For example, the variable total in Program 2.3a could have been declared when it’s
first used with the statement double total = gradel + grade2;. In restricted situations
(such as debugging, described in Section 4.7, or in a for loop, described in Section 5.3), declar-
ing a variable at its first use can be helpful. In general, however, it’s preferable not to spread
out declarations; instead, group them as concisely and clearly as possible at the top of each
function.

Memory Allocation

The declaration statements you have seen so far have performed both software and hardware
tasks. From a software perspective, declaration statements always provide a list of variables and
their data types. In this software role, variable declarations also help control an otherwise com-
mon and troublesome error caused by misspelling a variable’s name in a program. For example,
assume a variable named distance is declared and initialized by using this statement:

int distance = 26;
Later in the program, say the variable is inadvertently misspelled in this statement:
mpg = distnce / gallons;

In languages that don’t require variable declarations, the program treats distnce as a new
variable and assigns it an initial value of 0 or uses whatever value happens to be in the vari-
able’s storage area. In either case, a value is calculated and assigned to mpg, and finding the
error or even knowing an error occurred could be difficult. These errors are impossible in C++,
however, because the compiler flags distnce as an undeclared variable. The compiler can’t,
of course, detect when one declared variable is mistakenly typed in place of another declared
variable.

In addition to their software role, declaration statements can also perform a hardware
task. Because each data type has its own storage requirements, the computer can allocate
enough storage for a variable only after knowing the variable’s data type. Variable declara-
tions provide this information, so they can be used to force the compiler to reserve enough
physical memory storage for each variable. Declaration statements used for this hardware
task are also called definition statements because they define or tell the compiler how much
memory is needed for data storage.

All the declaration statements you have encountered so far have also been definition state-
ments. Later, you’ll see declaration statements that don’t allocate storage and are used simply
to alert the program to the data types of variables created elsewhere in the program.

Figures 2.6a through 2.6d illustrate the operations set in motion by definition statements.
The figures show that definition statements (or declaration statements that also allocate
memory) “tag” the first byte of each set of reserved bytes with a name. This name is, of course,
the variable’s name, and the computer uses it to locate the starting point of a variable’s
reserved memory area.

Chapter 2
Variables and Declarations

Tells the computer to

=

Reserve enough room

for an integer number
int total; ’

f 4 bytes

“Tag” the first byte of
Tells the computer to A\ reserved storage with
the name total

Figure 2.6a Defining the integer variable named total

Tells the computer to

=

Reserve enough room

for a single-precision number
float firstnum; ’

f 4 bytes
“Tag” the first byte of

Tells the computer to A\ reserved storage with
the name firstnum

Figure 2.6b Defining the floating-point variable named firstnum

Tells the computer to
= i

Reserve enough room
for a double-precision number
double secnum;

y 8 bytes

“Tag” the first byte of
Tells the computer to 4\ reserved storage with
the name secnum

Figure 2.6c Defining the double-precision variable named secnum

Tells the computer to

=

Reserve enough room
for a character

’1 byte ’
“Tag” the first byte of

Tells the computer to A\ reserved storage with
the name key

char key;

Figure 2.6d Defining the character variable named key

65

66 Data Types, Declarations, and Displays

After a variable has been declared in a program, typically a programmer uses it to refer to
the variable’s contents (its value). The value’s memory location is generally of little concern to
programmers. The compiler, however, must know where each value is stored and locate each
variable correctly. For this task, the compiler uses the variable name to locate the first byte of
storage previously allocated to the variable. Knowing the variable’s data type then allows the
compiler to store or retrieve the correct number of bytes.

EXERCISES 2.3

1. (Practice) State whether the following variable names are valid. If they’re invalid, state the

reason.

prod_a cl234 abcd _c3 12345
newbal while Stotal new bal alb2c3d4
9ab6 sum.of average gradel finGrade

2. (Practice) State whether the following variable names are valid. If they’re invalid, state the
reason. Also, indicate which of the valid variable names shouldn’t be used because they convey
no information about the variable.

salestax a243 r2d2 firstNum cc_al
harry sue c3p0 average sum
maximum okay a awesome goforit
3sum for tot.al csfive netpay

3. (Practice) a. Write a declaration statement to declare that the variable count will be used to

store an integer.

b. Write a declaration statement to declare that the variable grade will be used to store a
floating-point number.

¢. Write a declaration statement to declare that the variable yield will be used to store a
double-precision number.

d. Write a declaration statement to declare that the variable initial will be used to store a
character.

4. (Practice) Write a single declaration statement for each set of variables:
a. numl, num2, and num3 used to store integer numbers
b. gradel, grade2, grade3, and grade4 used to store double-precision numbers
c. templ, temp2, and temp3 used to store double-precision numbers
d. letl, let2, let3, and let4 used to store characters

S. (Practice) Write a single declaration statement for each set of variables:
a. firstnum and secnum used to store integers
b. price, yield, and coupon used to store double-precision numbers
c. average used to store a double-precision number

Chapter 2 67
Variables and Declarations

6. (Modify) Rewrite each of these declaration statements as three separate declarations:

10.

a. int month, day = 30, year;

b. double hours, volt, power = 15.62;
C. double price, amount, taxes;

d. char inKey, ch, choice = 'f';

. (Desk check) a. Determine what each statement causes to happen in the following program:

#include <iostream>
using namespace std;
int main()

{

int numl, num2, total;

numl 25;

30;

total = numl + num2;

cout << "The total of " << numl << " and "

<< num2 << " is " << total << endl;

num2

return 0;

h
b. What output will be displayed when the program in Exercise 7a runs?

. (Program) Write a C++ program that stores the sum of the integer numbers 12 and 33 in a

variable named sum. Have your program display the value stored in sum.

. (Program) Write a C++ program that stores the integer value 16 in the variable length and

the integer value 18 in the variable width. Have your program calculate the value assigned to
the perimeter variable, using this formula:

perimeter = 2 x (length + width)

Your program should then display the value stored in perimeter. Be sure to declare all vari-
ables as integers at the beginning of the main () function.

(Program) Write a C++ program that stores the integer value 16 in the variable numl and the
integer value 18 in the variable num2. (Be sure to declare the variables as integers.) Have your
program calculate the total of these numbers and their average. Store the total in an integer
variable named total and the average in an integer variable named average. (Use the state-
ment average = total/2.0; to calculate the average.) Use a cout statement to display the
total and average.

68

11.

12.

Data Types, Declarations, and Displays

(Debug) Enter, compile, and run the following program

is displayed and correct the error.

#include <iostream>

using namespace std;

int main()

{

}

int numl
int num2
int total

4

15;
18;
average;

total = numl + num2;

average =

total / 2.0;

cout << "The average of " << numl

<< "

and " << num2 <<

<< average << endl;

return 0;

is "

. Determine why an incorrect average

(Debug) The following program was written to correct the error produced by the program in
Exercise 11. Determine why this program also doesn’t provide the correct result and correct
the error.

#include <iostream>
using namespace std;

int main()

{

int numl
int num2
int total

.
4

15;
18;

double average;

total = numl + num2;

average =

total / 2;

cout << "The average of " <<

<< "

and " << num2 <<

<< average << endl;

return 0;

numl
is "

13.

14.

Chapter 2 69
Variables and Declarations

(Program) Write a C++ program that stores the number 105.62 in the variable firstnum,
89.352 in the variable secnum, and 98.67 in the variable thirdnum. (Be sure to declare the
variables first as £loat or double.) Have your program calculate the total of the three num-
bers and their average. The total should be stored in the variable total and the average in the
variable average. (Use the statement average = total /3.0; to calculate the average.)
Use a cout statement to display the total and average.

(For thought) a. A statement used to clarify the relationship between squares and rectangles
is “All squares are rectangles but not all rectangles are squares.” Write a similar statement that
describes the relationship between definition and declaration statements.

b. Why must a variable be defined before any other C++ statement that uses the variable?

Note for Exercises 15 to 17: Assume that a character requires 1 byte of storage, an integer requires
4 bytes, a single-precision number requires 4 bytes, and a double-precision number requires 8 bytes.
Variables are assigned storage in the order they're declared. (Review Section 2.6 if you're unfamiliar
with the concept of a byte.) Refer to Figure 2.7 for these exercises.

Addresses

1 ™ 159 160 161 162 163 164 165 166

—
—
—
—
-

™ 167 168 169 170 171 172 173 174

R R
|
-

|
|

»175 176 177 178 179 180 181 182

™ 183 184 185 186 187 188 189 190

—
—

N TN TN\

B TEB TR TR
i |

N TN TN TN
i |
A

i |
|
[|
-

for Exercises 15 to 17

wn
wn
o]

Figure 2.7 Memory byte

<

15. (Practice) a. Using Figure 2.7 and assuming the variable name rate is assigned to the byte

at memory address 159, determine the addresses corresponding to each variable declared in
the following statements. Also, fill in the correct number of bytes with the initialization data
included in the declaration statements. (Use letters for the characters, not the computer codes
that would actually be stored.)

float rate;

char chl = 'M', ch2 = 'E', ch3 = 'L', chd = 'T';

double taxes;

int num, count = 0;

b. Repeat Exercise 15a, but substitute the actual byte patterns that a computer using the
ASCII code would use to store characters in the variables chl, ch2, ch3, and ch4. (Hinzr: Use
Table 2.2.)

70

16.

17.

Data Types, Declarations, and Displays

(Practice) a. Using Figure 2.7 and assuming the variable named cnl is assigned to the byte
at memory address 159, determine the addresses corresponding to each variable declared in
the following statements. Also, fill in the correct number of bytes with the initialization data
included in the declaration statements. (Use letters for the characters, not the computer codes
that would actually be stored.)

char cnl = 'P', cn2 = 'E', cn3 = 'R', cn4d = 'F', cn5 = 'E';
char cn6 = 'C', cn7 = 'T', key = '\\', sch = '\'', inc = 'A';
char incl = 'T';

b. Repeat Exercise 16a, but substitute the actual byte patterns a computer using the ASCII

code would use to store characters in each declared variable. (Hinz: Use Tables 2.2 and 2.3.)
(Practice) Using Figure 2.7 and assuming the variable name miles is assigned to the byte at
memory address 159, determine the addresses corresponding to each variable declared in the
following statements:

float miles;
int count, num;
double dist, temp;

2.4 Common Programming Errors

The common programming errors associated with the material in this chapter are as follows:

1. Forgetting to declare all variables used in a program. The compiler detects this error,
and an error message is generated for all undeclared variables.

2. Attempting to store one data type in a variable declared for a different type. The com-
piler doesn’t detect this error. The value is converted to the data type of the variable
it’s assigned to.

3. Using a variable in an expression before a value has been assigned to the variable.
Whatever value happens to be in the variable is used when the expression is evaluated
and, therefore, the result of the expression is meaningless.

4. Dividing integer values incorrectly. This error is usually hidden in a larger expression
and can be troublesome to detect. For example, the expression
3.425 + 2/3 + 7.9
yields the same result as the expression
3.425 + 7.9
because the integer division of 2/3 is 0.

5. Mixing data types in the same expression without understanding the effect clearly.
Because C++ allows expressions with “mixed” data types, understanding the order of

Chapter 2 71
Chapter Summary

evaluation and the data type of all intermediate calculations is important. These are
the rules for evaluating the result of each binary operation:

e If both operands are integers, the result is an integer.
e Ifany operand is a real value, the result is a double-precision value.

As a general rule, it’s better not to mix data types in an expression unless you want a
specific effect.
6. Forgetting to separate data streams passed to cout with an insertion symbol, <<.

2.5 Chapter Summary

1.

The four basic types of data C++ recognizes are integer, floating-point, character, and
Boolean. Each data type is typically stored in a computer by using different amounts of
memory.

. The cout object can be used to display all C++ data types.

. Every variable in a C++ program must be declared, and the type of value it can store must

be specified. Declarations in a function can be placed anywhere in the function, although a
variable can be used only after it’s declared. Variables can also be initialized when they’re
declared. Additionally, variables of the same type can be declared with a single declaration
statement. Variable declaration statements have this general form:

dataType variableName(s);

. A simple C++ program containing declaration statements has this typical form:

#include <iostream>
using namespace std;

int main()
{
declaration statements;

other statements;

return 0;

}

. Declaration statements always play the software role of informing the compiler of a func-

tion’s valid variable names. When a variable declaration also causes the computer to set
aside memory locations for the variable, the declaration statement is called a definition
statement. (All declarations used in this chapter have also been definition statements.)

. The sizeof () operator can be used to determine the amount of storage reserved for

variables.

72 Data Types, Declarations, and Displays

2.6 Chapter Supplement: Bits, Bytes, and Binary Number
Representations

"This section explains how numbers are stored in a computer’s memory and different means of

representing them.

Bits and Bytes

The physical components used in manufacturing a computer require that numbers and letters
in its memory not be stored with the same symbols people use. For example, the number 126
isn’t stored with the symbols 1, 2, and 6, nor is the letter you recognize as an “A” stored with
this symbol. This section explains the reasons for these storage requirements and how comput-

ers store numbers.

The smallest and most basic data item in a computer is called a bit (derived from the term
“binary digiz”). Physically, a bit is actually a switch that can be open or closed. The convention
followed in this book is that the open position is represented as a 0, and the closed position is

represented as a 1.

A single bit that can represent the values 0 and 1 has limited usefulness. All computers,
therefore, group a set number of bits together for storage and transmission. Grouping 8 bits to
form a larger unit, called a byte, is an almost universal computer standard. A single byte consist-
ing of 8 bits, with each bit being a 0 or 1, can represent any one of 256 distinct patterns. These
patterns consist of 00000000 (all eight switches open) to 11111111 (all eight switches closed)
and all possible combinations of 0s and 1s in between. Each pattern can be used to represent
a letter of the alphabet, a character (such as a dollar sign or comma), a single digit, or a number
containing more than one digit. A collection of patterns used to represent letters, single digits,
and other characters is called a character code. (One character code, called ASCII, was discussed
in Section 2.1.) The patterns used to store numbers are called number codes, one of which,

known as twos complement representation, is explained at the end of this section.

Words and Addresses In a computer’s memory, bytes can be grouped into larger units,
called words, to facilitate storage of larger values and to allow faster and more extensive data
access. For example, retrieving a word consisting of 4 bytes from a computer’s memory results
in more information than retrieving a word consisting of a single byte. This type of retrieval is
also much faster than four separate 1-byte retrievals. Achieving this increase in speed and
capacity, however, requires increasing the computer’s cost and complexity. Desktop and laptop

computers currently use word sizes of 4 and 8 bytes.

The arrangement of words in a computer’s memory can be compared with the arrange-
ment of standard rooms in a large hotel. Just as each room has a unique room number to locate
and identify it, each word has a unique numeric address. (In computers that allow accessing
each byte separately, each byte has its own address.) Liike room numbers, word and byte
addresses are always unsigned whole numbers used for location and identification purposes.
In addition, in the same way hotel rooms with connecting doors form larger suites, words can

be combined to form larger units for accommodating data types of different sizes.

Chapter 2 73
Chapter Supplement: Bits, Bytes, and Binary
Number Representations

You can check the storage allocated for each integer data type discussed in this chapter and
the range of values your compiler provides by using the identifier names listed in Table 2.9. To
do this, you can inspect the limits header file for the definition of these identifiers or con-
struct a C++ program to display these values. Program 2.5 shows how this storage check is
accomplished.

Table 2.9 Integer Data Type Storage

Data Type Range of Values Identifier (in 1imits | Storage
header file) Size (in
bytes)
char -128 to +127 SCHAR MIN, 1
SCHAR MAX
short int -32,768 to +32,767 SHRT MIN, 2
SHRT MAX
int -2,147,483,648 to INT MIN, INT MAX |4
+2,147,483,647 B B
long int -2,147,483,648 to LONG_MIN, 4
+2,147,483,647 LONG MAX
unsigned short int 0 to 65,535 USHRT MAX 2
unsigned int 0 to 4,294,967,295 UINT MAX 4
unsigned long int 010 4,294,967,295 ULONG MAX 4
Program 2.5

#include <iostream>
#include <limits> //contains the maximum and minimum specifications
using namespace std;

int main()

{

cout << "The smallest character code is " << SCHAR_MIN << endl;
cout << "The largest character code is " << SCHAR MAX << endl;
cout << sizeof(char) << " byte(s) are used to store characters\n";

cout << "\nThe smallest integer value is " << INT_MIN << endl;
cout << "The largest integer value is " << INT MAX << endl;
cout << sizeof(int) << " byte(s) are used to store integers\n";

cout << "\nThe smallest short integer value is " << SHRT MIN <<endl;
cout << "The largest short integer value is " << SHRT MAX << endl;
cout << sizeof(short) << " byte(s) are used to store short integers\n";

(I

74 Data Types, Declarations, and Displays

cout << "The smallest long integer value is " << LONG_MIN << endl;
cout << "The largest long integer value is " << LONG_MAX << endl;
cout << sizeof(long) << " byte(s) are used to store long integers\n";

return 0;

Program 2.5 produces the following output:

The smallest character code is -128
The largest character code is 127
1 byte(s) are used to store characters

The smallest integer value is -2147483648
The largest integer value is 2147483647
4 byte(s) are used to store integers

The smallest short integer value is -32768
The largest short integer value is 32767
2 byte(s) are used to store short integers

The smallest long integer value is -2147483648
The largest long integer value is 2147483647
4 byte(s) are used to store long integers

Notice that the displayed values correspond with those listed previously in Table 2.9.

Binary, Hexadecimal, and Octal Numbers

The most common binary number code for storing integer values in a computer is called the
twos complement representation. With this code, the integer decimal equivalent of any bit pat-
tern, such as 10001101, is easy to determine and can be found for positive or negative integers
with no change in the conversion method. For convenience, assume byte-sized bit patterns
consisting of 8 bits each, although the procedure carries over to larger bit patterns.

The easiest way to determine the decimal integer each bit pattern represents is to con-
struct a simple device called a value box. Figure 2.8 shows a value box for a single byte.
Mathematically, each value in this box represents an increasing power of 2. Because twos
complement numbers must be capable of representing both positive and negative integers, the
leftmost position, in addition to having the largest absolute magnitude, has a negative sign.

-128| 64 | 32 | 16 | 8| 4| 2| 1

Figure 2.8 An 8-bit value box

Chapter 2 75
Chapter Supplement: Bits, Bytes, and Binary
Number Representations
To convert any binary number, such as 10001101, into its decimal integer value, simply

insert the bit pattern into the value box and add the values having 1s under them. Therefore,
as shown in Figure 2.9, the bit pattern 10001101 represents the decimal integer number -115.

-128 | 64 | 32 | 16 8 4 | 2| 1
el e B e B e e e

1] o o] of 1] 1] of 1
-128+ 0+ 0+ 0+ 8+ 4+ 0+ 1=-115

Figure 2.9 Converting 10001101 to a decimal number

The value box can also be used in reverse to convert a decimal integer number into its
equivalent binary bit pattern. Some conversions, in fact, can be made by inspection. For
example, the decimal integer -125 is obtained by adding 3 to -128. Therefore, the binary rep-
resentation of -125 is 10000011, which equals -128 + 2 + 1. Similarly, the twos complement
representation of the number 40 is 00101000, which is 32 + 8.

Although the value box conversion method is deceptively simple, it’s related to the under-
lying mathematical basis of twos complement binary numbers. The original name of the twos
complement code was the weighted-sign code, which correlates to the value box. As the name
“weighted sign” implies, each bit position has a weight, or value, of 2 raised to a power and a
sign. The signs of all bits except the leftmost bit are positive, and the sign of the leftmost bit
is negative.

In reviewing the value box, you can see that any twos complement binary number with a
leading 1 represents a negative number, and any bit pattern with a leading 0 represents a
positive number. Using the value box, it’s easy to determine the most positive and most nega-
tive values capable of being stored. The most negative value that can be stored in a single byte
is the decimal number -128, which has the bit pattern 10000000. Any other non-zero bit simply
adds a positive amount to the number. Additionally, a positive number must have a 0 as its
leftmost bit. From this, you can see that the largest positive 8-bit twos complement number is
01111111, or 127.

In addition to representing integer values, computers must store and transmit numbers
containing decimal points, which are mathematically referred to as “real numbers.” Appendix D
(available online) lists the binary codes used to represent real numbers.

Hexadecimal Representation Because binary numbers tend to be lengthy, the more com-
pact hexadecimal representation is often used. For example, the hexadecimal representation
of the 16-bit binary number 11110000101011001110001101111011 1s FOACE37B.

Each hexadecimal symbol represents a specific 4-bit binary pattern. The correspondence
between each hexadecimal symbol and its 4-bit binary pattern is listed in the first two columns
of Table 2.10. For convenience, the equivalent decimal value of each hexadecimal symbol and
the binary number it represents are also provided. Using this table, you can convert any hexa-
decimal number to its binary equivalent by substituting the correct 4-bit binary sequence for

Data Types, Declarations, and Displays

each hexadecimal symbol in the hexadecimal number. For example, Figure 2.10 shows how
the hexadecimal number 2D1F is converted to its binary equivalent by using the correspond-
ing values from Table 2.10.

Table 2.10 Hexadecimal to Binary Conversion

Hexadecimal Symbol Binary Pattern Decimal Symbol
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
2D1F

AN

I0010“1101“0001“1111|

Figure 2.10 Converting a hexadecimal number to binary

"To do the reverse conversion, from binary to hexadecimal, first group the binary digits in
units of four, starting from the right of the binary number. Next, using Table 2.10, assign each
group of four binary digits its corresponding hexadecimal symbol. Figure 2.11 shows an example
of converting the 16-bit binary number 0111111100001010 to its hexadecimal representation.

|0111”1111”0000”1010|

7FOA

Figure 2.11 Converting a binary number to hexadecimal

Chapter 2 77
Chapter Supplement: Bits, Bytes, and Binary
Number Representations

Hexadecimal symbols work well for representing the 8 bits in a byte because each byte
consists of two groups of 4 bits. (Sometimes 4-bit patterns are referred to as nibbles.) Therefore,
a byte’s binary code can be represented conveniently with two hexadecimal symbols.

In reviewing the hexadecimal symbols in Table 2.10, notice that the first 10 are the same
as those used in the decimal system. After using the familiar 0 to 9 symbols, however, unique
symbols are needed for the last six binary patterns in the table. The symbols you recognize as
10 through 15 can’t be used because they consist of two symbols, so the letters A through F
are used for these six additional symbols. To indicate clearly that hexadecimal numbers are
being used, often they’re preceded by 0X or 0x, as in 0xFOACE37B.

Octal Representation Although they have almost been superseded by hexadecimal num-
bers, you might still encounter binary numbers represented in their octal form. Octal numbers
group binary numbers in units of three. Table 2.11 shows the correspondence between octal
symbols and their 3-bit binary values.

Table 2.11 Octal to Binary Conversion

Octal Symbol Binary Value
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Using the values listed in Table 2.11, the octal number 541 represents the binary number
101100001. This is done by replacing the octal value 5 with its equivalent 101 binary bit pat-
tern, replacing the 4 with its corresponding 100 binary bit pattern, and replacing the 1 with its
corresponding 001 binary bit pattern.

To convert from binary to octal, first group the binary digits in units of three, proceeding
from right to left. In doing this, you might have to add one or two leading zeros to the binary
number to pad out the leftmost bit pattern to three binary digits. For example, the 8-bit
binary number 11111010 is padded out to nine binary digits by adding a leading zero. The
resulting number, 011111010, is then grouped in units of three, as |011]111]010|. The bar sym-
bol, |, has been used to separate each group of three binary digits clearly. Using the correspon-
dence between 3-bit patterns and octal symbols in Table 2.11, this binary number becomes the
octal number 372.

Before a byte was standardized to consist of 8 bits, octal numbers were typically used to
represent binary values. This method had the added advantage of using numeric symbols that
were familiar to people used to dealing with decimal numbers. With the standardization of
8-bit bytes, however, the use of hexadecimal symbols and their correspondence with 4-bit
binary numbers became the numbering system of choice for representing binary numbers.

Chapter

3.1 Assignment Operators

3.2 Formatted Output .
3.3 Mathematical Library Functions Assignment and

3.4 Interactive Keyboard Input Interactive Input

3.5 Symbolic Constants
3.6 Common Programming Errors
3.7 Chapter Summary

3.8 Chapter Supplement: Errors,
Testing, and Debugging

In Chapter 2, you were introduced to the concepts of data storage, variables, and their associated declara-
tion statements. You also saw how the cout object is used to display output data. This chapter continues
your introduction to C++ by explaining how data is processed with both assignment statements and
mathematical functions. Additionally, it discusses the cin object, which makes it possible for a user to
enter data while a program is running. You also learn more about the cout object, which can be used
for precise formatting of output data.

3.1 Assignment Operators

You learned about simple assignment statements in Chapter 2. An assignment statement is the
most basic C++ statement for assigning values to variables and performing computations. This
statement has the following syntax:

variable = expression;

80

Assignment and Interactive Input

The simplest expression in C++ is a single constant. In the following assignment state-
ments, the operand to the right of the equals sign is a constant:

length = 25;
width = 17.5;

In these assignment statements, the value of the constant to the right of the equals sign is
assigned to the variable on the left of the equals sign. Note that the equals sign in C++ doesn’t
have the same meaning as an equals sign in algebra. The equals sign in an assignment state-
ment tells the computer first to determine the value of the operand to its right, and then to
store (or assign) this value in the locations associated with the variable on its left. For example,
the C++ statement length = 25; formally means “length is assigned the value 25.” The
blank spaces in the assignment statement are inserted for readability only.

Recall that a variable can be initialized when it’s declared. If an initialization isn’t done in
the declaration statement, the variable should be assigned a value with an assignment state-
ment or input operation before it’s used in any computation. Subsequent assignment state-
ments can, of course, be used to change the value assigned to a variable. For example, assume
the following statements are executed one after another, and slope wasn’t initialized when it
was declared:

slope = 3.7;
slope = 6.28;

The first assignment statement assigns the value of 3.7 to the variable named slope.! The
next assignment statement causes the computer to assign a value of 6.28 to slope. The 3.7
that was in slope is overwritten with the new value of 6.28 because a variable can store only
one value at a time. Sometimes it’s useful to think of the variable to the left of the equals sign
as a temporary parking spot in a huge parking lot. Just as a parking spot can be used by only
one car at a time, each variable can store only one value at a time. “Parking” a new value in a
variable automatically causes the program to remove any value parked there previously.

In addition to being a constant, the operand to the right of the equals sign in an assign-
ment statement can be a variable or any other valid C++ expression. An expression is any
combination of constants, variables, and function calls that can be evaluated to yield a result.
Therefore, the expression in an assignment statement can be used to perform calculations by
using the arithmetic operators introduced in Section 2.2. The following are examples of assign-
ment statements using expressions containing these operators:

sum = 3 + 7;

diff = 15 - 6;

product = .05 * 14.6;
tally = count + 1;
newtotal = 18.3 + total;
taxes = .06 * amount;

IBecause it’s the first time a value is explicitly assigned to this variable, it’s often referred to as an “initialization.” This term stems from
historical usage that said a variable was initialized the first time a value was assigned to it. Under this usage, it’s correct to say that “slope
is initialized to 3.7.” From an implementation viewpoint, however, this statement is incorrect because the C++ compiler handles an
assignment operation differently from an initialization; an initialization can happen only when a variable is created by a declaration
statement. This difference is important only when using C++’s class features and is explained in detail in Section 10.1.

Chapter 3 81
Assignment Operators

totalWeight = factor * weight;
average = sum / items;
slope = (y2 - yl) / (x2 - x1);

As always in an assignment statement, the program first calculates the value of the expres-
sion to the right of the equals sign and then stores this value in the variable to the left of the
equals sign. For example, in the assignment statement totalWeight = factor * weight;,
the arithmetic expression factor * weight is evaluated first to yield a result. This result,
which is a number, is then stored in the variable totalWeight.

In writing assignment statements, you must be aware of two important considerations.
Because the expression to the right of the equals sign is evaluated first, all variables used in
the expression must have been given valid values previously if the result is to make sense. For
example, the assignment statement totalWeight = factor * weight; causes a valid
number to be stored in totalWweight only if the programmer takes care to assign valid num-
bers first to both factor and weight. Therefore, the following sequence of statements tells
you the values used to obtain the result to be stored in totalWeight:

factor 1.06;
155.0;

totalWeight = factor * weight;

weight

Figure 3.1 shows the values stored in the variables factor, weight, and totalWeight.

factor weight totalWeight

1.06 ' 155.0 ' 164.30 '

Figure 3.1 Values stored in variables

The second consideration is that because the value of an expression is stored in the vari-
able to the left of the equals sign, only one variable can be listed in this position. For example,
this assignment statement is invalid:

amount + 1892 = 1000 + 10 * 5;

The expression on the right evaluates to the integer 1050, which can only be stored in a
variable. Because amount + 1892 isn’t a valid variable name, the compiler has no means of
knowing where to store the calculated value and issues a syntax error message.

Program 3.1 shows using assignment statements to calculate the area of a rectangle.

82 Assignment and Interactive Input

Program 3.1

// this program calculates the area of a rectangle,
// given its length and width

#include <iostream>
using namespace std;

int main()

{
double length, width, area;

length = 27.2;

width = 13.6;

area = length * width;

cout << "The length of the rectangle is " << length << endl;
cout << "The width of the rectangle is " << width << endl;
cout << "The area of the rectangle is " << area << endl;

return 0;

When Program 3.1 is run, this is the output:

The length of the rectangle is 27.2
The width of the rectangle is 13.6
The area of the rectangle is 369.92

Take a look at the flow of control the computer uses in executing Program 3.1. Program
execution begins with the first statement and continues sequentially, statement by statement,
until the closing brace of main () is encountered. This flow of control is true for all programs.
The computer works on one statement at a time, executing the statement with no knowledge
of what the next statement will be. This sequential execution explains why all operands used
in an expression must have values assigned to them before the expression is evaluated.

When the computer executes the statement area = length * width; in Program 3.1,
it uses whatever values are stored in the variables 1length and width at the time the assign-
ment is executed. If no values have been specifically assigned to these variables before they’re
used in the expression length * width, the computer uses whatever values happen to
occupy these variables when they’re referenced. (Most C++ compilers initialize all variables to
zero automatically; most also give you a warning that the variable hasn’t been explicitly initial-
ized.) The computer doesn’t “look ahead” to see whether you assign values to these variables
later in the program.

It’s important to realize that in C++, the equals sign (=) used in assignment statements is
an operator, which differs from the way most other high-level languages process this symbol.
In C++, the = symbol is called the assignment operator, and an expression using this operator,

Chapter 3 83
Assignment Operators

such as interest = principal * rate, is an assignment expression. Because the assign-
ment operator has a lower precedence than any other arithmetic operator, the value of any
expression to the right of the equals sign is evaluated first, before the assignment.

Like all expressions, an assignment expression has a value, which is the value assigned to
the variable on the left of the assignment operator. For example, the expression a = 5 assigns
a value of 5 to the variable a and results in the expression also having a value of 5. The expres-
sion’s value can always be verified by using a statement such as the following:

cout << "The value of the expression is " << (a = 5);

This statement displays the expression’s value, not the contents of the variable a.
Although both the variable’s contents and the expression have the same value, you should
realize that you’re dealing with two distinct entities.

From a programming perspective, it’s the actual assignment of a value to a variable that’s
important in an assignment expression; the final value of the assignment expression is of little
consequence. However, the fact that assignment expressions have a value has implications that
must be considered when you learn about C++’s relational operators in Chapter 4.

Any expression terminated by a semicolon becomes a C++ statement. The most common
example is the assignment statement, which is simply an assignment expression terminated
with a semicolon. For example, terminating the assignment expression a = 33 with a semico-
lon results in the assignment statement a = 33;, which can be used in a program on a line by
itself.

Because the equals sign is an operator in C++, multiple assignments are possible in the
same expression or in its equivalent statement. For example, in the expression
a = b = ¢ = 25,all the assignment operators have the same precedence. The assignment
operator has a right-to-left associativity, so the final evaluation proceeds in this sequence:

c = 25
b =c
a=>,

In this example, this sequence of expressions has the effect of assigning the number 25 to
each variable and can be represented as follows:

a = (b= (c = 25))

Appending a semicolon to the original expression results in this multiple assignment
statement:

This statement assigns the value 25 to the three variables, equivalent to the following

84

Assignment and Interactive Input

Point of Information

lvalues and rvalues

The terms 1value and rvalue are used often in almost all programming languages that
define assignment with an operator that permits multiple assignments in the same statement.
An lvalue refers to any quantity that's valid on the left side of an assignment operator, and
an rvalue refers to any quantity that's valid on the right side of an assignment operator.

For example, each variable you've encountered so far can be an 1value or rvalue
(that is, a variable, by itself, can appear on both sides of an assignment operator), but a
number can be only an rvalue. More generally, an expression is an rvalue. Not all vari-
ables, however, can be used as 1values or rvalues. For example, an array type, intro-
duced in Chapter 7, can't be an 1value or rvalue, but elements in an array can be both.

Coercion

When working with assignment statements, keep in mind the data type assigned to the values
on both sides of the expression because data type conversions take place across assignment
operators. In other words, the value of the expression to the right of the assignment operator
is converted to the data type of the variable to the left of the assignment operator. This type
of conversion is referred to as a coercion because the value assigned to the variable on the left
of the assignment operator is forced into the data type of the variable it’s assigned to.

An example of a coercion occurs when an integer value is assigned to a real variable; this
assignment causes the integer to be converted to a real value. Similarly, assigning a real value
to an integer variable forces conversion of the real value to an integer. This conversion always
results in losing the fractional part of the number because of truncation. For example, if temp
is an integer variable, the assignment temp = 25.89 causes the integer value 25 to be stored
in the integer variable temp.?

Another example of data type conversions, which includes both mixed-mode and assign-
ment conversions, is evaluation of the expression

a=>b*d

where a and b are integer variables and d is a double-precision variable. When the mixed-
mode expression b * d is evaluated,’ the value of b used in the expression is converted to a
double-precision number for purposes of computation. (Note that the value stored in b
remains an integer number, and the resulting value of the expression b * d is a double-
precision number.) Finally, data type conversion across the assignment operator comes into
play. The left side of the assignment operator is an integer variable, so the double-precision
value of the expression b * d is truncated to an integer value and stored in the variable a.

ZThe correct integer portion is retained only when it’s within the range of integer values allowed by the compiler.
3Review the rules in Table 2.8, Section 2.2, for evaluating mixed-mode expressions, if necessary.

Chapter 3 85
Assignment Operators

Assignment Variations

Although only one variable is allowed immediately to the left of the equals sign in an assign-
ment expression, the variable to the left of the equals sign can also be used to the right of the
equals sign. For example, the assignment expression sum = sum + 10 is valid. Clearly, as an
algebraic equation, sumcould neverbe equal toitself plus 10. In C++, however,sum = sum + 10
1S #of an equation—it’s an expression evaluated in two major steps: First, the value of
sum + 10 is calculated, and second, the computed value is stored in sum. See whether you can
determine the output of Program 3.2.

Program 3.2

#include <iostream>
using namespace std;

int main()

{

int sum;

sum = 25;
cout << "The number stored in sum is " << sum << endl;
sum = sum + 10;
cout << "The number now stored in sum is "
<< sum << endl;

return 0;

In Program 3.2, the assignment statement sum = 25; tells the computer to store the
number 25 in sum, as shown in Figure 3.2.

sum

x|

Figure 3.2 The integer 25 is stored in sum

The first cout statement displays the value stored in sum with the message
The number stored in sum is 25.Thesecondassignmentstatement,sum = sum + 10;,
causes the program to retrieve the 25 stored in sum and add 10 to this number, yielding 35. The
number 35 is then stored in the variable to the left of the equals sign, which is the variable sum.
The 25 that was in sum is simply overwritten with the new value of 35 (see Figure 3.3).

86

Assignment and Interactive Input

sum New value
Old value is 4 (35)
} \25(!
overwritten I ' is stored

Figure 3.3 sum = sum + 10; causes a new value to be stored in sum

Assignment expressions such as sum = sum + 10, which use the same variable on both
sides of the assignment operator, can be written by using the following shortcut assignment
operators:

+= - *= /= %=

For example, the expression sum = sum + 10 can be written as sum += 10. Similarly,
the expression price *= rate is equivalent to the expression price = price * rate. In
using shortcut assignment operators, note that the variable to the left of the assignment
operator is applied to the complete expression on the right. For example, the expression
price *= rate + 1 is equivalent to the expression price = price * (rate + 1), not
price = price * rate + 1.

Accumulating

Assignment expressions, such as sum += 10 or its equivalent, sum = sum + 10, are common
in programming. These expressions are required in accumulating subtotals when data is
entered one number at a time. For example, if you want to add the numbers 96, 70, 85, and 60
in calculator fashion, the following statements could be used:

Statement Value in sum
sum = 0; 0
sum = sum + 96; 96
sum = sum + 70; 166
sum = sum + 85; 251
sum = sum + 60; 311

The first statement initializes sum to 0, which removes any number stored in sum that
would invalidate the final total (a “garbage value”). As each number is added, the value stored
in sum is increased accordingly. After completion of the last statement, sum contains the total
of all the added numbers. Program 3.3 shows the effect of these statements by displaying sum’s
contents after each addition.

Program 3.3

#include <iostream>
using namespace std;

int main()

{

int sum;

sum = 0;
cout << "The value of
<< sum << endl;

sum = sum + 96;

cout << " sum is now
sum = sum + 70;

cout << " sum is now
sum = sum + 85;

cout << " sum is now
sum = sum + 60;

Chapter 3 87
Assignment Operators

sum is initially set to "

" << sum << endl;
" << sum << endl;

" << sum << endl;

cout << " The final sum is " << sum << endl;

return 0;

Program 3.3 displays this output:

The value of sum is initially set to 0
sum is now 96

sum is now 166

sum is now 251
The final sum is 311

Although Program 3.3 isn’t a practical program (because adding the numbers by hand is
easier), it does illustrate the subtotaling effect of repeated use of statements having this form:

variable = variable + newValue;

"This type of statement is called an accumulation statement. You’ll find many uses for accu-
mulation statements when you become more familiar with the repetition statements intro-

duced in Chapter 5.

88

Assignment and Interactive Input

Counting
The counting statement, which is an assignment statement similar to the accumulating state-
ment, has the following form:

variable = variable + fixedNumber;

Examples of counting statements are as follows:

i=1i+1;
n=n+ 1;
count = count + 1;
j=131+2;
m=m + 2;

kk = kk + 3;

In these examples, the same variable is used on both sides of the equals sign. After the
statement is executed, the variable’s value is increased by a fixed amount. In the first three
examples, the variables i, n, and count have been increased by 1. In the next two examples,
the variables have been increased by 2, and in the final example, the variable kk has been
increased by 3.

For a variable that’s increased or decreased by only 1, C++ provides two unary opera-
tors: increment and decrement operators. Using the increment operator,* ++, the expression
variable = variable + 1 can be replaced by the expression variable++ or the
expression ++variable. Here are examples of the increment operator:

Expression Alternative
i=1i+1 i++or ++1i
n=n+1 n++ Or ++n
count = count + 1 count++ or ++count

Program 3.4 illustrates the use of the increment operator. It displays the following output:

The initial value of count is 0
count is now 1
count is now 2
count is now 3
count is now 4

4As a historical note, the ++ in C++’s name was inspired by the increment operator symbol. It was used to indicate that C++ was the
next increment to the C language.

Chapter 3 89
Assignment Operators

Program 3.4

#include <iostream>
using namespace std;

int main()

{

int count;

count = 0;

cout << "The initial value of count is " << count << endl;
count++;

cout << " count is now " << count << endl;

count++;

cout << " count is now " << count << endl;

count++;

cout << " count is now " << count << endl;

count++;

cout << " count is now " << count << endl;

return 0;

When the ++ operator appears before a variable, it’s called a prefix increment operator;
when it appears after a variable, it’s called a postfix increment operator. The distinction between
a prefix and postfix increment operator is important when the variable being incremented is
used in an assignment expression. For example, k = ++n, which uses a prefix increment
operator, does two things in one expression: The value of n is incremented by 1, and then the
new value of n is assigned to the variable k. Therefore, the statement k = ++n; is equivalent
to these two statements:

n=n+1; // increment n first
k = n; // assign n's value to k

The assignment expression k = n++, which uses a postfix increment operator, reverses
this procedure. A postfix increment operator works after the assignment is completed.
Therefore, the statement k = n++; first assigns the current value of n to k, and then incre-
ments the value of n by 1. This process is equivalent to these two statements:

k = n; // assign n's value to k
n=n+1; // and then increment n

90

O

=

Assignment and Interactive Input

C++ also provides the decrement operator, ——, in prefix and postfix variations. As you
might expect, both the expressions variable-- and --variable are equivalent to the
expression variable = variable - 1. Here are examples of the decrement operator:

Expression Alternative
i=1i-1 i--or--i
n=n-1 n-- Oor --n
count = count - 1 count-- Or —-count

When the -- operator appears before a variable, it’s called a prefix decrement operator.
When this operator appears after a variable, it’s called a postfix decrement operator. For exam-
ple, both the expressions n-- and --n reduce the value of n by 1 and are equivalent to the
longer expressionn = n - 1.

As with the increment operators, however, the prefix and postfix decrement operators pro-
duce different results when used in assignment expressions. For example, the expression
k = —-nfirst decrements the value of n by 1 before assigning the value of n to k, and the expres-
sion k = n-- first assigns the current value of n to k, and then reduces the value of n by 1.

[
B

4
<&

= EXERCISES 3.1

1. (Practice) Write an assignment statement to calculate the circumference of a circle having a
radius of 3.3 inches. The formula for determining the circumference, ¢, of a circle is ¢ = 2nr,
where 7 is the radius and & equals 3.1416.

2. (Practice) Write an assignment statement to calculate the area of a circle. The formula for
determining the area, «, of a circle is # = 7%, where 7 is the radius and & = 3.1416.

3. (Practice) Write an assignment statement to convert temperature in degrees Fahrenheit to
degrees Celsius. The formula for this conversion is Celsius = 5.0 [9.0 (Fahrenheit - 32).

4. (Practice) Write an assignment statement to calculate the round-trip distance, 4, in feet, of a
trip that’s s miles long one way.

S. (Practice) Write an assignment statement to calculate the elapsed time, in minutes, it takes
to make a trip. The formula for computing elapsed time is elapsed time = total distance | average
speed. Assume the distance is in miles and the average speed is in miles per hour (mph).

6. (Practice) Write an assignment statement to calculate the value, v, of the #th term in an arith-
metic sequence. The formula for calculating this value is as follows:

v=a+(n-1)d

a is the first number in the sequence.
d is the difference between any two numbers in the sequence.

Chapter 3 91
Assignment Operators

7. (Practice) Write an assignment statement to determine the maximum bending moment, M,
of a beam, given this formula:

M=XW(L-X)/L

X is the distance from the end of the beam that a weight, W, is placed.
L is the length of the beam.

8. (Debug) Determine and correct the errors in the following programs.
a. #include <iostream>
using namespace std;
int main()

{

width = 15

area = length * width;

cout << "The area is " << area
}

b. #include <iostream>
using namespace std;
int main()
{
int length, width, area;
area = length * width;
length = 20;

width = 15;
cout << "The area is " << area;
return 0;

C. #include <iostream>

int main()

{
int length = 20; width = 15, area;
length * width = area;
cout << "The area is " , area;

return 0;
}
9. (Debug) By mistake, a student reordered the statements in Program 3.3 as follows:

#include <iostream>
using namespace std;

92

Assignment and Interactive Input

int main()
{
int sum;
sum = 0;
sum = sum + 96;
sum = sum + 70;
sum = sum + 85;
sum = sum + 60;
cout << "The value of sum is initially set to "
<< sum << endl;
cout << " sum is now " << sum << endl;
cout << " sum is now " << sum << endl;
cout << " sum is now " << sum << endl;
cout << " The final sum is " << sum << endl;

return 0;

}

Determine the output this program produces.

10. (Practice) Using Program 3.1, complete the following chart by determining the area of a rect-
angle having these lengths and widths:

Length (in.) Width (in.) Area
1.62 6.23

2.86 7.52

4.26 8.95

8.52 10.86

12.29 15.35

11. (Program) The area of an ellipse (see Figure 3.4) is given by this formula:

Area =T a b

Using this formula, write a C++ program to calculate the area of an ellipse having a minor axis,
a, of 2.5 inches and a major axis, 4, of 6.4 inches.

L

b

Figure 3.4 The minor axis, a, and the major axis, b, of an ellipse

12. (Program) a. Write a C++ program to calculate the dollar amount contained in a piggybank.
The bank currently contains 12 half-dollars, 20 quarters, 32 dimes, 45 nickels, and 27 pennies.
b. Run the program written for Exercise 12a on a computer.

Chapter 3 93
Formatted Output

13. (Program) a. Write a C++ program to calculate the distance, in feet, of a trip that’s 2.36 miles

long. One mile is equal to 5280 feet.
b. Run the program written for Exercise 13a on a computer.

14. (Program) a. Write a C++ program to calculate the elapsed time it takes to make a 183.67-mile

trip. The equation for computing elapsed time is elapsed time = total distance | average speed.
Assume that the average speed during the trip is 58 miles per hour.
b. Run the program written for Exercise 14a on a computer.

15. (Program) a. Write a C++ program to calculate the sum of the numbers from 1 to 100. The

formula for calculating this sum is sum = (n [2) x (2 x a + (n - 1) x d), where n = number of
terms to be added, # = the first number, and & = the difference between each number and the
next number (7 = 1).

b. Run the program written for Exercise 15a on a computer.

16. (For thought) Determine why the expression a - b = 25 is invalid but the expression

a - (b = 25) isvalid.

3.2 Formatted Output

Besides displaying correct results, a program should present its results attractively. In fact, most
programs are judged on the perceived ease of data entry and the style and presentation of the
output. For example, displaying a monetary result as 1.897 isn’t in keeping with accepted
report conventions. The display should be $1.90 or $1.89, depending on whether rounding or
truncation is used.

"To control the format of numbers displayed by cout, you can include field width manipulators
in an output stream. Table 3.1 lists the most common stream manipulators for this purpose.3

Table 3.1 Commonly Used Stream Manipulators

Manipulator Action
setw(n) Set the field width to n.
setprecision(n) Set the floating-point precision to n places. If the £ixed manipula-

tor is designated, n specifies the total number of displayed digits
after the decimal point; otherwise, n specifies the total number of
significant digits displayed (integer plus fractional digits).

setfill('x") Set the default leading fill character to x. (The default leading fill

character is a space, which is used to fill the beginning of an output
field when the field width is larger than the value being displayed.)

setiosflags(flags) | Setthe format flags. (See Table 3.3 for flag settings.)
scientific Set the output to display real numbers in scientific notation.
showbase Display the base used for numbers. A leading 0 is displayed for octal

numbers and a leading 0x for hexadecimal numbers.

5As noted in Chapter 2, the end1 manipulator inserts a new line and then forces all current insertions to be displayed immediately,
called “flushing the stream.”

94 Assignment and Interactive Input
Table 3.1 Commonly Used Stream Manipulators (continued)

Manipulator Action

showpoint Always display six digits total (combination of integer and fractional
parts). Fill with trailing zeros, if necessary. For larger integer values,
revert to scientific notation.

showpos Display all positive numbers with a leading + sign.

boolalpha Display Boolean values as true and false rather than 1 and 0.

dec Set the output for decimal display, which is the default.

endl Output a newline character and display all characters in the buffer.

fixed Always show a decimal point and use a default of six digits after the
decimal point. Fill with trailing zeros, if necessary.

flush Display all characters in the buffer.

left Left-justify all numbers.

hex Set the output for hexadecimal display.

oct Set the output for octal display.

uppercase Display hexadecimal digits and the exponent in scientific notation in
uppercase.

right Right-justify all numbers (the default).

noboolalpha Display Boolean values as 1 and 0 rather than true and false.

noshowbase Don't display octal numbers with a leading 0 and hexadecimal num-
bers with a leading 0x.

noshowpoint Don't use a decimal point for real numbers with no fractional parts,
don't display trailing zeros in the fractional part of a number, and
display a maximum of six decimal digits only.

noshowpos Don't display leading + signs (the default).

nouppercase Display hexadecimal digits and the exponent in scientific notation in
lowercase.

For example, the statement
cout << "The sum of 6 and 15 is" << setw(3) << 21;
creates this printout:
The sum of 6 and 15 is 21

The setw(3) field width manipulator included in the data stream sent to cout is used to
set the displayed field width. The 3 in this manipulator sets the default field width for the next
number in the stream to be three spaces. This field width setting causes the 21 to be printed
in a field of three spaces, which includes one blank and the number 21. As shown in this out-
put, integers are right-justified in the specified field.

Field width manipulators are useful in printing columns of numbers so that the numbers
align correctly in each column. For example, Program 3.5 shows how a column of integers
aligns in the absence of field width manipulators.

Chapter 3 95
Formatted Output

Program 3.5

#include <iostream>
using namespace std;

int main()
{
cout << 6 << endl
<< 18 << endl
<< 124 << endl
<< "---\n"
<< (6+18+124) << endl;

return 0;

The output of Program 3.5 is the following:

6
18
124

148

Because no field width manipulators are used in Program 3.5, the cout object allocates
enough space for each number as it’s received. Forcing numbers to align on the units digit
requires a field width wide enough for the largest displayed number, which is three for the
numbers in Program 3.5. Program 3.6 shows the use of this field width.

Program 3.6

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
cout << setw(3) << 6 << endl
<< setw(3) << 18 << endl
<< setw(3) << 124 << endl
<< "—==\n"
<< (6+18+124) << endl;

return 0;

96

Assignment and Interactive Input

The output of Program 3.6 is as follows:

6
18
124

148

The field width manipulator must be included for each occurrence of a number inserted
in the data stream sent to cout. This manipulator applies only to the next insertion of data
immediately following it.

When a manipulator requiring an argument is used, the iomanip header file must be
included as part of the program. To do this, you use the preprocessor command
#include <iomanip>, which is the second line in Program 3.6.

Formatting floating-point numbers requires using three field width manipulators. The
first manipulator sets the total width of the display, the second manipulator forces the display
of a decimal point, and the third manipulator determines how many significant digits are dis-
played to the right of the decimal point. (See the “Point of Information” box in Chapter 2 for
a review of significant digits.) For example, examine the following statement:

cout << "|" << setw(1l0) << fixed << setprecision(3) << 25.67 << "|";
It causes the following printout:
| 25.670|

The bar symbol, |, in this example is used to delimit (mark) the beginning and end of the
display field. The setw manipulator tells cout to display the number in a total field of 10.
(With real numbers, the decimal point takes up one of these field locations.) The fixed
manipulator forces the display of a decimal point, and the setprecision manipulator desig-
nates the number of digits displayed after the decimal point. In this case, setprecision
specifies a display of three digits after the decimal point. Without the explicit designation of a
decimal point (which can also be designated as setiosflags(ios::fixed), explained
shortly), the setprecision manipulator specifies the total number of displayed digits, which
includes the integer and fractional parts of the number.

For all numbers (integers, single-precision, and double-precision), cout ignores the setw
manipulator specification if the total specified field width is too small, and it allocates enough
space for printing the integer part of the number. The fractional part of single-precision and
double-precision numbers is displayed up to the precision set with the setprecision manip-
ulator. (In the absence of setprecision, the default precision is set to six decimal places.) If
the fractional part of the number to be displayed contains more digits than are called for in the
setprecision manipulator, the number is rounded to the indicated number of decimal
places; if the fractional part contains fewer digits than specified, the number is displayed with
fewer digits. Table 3.2 shows the effect of several format manipulator combinations. For clar-
ity, the bar symbol delimits the beginning and end of output fields.

Chapter 3 97
Formatted Output

Table 3.2 Effect of Format Manipulators

Manipulators Number Display Comments

setw(2) 3 | 3] Number fits in the field.

setw(2) 43 |43] Number fits in the field.

setw(2) 143 |143] Field width is ignored.

setw(2) 2.3 [2.3] Field width is ignored.

setw(5) 2.366 | 2.37] Field width of five with two

fixed decimal digits.

setprecision(2)

setw(5) 42.3 |42.30] Number fits in the field with the specified

fixed precision. Note that the decimal point

setprecision(2) takes up one location in the field width.

setw(5) 142.364 |1.4e+002| | Field width is ignored, and scientific

setprecision(2) notation is used with the
setprecision manipulator.

setw(5) 142.364 | |142.36]| Field width is ignored, but

fixed precision specification is used. The

setprecision(2) setprecision manipulator specifies
the number of fractional digits.

setw(5) 142.366 [142.37] Field width is ignored, but precision

fixed specification is used. The

setprecision(2) setprecision manipulator specifies
the number of fractional digits. (Note the
rounding of the last decimal digit.)

setw(5) 142 | 142 Field width is used; fixed and

fixed setprecision manipulators are irrel-

setprecision(2) evant because the number is an integer
that specifies the total number of signifi-
cant digits (integer plus fractional digits).

The setiosflags() Manipulators

In addition to the setw and setprecision manipulators, a field justification manipulator is
available. As you have seen, numbers sent to cout are normally right-justified in the display
field, and strings are left-justified. To alter the default justification for a stream of data, you use
the setiosflags manipulator. For example, the statement

cout << "|" << setw(10) << setiosflags(ios::left) << 142 << "|";
causes the following left-justified display:

| 142 |

6This topic can be omitted on first reading without loss of subject continuity.

98

Assignment and Interactive Input

Point of Information

What Is a Flag?

In current programming usage, the term flag refers to an item, such as a variable or an
argument, that sets a condition usually considered active or nonactive. Although the
exact origin of this term in programming is unknown, it probably came from using real
flags to signal a condition, such as the Stop, Go, Caution, and Winner flags commonly
used at car races.

In a similar manner, each flag argument for the setiosflags () manipulator func-
tion activates a specific condition. For example, the ios: :dec flag sets the display for-
mat to decimal, and the ios: :oct flag activates the octal display format. Because
these conditions are mutually exclusive (only one can be active at a time), activating this
type of flag deactivates the other flags automatically.

Flags that aren’t mutually exclusive, such as ios: :dec, ios: :showpoint, and
ios::fixed, can be set simultaneously. You can do this by using three separate
setiosflag() calls or combining all arguments into one call as follows:

cout << setiosflags(ios::dec | ios::fixed | ios::showpoint);

Because data passed to cout can be continued across multiple lines, the previous display
is also produced by this statement:

cout << "|" << setw(10)
<< setiosflags(ios::left)
<< 142 << "|";

"To right-justify strings in a stream, you use the setiosflags(ios::right) manipulator.
The letters “i0s” in the function name and the ios: :right argument come from the first let-
ters of the words “input output stream.”

In addition to the left and right flags that can be used with setiosflags(), other
flags can be used to affect output. Table 3.3 lists the most commonly used flags for this
manipulator function. The flags in this table provide another way of setting the manipulators
listed in Table 3.1.

Table 3.3 Format Flags for Use with setiosflags()

Flag Meaning

ios::fixed Always show the decimal point with six digits following it. Fill with
trailing zeros after the decimal point, if necessary. This flag takes
precedence if it's set with the ios: :showpoint flag.
ios::scientific | Use exponential display in the output.

ios::showpoint Always display a decimal point and six significant digits total (com-
bination of integer and fractional parts). For larger integer values,
revert to scientific notation unless the ios: : fixed flag is set.

ios::showpos Display a leading + sign when the number is positive.

Chapter 3 99
Formatted Output

Table 3.3 Format Flags for Use with setiosflags () (continued)

Flag Meaning
ios::left Left-justify the output.
ios::right Right-justify the output.

Because the flags in Table 3.3 are used as arguments to setiosflags() and the terms
“argument” and “parameter” are synonymous, another name for a manipulator method that
uses arguments is a parameterized manipulator. The following is an example of a parameterized
manipulator method:

cout << setiosflags(ios::fixed) << setprecision(4);

This statement forces all subsequent floating-point numbers sent to the output stream to
be displayed with a decimal point and four decimal digits. If the number has fewer than four
decimal digits, it’s padded with trailing zeros.

Hexadecimal and Octal 1/07

In addition to outputting integers in decimal notation, the oct and hex manipulators are used
for conversions to octal and hexadecimal. (Review Section 2.6 if you’re unfamiliar with hexa-
decimal or octal numbers.) Program 3.7 uses these flags in an example of converting a decimal
number to its equivalent hexadecimal and octal values. Because decimal is the default display,
the dec manipulator isn’t required in the first output stream.

Program 3.7

// a program that illustrates output conversions
#include <iostream>

#include <iomanip>

using namespace std;

int main()
{
cout << "The decimal (base 10) value of 15 is "
<< 15 << endl;
cout << "The octal (base 8) value of 15 is "
<< showbase << oct << 15 <<endl;
cout << "The hexadecimal (base 16) value of 15 is "
<< showbase << hex << 15 << endl;

return 0;

7This topic can be omitted on first reading without loss of subject continuity.

100 Assignment and Interactive Input

Point of Information

Formatting cout Stream Data

Floating-point data in a cout output stream can be formatted in precise ways. For
example, a common format requirement is to display monetary amounts with two digits
after the decimal point, such as 123.45. You can do this with the following statement:

cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2);

The first manipulator flag, ios: : £ixed, forces all floating-point numbers in the cout
stream to be displayed in decimal notation. This flag also prevents using scientific notation.
The next flag, ios: : showpoint, tells the stream to always display a decimal point. Finally,
the setprecision manipulator tells the stream to always display two digits after the dec-
imal point. Instead of using manipulators, you can use the cout stream methods setf ()
and precision(). For example, the previous formatting can also be accomplished with
this code:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

Note the syntax: The name of the object, cout, is separated from the method with a
period. This format is the standard way of specifying a method and connecting it to a
specific object.

Additionally, the flags used in both the setf () method and the setiosflags()
manipulator method can be combined by using the bitwise OR operator, | (explained in
Appendix C, available online). Using this operator, the following two statements are
equivalent:

cout << setiosflags(ios::fixed | ios::showpoint);
cout.setf(ios::fixed | ios::showpoint);

The statement you select is a matter of personal preference or a predefined standard.

"This is the output produced by Program 3.7:

The decimal (base 10) value of 15 is 15
The octal (base 8) value of 15 is 017
The hexadecimal (base 16) value of 15 is O0Oxf

Chapter 3 101
Formatted Output

The display of integer values in one of three possible numbering systems (decimal, octal,
and hexadecimal) doesn’t affect how the number is stored in a computer. All numbers are
stored by using the computer’s internal codes. The manipulators sent to cout tell the object
how to convert the internal code for output display purposes.

Besides integers being displayed in octal or hexadecimal form, they can also be written in
a program in these forms. To designate an octal integer, the number must have a leading zero.
The number 023, for example, is an octal number in C++. Hexadecimal numbers are denoted
with a leading Ox. Program 3.8 shows how octal and hexadecimal integer numbers are used.

Program 3.8

#include <iostream>
using namespace std;

int main()

{
cout << "The decimal value of 025 is " << 025 << endl
<< "The decimal value of 0x37 is "<< 0x37 << endl;

return 0;

Program 3.8 produces the following output:

The decimal value of 025 is 21
The decimal value of 0x37 is 55

Figure 3.5 shows the relationship between input, storage, and display of integers.

102

Integer
with a s, convertan
: octal number
leading O
Integer convert a
Withno .~ decimal
leading O number
or 0X
Integer convert a
witha == hexadecimal
leading 0X number

o -

111

Assignment and Interactive Input

internal

number

code
|

cout << oct

cout << dec

cout << hex

convert to
octal > Octl
representation display
convert to ,
decimal > Decimal
representation display
convert to “ _
hexadecimal Hexgdemmal
representation display

-
Input is octal, decimal,
or hexadecimal

Figure 3.5

Storage is always
in binary

Display is octal, decimal,
or hexadecimal

Input, storage, and display of integers

Finally, you can set the manipulators listed in Tables 3.1 and 3.2 by using the ostream

class methods listed in Table 3.4.

Chapter 3 103
Formatted Output

Table 3.4 ostream Class Methods

Method Comment Example

precision(n) Equivalent to setprecision() cout.precision(2)

£i1l('x") Equivalent to set£i11() cout.fill('*")

setf(ios::fixed) Equivalent to setiosflags(ios::fixed)
cout.setf(ios::fixed)

setf(ios::showpoint) Equivalent to setiosflags(ios::showpoint)
cout.setf(ios::showpoint)

setf(iof::left) Equivalent to left cout.setf(ios::left)

setf(ios::right) Equivalent to right cout.setf(ios::right)

setf(ios::flush) Equivalent to endl cout.setf(ios::flush)

In the Example column of Table 3.4, notice that the name of the object, cout, is sepa-

rated from the method with a period. As mentioned, this format is the standard way of calling
a class method and providing an object for it to operate on.

EXERCISES 3.2

1. (Debug) Determine the errors in the following statements:

a. cout << "\n << " 15)

b. cout << "setw(4)" << 33;

c. cout << "setprecision(5)" << 526.768;

d. "Hello World!" >> cout;

e. cout << 47 << setw(6);

f. cout << set(10) << 526.768 << setprecision(2);

2. (Desk check) Determine and write out the display produced by the following statements:

a. cout << "|" << 5 <<"|";

b. cout << "|" << setw(4) << 5 << "|";

C. cout << "|" << setw(4) << 56829 << "|";

d. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 5.26 << "|";

e. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 5.267 << "|";

f. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 53.264 << "|";

g. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 534.264 << "|";

h. cout << "|" << setw(5) << setiosflags(ios::fixed)

<< setprecision(2) << 534. << "|";

104 Assignment and Interactive Input

3. (Desk check) Write out the display produced by the following statements:
a. cout << "The number is " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << "The number is " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << "The number is " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
b. cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
cout << "—————- \n";
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;
C. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
cout << "——m——o \n";
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;
d. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 36.164 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 10.003 << endl;
cout << "————- " << endl;

4. (Desk check) The following chart lists the equivalent octal and hexadecimal representations
for the decimal numbers 1 through 15:
Decimal: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octal: 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Hexadecimal: 1 2 3 4 5 6 7 8 9 a b c d e f

Using this chart, determine the output of the following program:

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

Chapter 3 105
Formatted Output

cout << "\nThe value of 14 in octal is " << oct << 14
<< "\nThe value of 14 in hexadecimal is " << hex << 14
<< "\nThe value of 0xA in decimal is " << dec << O0xA
<< "\nThe value of 0xA in octal is " << oct << 0xA
<< endl;

return 0;

}

S. (Program) Write a C++ program to calculate and display the value of the slope of the line
connecting two points with the coordinates (3,7) and (8,12). Use the fact that the slope
between two points at the coordinates (x1,yq) and (x;,y,) is slope = (y; - yq) / (x; - xq). Your
program should produce this display:

The value of the slope is xxx.xx

The xxx.xx denotes placing the calculated value in a field wide enough for three places to
the left of the decimal point and two places to the right of it.

6. (Program) Write a C++ program to calculate and display the midpoint coordinates of the line
connecting the two points with coordinates of (3,7) and (8,12). Use the fact that the midpoint
coordinates between two points with the coordinates (xy,y;) and (x;,y,) are ((x, + xq) / 2,
(v +v1) / 2). Your program should produce this display:

The x coordinate of the midpoint is xxx.xx
The y coordinate of the midpoint is xxx.xx

The xxx.xx denotes placing the calculated value in a field wide enough for three places to
the left of the decimal point and two places to the right of it.

Verity your program using the following test data:
Test data set 1: Point 1 = (0,0) and Point 2 = (16,0)
Test data set 2: Point 1 = (0,0) and Point 2 = (0,16)
Test data set 3: Point 1 = (0,0) and Point 2 = (-16,0)
Test data set 4: Point 1 = (0,0) and Point 2 = (0,-16)
Test data set 5: Point 1 = (-5,-5) and Point 2 = (5,5)

When you have completed your verification, use your program to complete the following table.

Point 1 Point 2 Midpoint
(4,6) (16,18)

(22,3) (8,12)

(-10,8) (14,4)

(-12,2) (14,3.1)

(3.1,-6) (20,16)

(3.1,-6) (-16,-18)

106

Assignment and Interactive Input

7. (Program) The change remaining after an amount is used to pay a restaurant bill of amount

check can be calculated by using the following C++ statements:

// determine the number of pennies in the change
change = (paid - check) * 100;

// determine the number of dollars in the change

dollars = (int) (change/100);

a. Using the previous statements as a starting point, write a C++ program that calculates the
number of dollar bills, quarters, dimes, nickels, and pennies in the change when $10 is used
to pay a bill of $6.07.

b. Without compiling or running your program, check the effect, by hand, of each statement in
the program and determine what’s stored in each variable as each statement is encountered.

c. When you have verified that your algorithm works correctly, compile and run your program.
Verity that the result produced by your program is correct, and then use your program to
determine the change when a check of $12.36 is paid with a 20-dollar bill.

. (Program) Write a C++ program to calculate and display the maximum bending moment, M,

of a beam that’s supported on both ends (see Figure 3.6). The formula is M = XW (L. - X) / L,
where X is the distance from the end of the beam that a weight, W, is placed, and L is the
length of the beam. Your program should produce this display:

The maximum bending moment is XXXX.XXXX
The xxxx.xxxx denotes placing the calculated value in a field wide enough for four places to

both the right and left of the decimal point.

< X—>|
w |

L A

Figure 3.6 Calculating the maximum bending moment

3.3 Mathematical Library Functions

As you have seen, assignment statements can be used to perform arithmetic computations. For
example, the following assignment statement multiplies the value in unitPrice times the
value in amount and assigns the resulting value to totalPrice:

totalPrice = unitPrice * amount;

Although addition, subtraction, multiplication, and division are easily accomplished with
C++’s arithmetic operators, no operators exist for raising a number to a power, finding a num-
ber’s square root, or determining trigonometric values. To perform these calculations, C++
provides standard preprogrammed functions that can be included in a program. Before using
one of these mathematical functions, you need to know the following:

e 'The name of the mathematical function
e What the mathematical function does

Chapter 3 107
Mathematical Library Functions

e The type of data the mathematical function requires
e The data type of the result the mathematical function returns
e How to include the mathematical library

To illustrate the use of C++’s mathematical functions, take a look at the mathematical
function sqrt (), which calculates a number’s square root and uses this form:

sqrt (number)

T'he function’s name—in this case, sqrt—is followed by parentheses containing the num-
ber for which the square root should be calculated. The purpose of the parentheses after the
function name is to provide a funnel through which data can be passed to the function (see
Figure 3.7). The items passed to the function through the parentheses are called arguments of
the function, as you learned in Chapter 1, and constitute its input data. For example, the fol-
lowing expressions are used to compute the square root of the arguments 4., 17.0, 25., 1043.29,
and 6.4516:

sqrt(4.)
sqrt(17.0)
sqgrt(25.)
sqrt(1043.29)
sqgrt(6.4516)

sgrt (a value)

sqgrt () function

Figure 3.7 Passing data to the sqrt () function

Notice that the argument to the sqrt () function must be a real value, which is an exam-
ple of C++’s function-overloading capabilities. Function overloading permits using the same
function name for arguments of different data types.8 C++ has three functions named
sqrt ()—defined for £loat, double, and long double arguments. T'he correct sqrt () func-
tion is called depending on the type of value passed to the function when the call is made.
When one of the functions named sqrt () is called (again, the selection is automatic, based on

8If overloading wasn’t supported, three separate square root functions, each with a different name, would have to be defined—one for
cach type of argument.

108 Assignment and Interactive Input

the passed argument), the function determines the square root of its argument and returns the
result as a double. The previous expressions return these values:

Expression Value Returned
sqrt(4.) 2.

sqrt(17.0) 4.12311
sqrt(25.) 5.
sqrt(1043.29) 32.3
sqrt(6.4516) 2.54

In addition to the sgrt () function, Table 3.5 lists commonly used mathematical functions
provided in C++. Accessing these functions in a program requires including the mathematical
header file ecmath, which contains declarations for the mathematical function. To use this
header file, place the following preprocessor statement at the top of any program using a math-
ematical function:

#include <cmath>

Although some mathematical functions in Table 3.5 require more than one argument, all
functions, by definition, can return at most one value. Additionally, all the functions listed are
overloaded, which means the same function name can be used with different argument data
types. Table 3.6 shows the value returned by selected functions, using sample arguments.

Table 3.5 Common C++ Functions

Function Name Description Returned Value

abs (a) Absolute value Same data type as argument
pow(al,a2) al raised to the a2 power Same data type as argument al
sqrt(a) Square root of a real number Double-precision

(Note: An integer argument
results in a compiler error.)

sin(a) Sine of a (a in radians) Double-precision
cos(a) Cosine of a (a in radians) Double-precision
tan(a) Tangent of a (a in radians) Double-precision
log(a) Natural logarithm of a Double-precision
logl0(a) Common log (base 10) of a Double-precision

exp(a) e raised to the a power Double-precision

Chapter 3 109
Mathematical Library Functions

Table 3.6 Selected Function Examples

Example Returned Value
abs (-7.362) 7.362
abs(-3) 3
pow(2.0,5.0) 32.
pow(10,3) 1000
1og(18.697) 2.92836
10g10(18.697) 1.27177
exp(-3.2) 0.040762

Each time a mathematical function is used, it’s called into action (referred to as invoking
or calling the function) by giving the name of the function and passing to it any data in the
parentheses following the function’s name (see Figure 3.8).

function-name (data passed to the function);

This identifies This passTes data to
the called the function
function

Figure 3.8 Using and passing data to a function

The arguments passed to a function need not be single constants. Expressions can also be
arguments, provided the expression can be computed to yield a value of the required data
type. For example, the following arguments are valid for the given functions:

sqrt(4.0 + 5.3 * 4.0) abs (2.3 * 4.6)
sqgqrt(16.0 * 2.0 - 6.7) sin(theta - phi)
sgqrt(x * y - z/3.2) cos (2.0 * omega)

The expressions in parentheses are evaluated first to yield a specific value. Therefore, val-
ues have to be assigned to the variables theta, phi, x, y, z, and omega before their use in the
preceding expressions. After the value of the argument is calculated, it’s passed to the function.

Functions can also be included as part of larger expressions, as shown in this example:

'S

* sqrt(4.5 * 10.0 - 9.0) - 2.0
4 * sqrt(36.0) - 2.0

= 4 % 6.0 - 2.0

24.0 - 2.0

22.0

110 Assignment and Interactive Input
The step-by-step evaluation of an expression such as
3.0 * sqgqrt(5 * 33 - 13.71) / 5
is as follows:
Step Result

1. Perform multiplication in the argument.

3.0 * sqrt(165 - 13.71) / 5

2. Complete the argument calculation.

3.0 * sqrt(151.29) / 5

3. Return a function value.

3.0 * 12.3 / 5

4. Perform the multiplication.

36.9 / 5

5. Perform the division.

7.38

Program 3.9 shows using the sqrt () function to determine the time it takes a ball to hit
the ground after it has been dropped from an 800-foot tower. The mathematical formula for
calculating the time in seconds it takes for the ball to fall a given distance in feet is as follows,
where g is the gravitational constant equal to 32.2 ft/sec%

time = sqri(2 x distance | g)

& Program 3.9

#include <iostream> // this line can be placed second instead of first

#include <cmath>

// this line can be placed first instead of second

using namespace std;

int main()

{

int height;
double time;

height = 800;

time = sqrt(2 * height / 32.2);

cout << "It will take " << time << " seconds to fall "
<< height << " feet.\n";

return 0;

Chapter 3 111
Mathematical Library Functions

Program 3.9 produces this output:
It will take 7.04907 seconds to fall 800 feet.

As used in Program 3.9, the value that the sqrt () function returns is assigned to the vari-
able time. In addition to assigning a function’s returned value to a variable, the returned value
can be included in a larger expression or even used as an argument to another function. For
example, the following expression is valid:

sqgqrt(sin(abs(theta)))

Because parentheses are present, the computation proceeds from the inner to outer pairs
of parentheses. Therefore, the absolute value of theta is computed first and used as an argu-
ment to the sin() function. The value the sin () function returns is then used as an argument
to the sqgrt () function.

Note that the arguments of all trigonometric functions (sin(), cos (), and so forth) must
be in radians. Therefore, to calculate the sine of an angle given in degrees, the angle must be
converted to radians first. You can do this easily by multiplying the angle by the term
(3.1416/180.). For example, to obtain the sine of 30 degrees, use the expression sin
(30 * 3.1416/180.).

Casts

You have already seen the conversion of an operand’s data type in mixed-mode arithmetic
expressions (Section 2.2) and with different operators (Section 3.1). In addition to these
implicit data type conversions made automatically in mixed-mode arithmetic and assignment
expressions, C++ provides for explicit user-specified type conversions. The operator used to
force converting a value to another type is the cast operator. C++ provides compile-time and
runtime cast operators. T'he compile-time cast is a unary operator with this syntax:

dataType (expression)

The dataType is the data type to which the expression in parentheses is converted. For
example, the following expression converts the value of the expression a * b to an integer
value:?

int (a * b)

Runtime casts are also included in C++. In this type of cast, the requested type conversion
is checked at runtime and applied if the conversion results in a valid value. Although four types
of runtime casts are available, the most commonly used cast and the one corresponding to the
compile-time cast has the following syntax:

staticCast<dataType> (expression)

For example, the runtime cast staticCast<int>(a * b) is equivalent to the compile-
time cast int (a* b).

9The C type cast syntax, in this case (int) (a * b),also works in C++.

112 Assignment and Interactive Input

EXERCISES 3.3

1. (Practice) Write function calls to determine the following:
a. The square root of 6.37
. The square root of x -y
. The sine of 30 degrees
. The sine of 60 degrees
. The absolute value of a? - b?
The value of e raised to the third power

o o6 T

2. (Practice) Fora = 10.6,b = 13.9,and ¢ = -3.42, determine the following values:
int (a)

int (b)

int (c)

int (a + b)

int (a) + b + ¢

int (a + b) + ¢

int (a + b + ¢)
.double (int (a)) + b
double (int (a + b))
abs(a) + abs(b)
.sqrt(abs(a - b))

R S RN

3. (Practice) Write C++ statements for the following:
a. area =(cx bxsina)/?2

b. ¢ =a* +4*

e p=lm-n|

r-1
X - COS

d. Sum =

2 2

e. b =sin X

4. (Program) Write, compile, and run a C++ program that calculates and returns the fourth root
of the number 81.0, which is 3. After verifying that your program works correctly, use it to
determine the fourth root of 1,728.896400. Your program should make use of the sqrt()
function or use the fact that the fourth root of a value can be obtained by raising the value to
the 1/4 power.

S. (Program) The volume of oil stored in an underground 200-foot deep cylindrical tank is
determined by measuring the distance from the top of the tank to the surface of the oil.
Knowing this distance and the radius of the tank, the volume of oil in the tank can be deter-
mined by using this formula:

volume = 1 radius® (200 - distance)

Chapter 3 113
Mathematical Library Functions

Using this information, write, compile, and run a C++ program that determines the volume of
oil in a 200-foot tank that has a radius of 10 feet and measures 12 feet from the top of the tank
to the top of the oil. Your program should display the radius, distance from the top of the tank
to the oil, and the calculated volume.

. (Program) The circumference of an ellipse (review Figure 3.4) is given by this formula:

Circumference = (d +b))

Using this formula, write a C++ program to calculate the circumference of an ellipse with a
minor radius, @, of 2.5 inches and a major radius, 4, of 6.4 inches.

. (Program) Write, compile, and run a C++ program to calculate the distance between two
points with the coordinates (7, 12) and (3, 9). Use the fact that the distance between two points
with the coordinates (xy, yy) and (x;, y,) is given by this formula:

distance = \/(xz - X)2 + (J’Z -)2

After verifying that your program works correctly by calculating the distance between the
two points manually, use your program to determine the distance between the points
(-12, -15) and (22, 5).

. (Program) If a 20-foot ladder is placed on the side of a building at a 85-degree angle, as
shown in Figure 3.9, the height at which the ladder touches the building can be calculated as
height = 20 x sin 85°. Calculate this height by hand, and then write, compile, and run a C++
program that determines and displays the value of the height. After verifying that your pro-
gram works correctly, use it to determine the height of a 25-foot ladder placed at an angle of
85 degrees.

é 85°

Figure 3.9 Calculating the height of a ladder against a building

114

9.

10.

11.

12.

Assignment and Interactive Input

(Program) The maximum height reached by a ball thrown with an initial velocity, v, in
meters/sec, at an angle of 6 is given by this formula:

height = (.5 x 0% x sin’0) | 9.8

Using this formula, write, compile, and run a C++ program that determines and displays the
maximum height reached when the ball is thrown at 5 mph at an angle of 60 degrees. (Hint:
Make sure to convert the initial velocity into the correct units. There are 1609 meters in a
mile.) Calculate the maximum height manually, and verify the result your program produces.
After verifying the result, use your program to determine the height reached by a ball thrown
at 7 mph at an angle of 45 degrees.

(Program) A model of worldwide population growth, in billions of people, since 2000 is given
by this formula:

Population = 7.5 -0?Year - 2010]

Using this formula, write, compile, and run a C++ program to estimate the worldwide popula-
tion in the year 2012. Verify the result your program produces by calculating the answer manu-
ally, and then use your program to estimate the world’s population in the year 2020.

(Program) The roads of Kansas are laid out in a rectangular grid at exactly one-mile intervals,
as shown in Figure 3.10. Farmer Pete drives his 1939 Ford pickup x miles east and y miles
north to get to farmer Joe’s farm. Both x and y are integer numbers. Using this information,
write, test, and run a C++ program that prompts the user for the values of x and y, and then
uses this formula to find the shortest driving distance across the fields to Joe’s farm:

distance = sqri(x® + y°);

Round the answer to the nearest integer value before it’s displayed.

(Program) A model to estimate the number of grams of a radioactive isotope left after 7 years
is given by this formula:

remaining material = (original material) ¢0-0%1%

Using this formula, write, compile, and run a C++ program to determine the amount of
radioactive material remaining after 1000 years, assuming an initial amount of 100 grams.
Verify the display your program produces by using a hand calculation. After verifying that
your program is working correctly, use it to determine the amount of radioactive material
remaining after 275 years, assuming an initial amount of 250 grams.

13.

14.

Chapter 3 115
Mathematical Library Functions

N
Joels
/| farm
/
/
/|
/
/
4
/|
Dictane 4
ioianriv , y
4
/
/
/

/

/
Pete’s
farm

Figure 3.10 lllustration for Exercise 11

(Program) 'The number of years it takes for an isotope of uranium to decay to one-half an
original amount is given by this formula, where A\, the decay constant (which is equal to the
inverse of the mean lifetime), equals 0.00012:

half-life - In(2) | \

Using this formula, write, compile, and run a C++ program that calculates and displays the
half-life of this uranium isotope. Verify the result your program produces by using a hand cal-
culation. After verifying that your program is working correctly, use it to determine the half-life
of a uranium isotope with A = 0.00026.

(Program) a. Appendix B lists the integer values corresponding to each letter stored with

the ASCII code. Note that uppercase letters consist of contiguous codes, starting with an

integer value of 65 for the letter A and ending with 90 for the letter Z. Similarly, lowercase

letters begin with the integer value of 97 for the letter a and end with 122 for the letter z.

With this information as background, determine the character value of the expressions

char ('A' + 32)andchar ('Z' + 32).

b. Using Appendix B, determine the integer value of the expression 'a' - 'A'.

c. Using the results of Exercises 14a and 14b, determine the character value of the following
expression, where uppercase letter can be any uppercase letter from A to Z:
char (uppercase letter + 'a' - 'A').

116 Assignment and Interactive Input

15. (Desk check and program) a. For display purposes, the setprecision() manipulator
allows rounding all outputs to the specified number of decimal places. Doing so can, however,
yield seemingly incorrect results when used in financial programs that require displaying all
monetary values to the nearest penny. For example, examine this program:

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{

double a, b, c;

a = 1.674;

b = 1.322;

cout << setiosflags(ios::fixed) << setprecision(2);
cout << a << endl;

cout << b << endl;

cout << "—-—--\n";

c = a + b;

cout << ¢ << endl;

return 0;

}

It produces the following display:

1.67
1.32

3.00

Clearly, the sum of the displayed numbers should be 2.99, not 3.00. The problem is that
although the values in a and b have been displayed with two decimal digits, they were added
internally in the program as three-digit numbers. The solution is to round the values in a and
b before they’re added with the statement ¢ = a + b;. Using the int cast, devise a method
to round the values in the variables a and b to the nearest hundredth (penny value) before
they’re added.

b. Include the method you devised for Exercise 15a in a working program that produces the

following display:
1.67
1.32

2.99

Chapter 3 117
Interactive Keyboard Input

3.4 Interactive Keyboard Input

Data for programs to be run only once can be included in the program. For example, if you
want to multiply the numbers 30.0 and 0.05, you could use Program 3.10.

& Program 3.10

#include <iostream>
using namespace std;

int main()

{

double numl, num2, product;

numl = 30.0;

num2 = 0.05;

product = numl * num2;

cout << "30.0 times 0.05 is " << product << endl;

return 0;

"This is the output displayed by Program 3.10:
30.0 times 0.05 is 1.5

Program 3.10 can be shortened, as shown in Program 3.11. Both programs, however, suffer
from the same basic problem: They must be rewritten to multiply different numbers. Neither
program allows entering different numbers to operate on.

Program 3.11

#include <iostream>
using namespace std;

int main()

{
cout << "30.0 times 0.05 is " << 30.0 * 0.05 << endl;

return 0;

118

Assignment and Interactive Input

Except for the programming practice you get by writing, entering, and running the pro-
gram, programs that do the same calculation only once, on the same set of numbers, clearly
aren’t very useful. After all, using a calculator to multiply two numbers is simpler than entering
and running Program 3.10 or Program 3.11.

"T'his section explains the cin object, which is used to enter data in a program while it’s
running. Just as the cout object displays a copy of the value stored in a variable, the cin object
allows the user to enter a value at the keyboard (see Figure 3.11). The value is then stored in
a variable.

int main()
{

cin >>
cout <<

Keyboard

-~

Screen

Figure 3.11 cin is used to enter data; cout is used to display data

When a statement such as cin >> numl; is encountered, the computer stops program
execution and accepts data from the keyboard. When a data item is typed, the cin object
stores the item in the variable listed after the extraction (“get from”) operator, >>. The pro-
gram then continues execution with the next statement after the call to cin. To see how this
object works, take a look at Program 3.12.

Program 3.12

#include <iostream>

using namespace std;

int main()

{

double numl, num2, product;

cout << "Please type in a number: ";

cin >> numl;

cout << "Please type in another number: ";

cin >> num2;

product = numl * num2;

cout << numl << " times " << num2 << " is " << product << endl;

return 0;

The first cout statement in Program 3.12 prints a string that tells the person at the key-
board what should be typed. When an output string is used in this manner, it’s called a prompt.

Chapter 3 119
Interactive Keyboard Input

In this case, the prompt tells the user to type a number. The computer then executes the next
statement, which activates cin. The cin object puts the computer into a temporary pause (or
wait) state while the user types a value, and then the user signals the cin object that the data
entry is finished by pressing the Enter key. The entered value is stored in the variable to the
right of the extraction operator (numl), and the computer is taken out of its paused state.

Program execution proceeds with the next statement, which in Program 3.12 is another
cout activation that displays a message asking the user to enter another number. The second
cin statement again puts the computer into a temporary wait state while the user types a
second value. This second number is stored in the variable num?2.

The following sample run was made with Program 3.12; the bold code indicates what the
user enters:

Please type in a number: 30
Please type in another number: 0.05
30 times 0.05 is 1.5

In Program 3.12, each time cin is invoked, it’s used to store one value in a variable. The
cin object, however, can be used to enter and store as many values as there are extraction
operators and variables to hold the entered data. For example, the statement

cin >> numl >> num2;

results in two values being read from the keyboard and assigned to the variables numl and
num2. If the data entered at the keyboard is

0.052 245.79

the variables numl and num2 contain the values 0.052 and 245.79, respectively. Note that there
must be at least one space between numbers when they’re entered to clearly indicate where
one number ends and the next begins. Inserting more than one space between the numbers
has no effect on cin.

The same spacing is applicable to entering character data; that is, the extraction operator,
>> skips blank spaces and stores the next nonblank character in a character variable. For
example, in response to these statements,

char chl, ch2, ch3; // declare three character variables
cin >> chl >> ch2 >> ch3; // accept three characters

the input
a b c

causes the letter a to be stored in the variable chil, the letter b to be stored in the variable ch2,
and the letter ¢ to be stored in the variable ch3. Because a character variable can be used to
store only one character, the following input, without spaces, can also be used:

abc

You can make any number of statements with the cin object in a program, and any num-
ber of values can be entered with a single cin statement. Program 3.13 shows using the cin
object to input three numbers from the keyboard. The program then calculates and displays
the average of the entered numbers.

120 Assignment and Interactive Input

Program 3.13

#include <iostream>
using namespace std;

int main()

{
int numl, num2, num3;
double average;

cout << "Enter three integer numbers: ";
cin >> numl >> num2 >> num3;
average = (numl + num2 + num3) / 3.0;

cout << "The average of the numbers is " << average << endl;

return 0;

Program 3.13 produces the following output:

Enter three integer numbers: 22 56 73
The average of the numbers is 50.3333

Note that the data entered at the keyboard for this sample run consists of this input:
22 56 73

In response to this stream of input, Program 3.13 stores the value 22 in the variable numl, the
value 56 in the variable num2, and the value 73 in the variable num3 (see Figure 3.12). Because the
average of three integer numbers can be a floating-point number, the variable average, used to
store the average, is declared as a double-precision variable. Note also that parentheses are needed
in the assignment statement average = (numl + num2 + num3) / 3.0;.Without the paren-
theses, the only value divided by 3 would be the integer in num3 (because division has a higher
precedence than addition).

numl

\22’

num2

\56’

num3
N
] 73
cin >> numl >> num2 >> num3;

22 56 73
Figure 3.12 Inputting data in the variables numl, num2, and num3

Chapter 3 121
Interactive Keyboard Input

The cin extraction operation, like the cout insertion operation, is “clever” enough to
make a few data type conversions. For example, if an integer is entered in place of a double-
precision number, the integer is converted to the correct data type.!0 Similarly, if a double-
precision number is entered when an integer is expected, only the integer part of the number
is used. For example, assume the following numbers are typed in response to the statement
cin >> numl >> num2 >> num3;, where numl and num3 have been declared as double-
precision variables and num2 is an integer variable:

56 22.879 33.923

The 56 is converted to 56.0 and stored in the variable numl. The extraction operation
continues, extracting data from the input stream and expecting an integer value. As far as cin
is concerned, the decimal point in 22.879 indicates the end of an integer and the start of a
decimal number. Therefore, the number 22 is assigned to num2. Continuing to process its input
stream, cin takes the .879 as the next double-precision number and assigns it to num3. As far
as cin is concerned, 33.923 is extra input and is ignored. If, however, you don’t enter enough
data initially, the cin object continues to make the computer pause until enough data has been
entered.

A First Look at User-Input Validation
A well-constructed program should validate user input and ensure that a program doesn’t crash
or produce nonsensical output caused by unexpected input. The term validate means checking
that the entered value matches the data type of the variable it’s assigned to in a cin statement
and the value is within an acceptable range for the application. Programs that detect and
respond effectively to unexpected user input are formally called robust programs and infor-
mally referred to as “bulletproof” programs. One of your jobs as a programmer is to produce
robust programs. As written, Programs 3.12 and 3.13 aren’t robust programs, and in the follow-
ing discussion, you seec why.

The first problem with these programs becomes evident when a user enters a nonnu-
merical value. For example, examine the following sample run of Program 3.13:

Enter three integer numbers: 10 20.68 20
The average of the numbers is -2.86331e+008

"T'his output occurs because the conversion of the second input number results in assign-
ing the integer value 20 to num2 and the value -858993460 to num3. The -858993460 value
results because an invalid character, the decimal point, is assigned to a variable that expects an
integer value. The average of the numbers 10, 20, and -858993460 is computed correctly as
-286331143.3, which is displayed in scientific notation with six significant digits as
-2.86331e+008. As far as the average user is concerned, this result would be reported as a pro-
gram error.

"T'his same problem occurs whenever a noninteger value is entered for either of the first
two inputs. (It doesn’t occur for any numerical value entered as the third input because the
integer part of the last input is accepted, and the remaining input is ignored.) As a programmer,

10Strictly speaking, what comes in from the keyboard isn’t any data type, such as an int or a double, but is simply a sequence of
characters. The extraction operation handles the conversion from the character sequence to a defined data type.

122 Assignment and Interactive Input

your first response might be “The program clearly asks you to enter integer values.”
Experienced programmers, however, understand that their responsibility is to ensure that a
program anticipates and appropriately handles all inputs users can possibly enter. To achieve
this goal, think about what can go wrong with your program as you develop it, and then have
another person or group test the program thoroughly.!!

T'he basic approach to handling invalid data input is called user-input validation, which
means checking the entered data during or immediately after it has been entered, and then
giving users a way to reenter any invalid data. User-input validation is an essential part of any
commercially viable program; if done correctly, it protects a program from attempting to pro-
cess data that can cause computational problems. You see how to do this type of validation in
Chapters 4 and 5, when you learn about C++’s selection and repetition statements.

EXERCISES 3.4

1. (Practice) For the following declaration statements, write one or more statements using the
cin object that causes the computer to pause while the user enters the appropriate data:
a. int firstnum;

. double grade;

. double secnum;

. char keyval;

o o6 T

. int month, years;
double average;

]

char ch;

int numl,num2;

double gradel,grade2;

g. double interest, principal, capital;
double price, yield;

h. char ch,letterl,letter2;
int numl,num2,num3;

i. double templ,temp2,temp3;

double voltsl,volts2;

2. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enter the length of the room:
Enter the width of the room:

After each prompt is displayed, your program should use a cin object call to accept data from

the keyboard for the displayed prompt. After the width of the room is entered, your program

should calculate and display the area of the room. The area displayed should be calculated by

using the formula area = length x widrh and should be included in an appropriate message.

b. Check the area displayed by the program written for Exercise 2a by calculating the result
manually.

Test specifications are often provided before a program is written, and a team of programmers is assigned to test programs after
they’re written.

Chapter 3 123
Interactive Keyboard Input

3. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enter the length of the swimming pool:
Enter the width of the swimming pool:
Enter the average depth of the swimming pool:

After each prompt is displayed, your program should use a cin statement to accept data from

the keyboard for the displayed prompt. After the depth of the swimming pool is entered, your

program should calculate and display the volume of the pool. The volume should be calcu-

lated with the formula volume = length x width x average deprh and be displayed in an output

message.

b. Check the volume displayed by the program written for Exercise 3a by calculating the
result manually.

4. (Program) Write, compile, and run a C++ program that displays the following prompt:
Enter the radius of a circle:
After accepting a value for the radius, your program should calculate and display the area of
the circle. (Hint: Area = 3.1416 x radius’.) For testing purposes, verify your program by using

an input radius of 3 inches. After manually determining that your program’s result is correct,
use your program to complete the following chart:

Radius (in) Area (sq. in)
1.0
1.5
2.0
2.5
3.0
3.5

S. (Program) a. Write a C++ program that first displays the following prompt:

Enter the temperature in degrees Celsius:

Have your program accept a value entered from the keyboard and convert the temperature
entered to degrees Fahrenheit, using this formula:

Fahrenheit = (9.0] 5.0) x Celsius + 32.0

Your program should then display the temperature in degrees Fahrenheit with an output

message.

b. Compile and run the program written for Exercise 5a. To verify your program, use the fol-
lowing test data and calculate the Fahrenheit equivalents by hand, and then use your pro-
gram to see whether you get the same results:

Test data set 1: 0 degrees Celsius
Test data set 2: 50 degrees Celsius
"Test data set 3: 100 degrees Celsius

124

Assignment and Interactive Input

When you’re sure your program is working correctly, use it to complete the following chart:

Celsius Fahrenheit
45
50
55
60
65
70

6. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enter the miles driven:
Enter the gallons of gas used:

After each prompt is displayed, your program should use a cin statement to accept data from
the keyboard for the displayed prompt. After the number for gallons of gas used has been
entered, your program should calculate and display the miles per gallon (mpg). This value
should be calculated with the formula miles per gallon = miles | gallons used and displayed in an
output message. Verify your program by using the following test data:

Test data set 1: miles = 276, gas = 10 gallons
"Test data set 2: miles = 200, gas = 15.5 gallons

After finishing your verification, use your program to complete the following chart. (Make sure to
convert the miles driven to kilometers driven, convert gallons used to liters used, and then compute
the kilometers per liter. There are 1.61 kilometers per mile and 4.54609 liters per gallon.)

Miles Driven | Gallons Used | Mpg Km Driven | Liters Used | Km/L
250 16.00
275 18.00
312 19.54
296 17.39

b. For the program written for Exercise 6a, determine how many verification runs are required
to make sure the program is working correctly, and give a reason to support your answer.

. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enter a number:

Enter a second number:

Enter a third number:
a

Enter fourth number:

After each prompt is displayed, your program should use a cin statement to accept a number
from the keyboard for the displayed prompt. After the fourth number has been entered, your
program should calculate and display the average of the numbers. The average should be

Chapter 3 125
Interactive Keyboard Input

displayed in an output message. Check the average your program calculates by using the fol-
lowing test data:

Test data set 1: 100, 100, 100, 100
Test data set 2: 100, 0, 100, 0

After finishing your verification, use your program to complete the following chart:

Numbers Average
92,98, 79, 85
86, 84, 75, 86
63, 85, 74, 82

b. Repeat Exercise 7a, making sure you use the same variable name, number, for each number
input. Also, use the variable sum for the sum of the numbers. (Hint: To do this, you can use
the statement sum = sum + number; after each number is accepted. Review the material
on accumulating in Section 3.1.)

. (Program) The perimeter, approximate surface area, and approximate volume of an in-ground
pool are given by the following formulas:

perimeter = 2 x (length + width)

volume = length x width x average depth

underground surface area = 2 x (length + width) x average depth + length x width

Using these formulas as a basis, write a C++ program that accepts the length, width, and average
depth measurements, and then calculates the pool’s perimeter, volume, and underground sur-
face area. In writing your program, make these two calculations immediately after entering the
input data: length x width and length + width. The results of these two calculations should be used,
as needed, in the assignment statements for determining the perimeter, volume, and under-
ground surface area without recalculating them for each equation. Verify your program’s results
by doing a hand calculation, using the following test data: length = 25 feet, width = 15 feet, and
average depth = 5.5 feet. After verifying that your program is working, use it to complete the fol-
lowing chart:

Length Width Average Perimeter Volume Underground
Depth Surface Area

25 10 5.0

25 10 5.5

25 10 6.0

25 10 6.5

30 12 5.0

30 12 5.5

30 12 6.0

30 12 6.5

126

9.

10.

11.

12.

13.

Assignment and Interactive Input

(Program) a. Write, compile, and run a C++ program to compute and display the value of the
second-order polynomial @x’ + bx + ¢ for any user-entered values of the coefficients «, 4, and ¢
and the variable x. Have your program display a message first to inform users what the program
does, and then display suitable prompts to alert users to enter data. (Hznz: Use a prompt such
as Enter the coefficient of the x-squared term:.)
b. Check the result of your program written for Exercise 9a by using the following test data:

Testdataset1: 2 =0,6=0,c=22,x=56

Testdataset2: ¢ =0,6=22,c=0,x=2

Test dataset3: 2 =22,0=0,c=0,x=2

Test dataset4:a=2,b=4,c=5,x=2

After finishing your verification, use your program to complete the following chart:

a b c X Polynomial Value (ax? + bx + ¢)
2.0 17.0 -12.0 1.3
3.2 2.0 15.0 2.5
3.2 2.0 15.0 -2.5
-2.0 10.0 0.0 2.0
-2.0 10.0 0.0 4.0
-2.0 10.0 0.0 5.0
-2.0 10.0 0.0 6.0
5.0 22.0 18.0 8.3
4.2 -16 -20 -5.2

(Program) Write, compile, and run a program that calculates and displays the square root
value of a user-entered real number. Verify your program by calculating the square roots of this
test data: 25, 16, 0, and 2. After finishing your verification, use your program to determine the
square roots of 32.25, 42, 48, 55, 63, and 79.

(Program) Write, compile, and run a program to calculate and display the fourth root of a
user-entered number. Recall from elementary algebra that you find the fourth root of a num-
ber by raising the number to the 14 power. (Hint: Don’t use integer division—can you see
why?) Verify your program by calculating the fourth root of this test data: 81, 16, 1, and 0. When
you’re finished, use your program to determine the fourth root of 42, 121, 256, 587, 1240, and
16,256.

(Program) Program 3.12 prompts users to input two numbers; the first value entered is stored
in numl, and the second value is stored in num2. Using this program as a starting point, write
a program that swaps the values stored in the two variables.

(Program) Write a C++ program that prompts users to enter a number. Have your program
accept the number as an integer and display the integer immediately by using a cout state-
ment. Run your program three times. The first time, enter a valid integer number; the second
time, enter a double-precision number; and the third time, enter a character. Using the output
display, see what number your program actually accepted from the data you entered.

Chapter 3 127
Symbolic Constants

14. (Program) Repeat Exercise 13, but have your program declare the variable used to store the
number as a double-precision variable. Run the program three times. The first time, enter an
integer; the second time, enter a double-precision number; and the third time, enter a charac-
ter. Using the output display, keep track of what number your program actually accepted from
the data you entered. What happened, if anything, and why?

15. (For thought) a. Why do you think successful programs contain extensive data-input validity
checks? (Hinr: Review Exercises 13 and 14.)
b. What do you think is the difference between a data-type check and a data-reasonableness
check?
c. Assume that a program requests users to enter a month, day, and year. What are some checks
that could be made on the data entered?

3.5 Symbolic Constants

Certain constants used in a program have more general meanings that are recognized outside
the program’s context. Examples of these types of constants include the number 3.1416, which
is m accurate to four decimal places; 32.2 ft/sec?, which is the gravitational constant; and the
number 2.71828, which is Euler’s number accurate to five decimal places.

The meanings of certain other constants used in a program are defined strictly in the con-
text of the application being programmed. For example, in a program used to determine bank
interest charges, the interest rate typically appears in a number of different places throughout
the program. Similarly, in a program used to calculate taxes, the tax rate might appear in many
instructions. Programmers refer to these types of numbers as magic numbers. By themselves,
the numbers are ordinary, but in the context of a particular application, they have a special
(“magical”) meaning. When a magic number appears repeatedly in the same program, it
becomes a potential source of error if the constant has to be changed. For example, if the inter-
est rate or the sales tax rate changes, as these rates are likely to do, the programmer has the
cumbersome task of changing the value everywhere it appears in the program. Multiple
changes are subject to error: If just one value is overlooked and remains unchanged, when the
program runs the result will be incorrect, and the source of the error will be difficult to locate.

"To avoid the problem of having a magic number spread throughout a program in many
places and to identify more universal constants clearly, such as 7, C++ enables programmers to
give these constants symbolic names. Then the symbolic name instead of the magic number
can be used throughout the program. If the number ever has to be changed, the change need
be made only once, at the point where the symbolic name is equated to the actual number
value. To equate numbers to symbolic names, you use the const declaration qualifier, which
specifies that the declared identifier is read-only after it’s initialized; it can’t be changed. Here
are three examples of using this qualifier:

const double PI = 3.1416;
const double SALESTAX = 0.05;
const int MAXNUM = 100;

T'he first declaration statement creates a double-precision variable named PI and initial-
izes it with the value 3.1416. The second declaration statement creates the double-precision

128

Assignment and Interactive Input

constant named SALESTAX and initializes it to 0.05. Finally, the third declaration creates an
integer constant named MAXNUM and initializes it with the value 100.

After a const identifier is created and initialized, the value stored in it can 7 be changed.
For all practical purposes, the name of the constant and its value are linked together for the
duration of the program that declares them.

Although the const identifiers have been shown in uppercase letters, lowercase letters
could have been used. Using uppercase letters is customary in C++, however, to make const
identifiers easy to identify. When programmers see uppercase letters in a program, they know
a constant is being used, and its value can’t be changed in the program.

After it’s declared, a const identifier can be used in any C++ statement in place of the
number it represents. For example, both these assignment statements are valid:

circum = 2 * PI * radius;
amount = SALESTAX * purchase;

These statements must, of course, appear after the declarations for all their variables and
constants. Because a const declaration equates a constant value to an identifier, and the iden-
tifier can be used as a replacement for its initializing constant, these identifiers are commonly
referred to as symbolic constants or named constants. These terms are used interchangeably in
this book.

Placement of Statements

At this stage, you have been introduced to a variety of statement types. The general rule in
C++ for statement placement is simply that a variable or symbolic constant must be declared
before it can be used. Although this rule permits placing both preprocessor directives and
declaration statements throughout a program, doing so results in a poor program structure. As
a matter of good programming form, the following statement order should be used:

preprocessor directives

int main()

{
// symbolic constants
// variable declarations

// other executable statements

return 0;

As new statement types are introduced, this placement structure will be expanded to
accommodate them. Note that comment statements can be intermixed anywhere in this basic
structure. Program 3.14 illustrates this structure and uses a symbolic constant to calculate the
sales tax due on a purchased item.

Chapter 3 129
Symbolic Constants

Program 3.14

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
const double SALESTAX = 0.05;
double amount, taxes, total;

cout << "\nEnter the amount purchased: ";
cin >> amount;
taxes = SALESTAX * amount;
total = amount + taxes;
cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2);
cout << "The sales tax is " << setw(4) << taxes << endl;
cout << "The total bill is " << setw(5) << total << endl;

return 0;

The following sample run was made with Program 3.14:

Enter the amount purchased: 36.00
The sales tax is 1.80
The total bill is 37.80

Although the const qualifier has been used to construct symbolic constants, you encoun-
ter this data type again in Chapter 11, where you learn that it’s useful as a function argument
to make sure the argument isn’t modified in the function.

EXERCISES 3.5

1. (Modify) Rewrite the following program to use the symbolic constant PI in place of the
value 3.1416 used in the program:
#include <iostream>
using namespace std;
int main()
{

double radius, circum;

130 Assignment and Interactive Input

cout << "Enter a radius: ";

cin >> radius;

circum = 2.0 * 3.1416 * radius;

cout << "\nThe circumference of the circle is
<< circum << endl;

"

return 0;

}

2. (Modify) Rewrite the following program to use the named constant FACTOR in place of the
expression (5.0/9.0) used in the program:

#include <iostream>
using namespace std;

int main()

{
double fahren, celsius;
cout << "Enter a temperature in degrees Fahrenheit: ";
cin >> fahren;
celsius = (5.0/9.0) * (fahren - 32.0);
cout << "The equivalent Celsius temperature is "
<< celsius << endl;
return 0;
¥

3. (Modify) Rewrite the following program to use the symbolic constant PRIME in place of the
value 0.04 used in the program:

#include <iostream>
using namespace std;

int main()
{
double prime, amount, interest;
prime = 0.04; // prime interest rate

cout << Enter the amount: ";
cin >> amount;
interest = prime * amount;
cout << "The interest earned is "
<< interest << " dollars" << endl;

return 0;

Chapter 3 131
Symbolic Constants

4. (Program) Heat is radiated from the sun and all planets orbiting the sun. T'he heat that’s radi-

ated can be calculated by using the following formula:

E=coT

E is the energy radiated per second in units of watts per meter squared (watts/m?).
e 1s the emissivity of the substance, which is 1 for the sun and all the planets.

o is the constant (.000000056697 = 5.6697¢-8).

T is the surface temperature in degrees Celsius.

For example, the heat radiated from the sun, which has an emissivity of 1 and a surface tem-
perature of approximately 6000° C, is as follows:

E = (1) x (.000000056697) x (6000)* watts/m?
= 73,479,300 watts/m?

Using the formula, write a C++ program that accepts a planet’s temperature and provides the
heat generated from the planet as its output. Your program should assign the value 5.6697¢-8
to a symbolic constant named HEATFACTOR. After determining that your program is working
correctly (make sure it produces the correct radiation for the sun), use it to complete the fol-
lowing chart:

Heat Radiated

Planet (emissivity = 1)

Average Surface
Temperature (° Celsius)

(watts/m?2)

Mercury 270
Venus 462
Earth 14

. (Program) During the day, heat is absorbed by many objects, such as cars, roofs, and brick
walls. This heat is then radiated back into the environment during the cooler evening hours.
Using the formula £ = ¢ o 17 (see Exercise 4), write a C++ program that determines the
amount of heat radiated for the objects listed in the following table. Your program should
request the object’s average surface temperature and emissivity, and then calculate and display
the heat radiated. Make sure to use a symbolic constant named HEATFACTOR for the value of

o. Complete the following chart, making three runs of the program:

Substance Average Surface Emissivity Heat Radiated
Temperature (watts/m?)
(° Celsius)

Automobile 47 3

Brick 45 9

Commercial roof 48 .05

132 Assignment and Interactive Input

3.6 Common Programming Errors

When using the material in this chapter, be aware of the following possible errors:

1. Forgetting to assign or initialize values for all variables before using them in an expres-
sion. Values can be assigned by assignment statements, initialized in a declaration
statement, or assigned interactively by entering values with the cin object.

2. Using a mathematical library function without including the preprocessor statement
#include <cmath> (and on a UNIX-based system, forgetting to include the -1m
argument on the cc command line).

3. Using a library function without providing the correct number of arguments of the
proper data type.

4. Applying the increment or decrement operator to an expression. For example, the
expression (count + n)++ is incorrect. The increment and decrement operators can
be applied only to variables.

5. Forgetting to use the extraction operator, >>, to separate variables in a cin statement.

6. A more unusual error occurs when increment and decrement operators are used with
variables appearing more than once in the same expression. This error occurs because
C++ doesn’t specify the order in which operands are accessed in an expression. For
example, the value assigned to result in the following statement depends on the
compiler:

result = i + i++;

If your compiler accesses the first operand (1) first, the preceding statement is equiva-
lent to

result = 2 * i;
i++;

However, if your compiler accesses the second operand (i++) first, the value of the first
operand is altered before it’s used the second time, and the value 2i + 1 is assigned
to result. As a general rule, don’t use the increment or decrement operator in an
expression when the variable it operates on appears more than once in the expression.

7. Being unwilling to test a program in depth. Being objective about testing your own
software is difficult, but as a programmer, you must remind yourself that just because
you think your program is correct doesn’t make it so.

3.7 Chapter Summary

1. An expression is a sequence of one or more operands separated by operators. An operand is
a constant, a variable, or another expression. A value is associated with an expression.

2. Expressions are evaluated according to the precedence and associativity of the operators
used in the expression.

3. The assignment operator is the = symbol. Expressions using this operator assign a value to
a variable, and the expression also takes on a value. Because assignment is a C++ operation,
the assignment operator can be used more than once in the same expression.

Chapter 3 133
Chapter Supplement: Errors, Testing, and
Debugging

4. The increment operator, ++, adds 1 to a variable, and the decrement operator, —--, subtracts
1 from a variable. Both operators can be used as prefixes or postfixes. In a prefix operation,
the variable is incremented (or decremented) before its value is used. In a postfix operation,
the variable is incremented (or decremented) after its value is used.

5. C++ provides library functions for calculating square root, logarithmic, and other mathemat-
ical computations. Programs using a mathematical function must include the statement
#include <cmath> or have a function declaration before calling the mathematical function.

6. Every mathematical library function operates on its arguments to calculate a single value.
"To use a library function effectively, you must know the function name, what the function
does, the number and data types of arguments the function expects, and the data type of
the returned value.

7. Data passed to a function is called an argument of the function. Arguments are passed to a
library function by including each argument, separated by commas, in the parentheses fol-
lowing the function’s name. Each function has its own requirements for the number and
data types of the arguments that must be provided.

8. Functions can be included in larger expressions.

9. The cin object is used for data input. It accepts a stream of data from the keyboard and
assigns the data to variables. This is the general form of a statement using cin:

cin >> varl >> var2 . . . >> varn;
T'he extraction operator, >>, must be used to separate variable names in a cin statement.

10. When a cin statement is encountered, the computer temporarily suspends further execu-
tion until enough data has been entered for the number of variables in the cin statement.

11. It’s a good programming practice to display a message before a cin statement that alerts
users to the type and number of data items to be entered. This message is called a prompt.

12. Values can be equated to a single constant by using the const keyword. This keyword cre-
ates a named constant that’s read-only after it’s initialized in the declaration statement. This
declaration has the syntax

const dataType symbolicName = initialValue;

and permits using the constant instead of initialValue anywhere in the program after the
declaration. Generally, these declarations are placed before variable declarations in a program.

3.8 Chapter Supplement: Errors, Testing, and Debugging

The ideal in programming is to produce readable, error-free programs that work correctly and
can be modified or changed with a minimum of testing. You can work toward this ideal by
keeping in mind the different types of errors that can occur, when they’re typically detected,
and how to correct them.

134

Assignment and Interactive Input

Program errors can be detected at any of the following times:

e Before a program is compiled

e While the program is being compiled

e While the program is running

e After the program has been run and the output is being examined

The method for detecting errors before a program is compiled is called desk checking
because you’re usually sitting at a desk with the code in front of you. It refers to the process
of examining source code for syntax and logic errors. The method for detecting errors after a
program has run is called program verification and testing.

Compile-Time and Runtime Errors

Errors detected while a program is being compiled are called compile-time errors, and errors
that occur while a program is running are called runtime errors. These terms describe when
errors occur, not what caused them. Most compile-time errors, however, are caused by syntax
errors, and the majority of runtime errors are caused by logic errors.

By now, you have probably encountered numerous compile-time errors. Beginning pro-
grammers tend to be frustrated by them, but experienced programmers understand the com-
piler is doing a lot of valuable checking, and correcting errors the compiler does detect is
usually easy. Because these errors occur while the program is being developed, not while a user
is performing an important task, no one but the programmer ever knows they occurred. You fix
them, and they go away.

Runtime errors are more troubling because they occur while a user is running the program.
Because the user in most commercial systems isn’t the programmer, typically the error can’t be
assessed and corrected immediately. Runtime errors can be caused by program or hardware fail-
ures. From a programming standpoint, however, most runtime errors are caused by logic errors.

Syntax and Logic Errors

Computer literature distinguishes between two main types of errors: syntax and logic errors. A
syntax error is an error in ordering valid language elements in a statement or the attempt to use
invalid language elements. For example, examine the following statements:

cout << "There are four syntax errors here\n
cot " Can you find tem";

They contain the following syntax errors:

1. A closing quotation mark is missing in line 1.

2. A terminating semicolon (;) is missing in line 1.
3. The keyword cout is misspelled in line 2.

4. The insertion symbol, <<, is missing in line 2.

If these errors aren’t discovered by desk checking, the compiler detects them and dis-
plays an error message.!? Sometimes the error message is clear and the error is obvious; at
other times, understanding the compiler’s error message takes a little detective work. Because

12Generally, not all syntax errors might be detected at the same time, however. Frequently, one syntax error masks another error, and
the second error is detected after the first one is corrected.

Chapter 3 135
Chapter Supplement: Errors, Testing, and
Debugging

syntax errors are detected only at compile time, the terms “compile-time errors” and “syntax
errors” are used interchangeably. Strictly speaking, however, “compile time” refers to when
the error is detected, and “syntax” refers to the type of error detected.

Note that the misspelling of “them” in the second statement isn’t a syntax error. Although
this spelling error results in displaying an undesirable output line, it’s not a violation of C++’s
syntax rules. It’s simply a typographical error, commonly referred to as a “typo.” The compiler
doesn’t catch this type of typographical error.13

Another error the compiler doesn’t catch is a logic error, which is characterized by errone-
ous, unexpected, or unintentional output that’s a result of some flaw in the program’s logic.
These errors can be detected by desk checking, by program testing, by accident when a user
gets erroneous output while the program is running, or not at all.

T'he most serious logic error is caused by not fully understanding the program’s require-
ments because the logic in a program reflects the logic on which it’s coded. For example, if a
program’s purpose is to calculate a mortgage payment on a house or the load-bearing strength
of a steel beam and the programmer doesn’t fully understand how to make the calculation,
what inputs are needed to perform the calculation, or what special conditions exist (such as
what happens when someone makes an extra mortgage payment or how temperature affects
the beam), a logic error occurs. Because the compiler doesn’t detect these errors and they often
go undetected at runtime, they are always more difficult to detect than syntax errors.

If logic errors are detected, typically they’re revealed in one of two main ways. First, the
program executes to completion but produces incorrect results, such as the following:

e No outpur—This result is caused by omitting an output statement or using a sequence
of statements that inadvertently bypasses an output statement.

o Unappealing or misaligned outpur—This result is caused by an error in an output
statement.

e [ncorrect numerical results— This result is caused by assigning incorrect values to vari-
ables in an expression, coding an incorrect or incomplete algorithm, coding a correct
algorithm incorrectly, omitting a statement, making a round-off error, or using an
improper sequence of statements.

Second, a logic error can cause a runtime error. Examples of this type of logic error are
attempts to divide by zero or take the square root of a negative number. Typically, these errors
are caused by incorrect user input. Although beginning programmers tend to blame users for
runtime errors caused by entering incorrect data, professionals don’t. They understand that a
runtime error is a basic flaw in the program’s construction that can damage the reputation of
both the program and the programmer. They also understand that determining the error and
correcting what caused it are more fruitful than determining who caused it.

Testing and Debugging

Program testing should be well thought out to maximize the possibility of locating errors. In
this regard, an important programming realization is that although a single test can reveal the
presence of an error, it does not verify the absence of one. In other words, the fact that a

13The misspelling of a C++ keyword or a declared variable name that results in an undeclared name /s caught, however, because it
results in a syntax error.

136

Assignment and Interactive Input

verification run reveals one error does nof mean another error isn’t lurking somewhere else in
the program. Furthermore, the fact that one test revealed no errors does not mean there are
no errors.

After you discover an error, however, you must locate where it occurs and fix it. In com-
puter jargon, a program error is referred to as a bug, and the process of isolating and correcting
the error and verifying the correction is called debugging.

Although no hard-and-fast rules exist for isolating a bug, some useful techniques can be
applied. The first is preventive. Often programmers introduce errors in the rush to code and
run a program before understanding what’s required and how to achieve the required results.
Symptoms of this haste include lacking an outline of the proposed program or not having a
detailed understanding of the program’s requirements. Many errors can be eliminated by desk
checking the program before entering or compiling it.

A second useful technique is imitating the computer by executing each statement by hand
as the computer would. This technique, called program tracing, involves writing down each
variable, as it’s encountered in the program, and listing the value that should be stored in the
variable as each input and assignment statement is encountered. Doing this sharpens your
programming skills because it helps you understand what each statement in your program
causes to happen.

A third useful technique is including some temporary code in your program that displays
the values of selected variables. If the displayed values are incorrect, you can determine what
part of your program generated them and make the necessary corrections. You can also add
temporary code that displays the values of all input data. This technique, called echo printing,
is useful in establishing that the program is receiving and interpreting input data correctly.

The most powerful technique is using a special program called a debugger. A debugger
program can control the execution of a C++ program, interrupt the C++ program at any point
in its execution, and display the values of all variables at the point of interruption.

Finally, no discussion of debugging is complete without mentioning the main ingredient
needed for isolating and correcting errors successfully: the attitude you bring to the task. After
you write a program, you naturally assume it’s correct. Taking a step back to be objective about
testing and finding errors in your own software is difficult. As a programmer, you must remind
yourself that just because you think your program is correct doesn’t make it so. Finding errors
in your own programs is a sobering experience but one that helps you become a better pro-
grammer. The process can be exciting and fun if you approach it as a detection problem, with
you as the master detective.

Chapter

4.1 Relational Expressions

4.2 The if-else Statement

4.3 Nested if Statements

4.4 The switch Statement

4.5 Common Programming Errors

Selection

4.6 Chapter Summary

4.7 Chapter Supplement: A Closer
Look at Testing

The term flow of control refers to the order in which a program’s statements are executed. Unless directed
otherwise, the normal flow of control for all programs is sequential. This term means statements are
executed in sequence, one after another; in the order in which they’re placed in the program.

Both selection and repetition statements enable programmers to alter this normal sequential flow of
control. As their names imply, selection statements make it possible to select which statement, from a well-
defined set, is executed next, and repetition statements make it possible to go back and repeat a set of
statements. In this chapter; you learn about C++’s selection statements. Because selection requires choosing
berween alternatives, this chapter begins with a description of C++’s selection criteria.

4.1 Relational Expressions

Besides providing addition, subtraction, multiplication, and division capabilities, all computers
have the capability to compare numbers. Because many seemingly “intelligent” decision-
making situations can be reduced to choosing between two values, a computer’s comparison
capability can be used to create a remarkable intelligence-like facility.

138 Selection

The expressions used to compare operands are called relational expressions. A simple
relational expression consists of a relational operator connecting two variable and/or constant
operands, as shown in Figure 4.1. Table 4.1 lists the relational operators available in C++.
They can be used with integer, Boolean, double, or character data, but they must be typed
exactly as shown in Table 4.1.

operand relational operand

\ opeiator/

price < 12.5
e e/

expression

Figure 4.1 Anatomy of a simple relational expression

Table 4.1 C++'s Relational Operators

Operator Meaning Example

< Less than age < 30

> Greater than height > 6.2

<= Less than or equal to taxable <= 20000
>= Greater than or equal to temp >= 98.6

== Equal to grade == 100

1= Not equal to number != 250

The following are examples of valid relational expressions:

age > 40 length <= 50 width > 7
3 <4 flag == done idNum == 682
day !=5 2.0 > 3.3 hours > 40

The following examples are invalid:

length =< 50 // incorrect symbol
2.0 >> 3.3 // invalid relational operator
flag = = done // spaces are not allowed

Relational expressions are sometimes called conditions, and both terms are used in this
book. Like all C++ expressions, relational expressions are evaluated to yield a numerical
result.! A condition that'’s interpreted as true evaluates to an integer value of 1, and a false condition
evaluates to an integer value of 0.

For example, because the relationship 3 < 4 is always true, this expression has a value of 1,
and because the relationship 2.0 > 3.3 is always false, the value of the expression is 0. This
can be verified by these statements:

cout << "The value of 3 < 4 is " << (3 < 4);
cout << "\nThe value of 2.0 > 3.3 is " << (2.0 > 3.3);

Hn this regard, C++ differs from most other high-level languages, which yield a Boolean (true or false) result.

Chapter 4 139
Relational Expressions

These statements result in the following display:

The value of 3 < 4 is 1
The value of 2.0 > 3.3 is 0

The value of a relational expression, such as hours > 40, depends on the value stored in
the variable hours. In a C++ program, a relational expression’s value isn’t as important as the
interpretation C++ places on the value when the expression is used as part of a selection state-
ment. In these statements, which are explained in the next section, you’ll see that C++ uses a
zero value to represent a false condition and any non-zero value to represent a true condition.
The selection of which statement to execute next is then based on this value.

In addition to numerical operands, character data can be compared by using relational
operators. For example, in the ASCII code, the letter 'A" is stored by using a code with a
lower numerical value than the letter 'B', the code for 'B' has a lower value than the code
for 'c', and so on. For character sets coded in this manner, the following conditions are
evaluated as shown:

Expression Value Interpretation
'A' > 'C' 0 false

'D' <= 'Z' 1 true

'E' == 'F' 0 false

'g' >= 'm' 0 false

'b' 1= 'c' 1 true

'a' == 'A' 0 false

Comparing letters is essential in alphabetizing names or in using characters to select a
choice in decision-making situations.

Logical Operators
In addition to using simple relational expressions as conditions, more complex conditions can
be created by using the logical operators AND, OR, and NOT. These operators are repre-
sented by the symbols &s&, | |, and !.

When the AND operator, &&, is used with two simple expressions, the condition is true
only if both expressions are true by themselves. Therefore, the logical condition

(age > 40) && (term < 10)

is true only if age is greater than 40 and term is less than 10. Because relational operators have
a higher precedence than logical operators, the parentheses in this logical expression could
have been omitted.

The OR operator, | |, is also used with two expressions. When using the OR operator, the
condition is satisfied if one or both of the two expressions are true. Therefore, the condition

(age > 40) || (term < 10)

140

Selection

is true if age is greater than 40, term is less than 10, or both conditions are true. Again, the
parentheses surrounding the relational expressions are included to make the statement easier
to read. Because relational operators have a higher precedence than logical operators, the same
evaluation is made even if the parentheses are omitted.

For the declarations
int i, j;
double a, b, complete;

the following are valid conditions:

a>b
(i == 3) || (a < b) || complete
(a/b > 5) && (i <= 20)

Before these conditions can be evaluated, the values of a, b, i, j, and complete must be
known. For the assignments

a = 12.0;
b=2.0;
i = 15;
j = 30;

complete = 0.0;

the previous expressions yield the following results:

Expression Value Interpretation
a>b 1 true
(1 == 3) || (a < b) || complete |0 false
(a/b > 5) && (i <= 20) 1 true

The NOT operator, !, is used to change an expression to its opposite state; that is, if the
expression has a non-zero value (true), the statement !expression produces a zero value
(false). If an expression is false to begin with (has a zero value), !expression is true and
evaluates to 1. For example, if the number 26 is stored in the variable age, the expression
age > 40 has a value of 0 (false), and the expression ! (age > 40) has a value of 1 (true).
Because the NOT operator is used with only one expression, it’s a unary operator.

Relational and logical operators have a hierarchy of execution similar to arithmetic opera-
tors. Table 4.2 lists the precedence of these operators in relation to the other operators you
have used.

Chapter 4

Relational Expressions

Table 4.2 Operator Precedence and Associativity

141

Operator

Associativity

! unary - ++ --

Right to left

* /9

Left to right

+

Left to right

> >=

Left to right

Left to right

&&

Left to right

Left to right

+=

|
I
*
I
~
I

Right to left

T'he following chart illustrates using an operator’s precedence and associativity to evaluate
relational expressions, assuming the following declarations:

char key = 'm';

int i =5, § =17, k = 12;

double x = 22.5;
Expression Equivalent Expression Value | Interpretation
i+2==k -1 (i + 2) == (k - 1) 0 false
3 i -3 <22 ((3 * 1) - J) < 22 1 true
i+2 %3 >k (1 + (2 * 3)) >k 1 true
k+3<=-3+3*1i|(k+3) <= ((-3J) + (3*1)) |0 false
'a' + 1 == 'b’ (‘a" + 1) == 'b"’ 1 true
key - 1 'p’ (key - 1) > 'p' 0 false
key + 1 == 'n' (key + 1) == 'n' 1 true
25 >= x + 1.0 25 >= (x + 1.0) 1 true

As with all expressions, parentheses can be used to alter the assigned operator priority and
improve the readability of relational expressions. By evaluating the expressions in parentheses
first, the following compound condition is evaluated as shown:

(6 * 3 == 36 / 2)
(18 == 18)

[

= —————

(13 <3 % 3 + 4) && !(6 - 2 < 5)
(13 < 9 + 4) && !(4 < 5)
(13 < 13) && 11

0 && 0
0

142 Selection

A Numerical Accuracy Problem

In C++’s relational expressions, a subtle numerical accuracy problem related to single-precision
and double-precision numbers can occur. Because of the way computers store these numbers,
you should avoid testing for equality of single-precision and double-precision values and vari-
ables with the relational operator ==.

The reason is that many decimal numbers, such as 0.1, can’t be represented exactly in
binary with a finite number of bits, so testing for exact equality for these numbers can fail.
When you want equality of noninteger values, it’s better to require that the absolute value of
the difference between operands be less than some extremely small value. Therefore, for
single-precision and double-precision operands, the general expression

operand_ 1 == operand_ 2
should be replaced by this condition:
abs (operand_1 - operand 2) < EPSILON

EPSILON can be a constant set to any acceptably small value, such as 0.000001.2 Therefore,
if the difference between the two operands is less than the value of EPSILON, the two operands
are considered essentially equal. For example, if x and y are double-precision variables, a con-
dition such as

x/y == 0.35
should be programmed as the following:
abs(x/y - 0.35) < EPSILON

T'his condition ensures that slight inaccuracies in representing noninteger numbers in
binary don’t affect evaluation of the tested condition. Because all computers have an exact
binary representation of 0, comparisons for exact equality to 0 don’t have this numerical
accuracy problem.

EXERCISES 4.1

1. (Practice) Determine the value of the following expressions, assuming a = 5,b = 2, ¢ = 4,

d=6,and e = 3:

a.a > b f.a*b
b.a !=b g.a % b *c
c.d $b==c%b h.c $ b * a
d.a*c!=d=+*b . bsc*a
e.d * b ==c * e

ZUsing the abs () function requires including the cmath header file by placing the preprocessor statement #include<cmath>
before or after #include<iostream>. UNIX-based systems also require including the math library at compile time with the -1m
command-line argument.

Chapter 4 143
The if-else Statement

2. (Practice) Using parentheses, rewrite the following expressions to indicate their order of
evaluation correctly. Then evaluate each expression, assuming a =5,b =2, and ¢ = 4.

a.a $ b *c & c $ b * a
b.a%b*c || c%b*a
C.b % c*aé&kat%sc*b
dbsc*ral||l]agtc*hb

3. (Practice) Write relational expressions to express the following conditions (using variable
names of your choosing):

. A person’s age is equal to 30.

. A person’s temperature is greater than 98.6 degrees.

. A person’s height is less than 6 feet.

. The current month is 12 (December).

. The letter input is m.

A person’s age is equal to 30, and the person is taller than 6 feet.

. The current day is the 15th day of the 1st month.

. A person is older than 50 or has been employed at the company for at least 5 years.

A person’s identification number is less than 500 and the person is older than 55.
J- Alength is greater than 2 feet and less than 3 feet.

=l SN N R o PN e i © i]

o e
.

4. (Practice) Determine the value of the following expressions, assuming a = 5, b = 2, ¢ = 4,
and d = 5:
a.a == 5
b.b *d==¢c * c
ccdsb*c>5 || ctb*d<?7

4.2 The if-else Statement

The if-else statement directs the computer to select between two statements based on the
result of a comparison. For example, if a New Jersey resident’s income is less than or equal to
$20,000, the applicable state tax rate is 2%. If the person’s income is greater than $20,000, a
different rate is applied to the amount over $20,000. The if-else statement can be used in
this situation to determine the tax rate based on whether the person’s income is less than or
equal to $20,000. This is the general form of the if-else statement:

if (expression) statementl;
else statement2;

The expression is evaluated first. If its value is non-zero, statement1 is executed. If its
value is zero, the statement after the keyword else is executed. Therefore, one of the two
statements (statementl or statement2 but not both) is always executed, depending on the
expression’s value. Notice that the tested expression must be enclosed by parentheses, and a
semicolon is placed after each statement.

144 Selection

For clarity, the 1f-else statement is typically written on four lines in this form:

if (expression) == no semicolon here
statementl;

else = no semicolon here
statement2;

The form of the if-else statement that’s used typically depends on the length of
statementl and statement2. However, when using this four-line form, don’t put a semi-
colon after the parentheses or the else keyword. The semicolons are placed only at the ends
of statements. Figure 4.2 shows the flowchart for the if-else statement.

a

previous
statement

JL

is no (else part)

condition
true?

.Lyes |
statement 1 ’ statement 2 ’
A I
1

JL

next
statement

JL

Figure 4.2 The if-else flowchart

As an example, take a look at writing an income tax computation program containing an
if-else statement. As stated, the New Jersey state income tax is assessed at 2% of taxable
income for incomes less than or equal to $20,000. For taxable incomes greater than $20,000,
state taxes are 2.5% of the income exceeding $20,000 plus a fixed amount of $400. The
expression to be tested is whether taxable income is less than or equal to $20,000, so the fol-
lowing is a suitable if-else statement for this program:3

if (taxable <= 20000.0)
taxes = 0.02 * taxable;

else
taxes = 0.025 * (taxable - 20000.0) + 400.0;

3Note that in actual practice, the numerical values in this statement would be defined as named constants.

Chapter 4 145
The if-else Statement

T'he relational operator <= is used to represent the condition “is less than or equal to.” If
the value of taxable is less than or equal to 20000.0, the condition is true (has a value of 1)
and the statement taxes = 0.02 * taxable; is executed. If the condition isn’t true, the
expression’s value is zero, and the statement after the else keyword is executed. Program 4.1
shows using this statement in a complete program.

Program 4.1

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
double taxable, taxes;
cout << "Please type in the taxable income: ";
cin >> taxable;
if (taxable <= 20000.0)
taxes = 0.02 * taxable;
else
taxes = 0.025 * (taxable - 20000.0) + 400.0;
cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2)
<< "Taxes are $ " << taxes << endl;
return 0;
}

A blank line is inserted before and after the if-else statement to highlight it in the pro-
gram. This format is used throughout the book to emphasize the statement being discussed.

"To illustrate selection in action, Program 4.1 was run twice with different input data.
These are the results:

Please type in the taxable income: 10000.
Taxes are $ 200.00

and

Please type in the taxable income: 30000.
Taxes are $ 650.00

In reviewing this output, observe that the taxable income input in the first run was less
than $20,000, and the tax rate was calculated correctly as 2% of the number entered. In the

146 Selection

second run, the taxable income was more than $20,000, and the else part of the if-else
statement was used to yield this correct tax rate computation:

0.025 * ($30,000. - $20,000.) + $400. = $650.

Although any expression can be tested by an if-else statement, only relational expres-
sions are generally used. However, statements such as the following are valid:

if (num)

cout << "Bingo!";
else

cout << "You lose!";

Because num is a valid expression by itself, the message Bingo! is displayed if num has any
non-zero value, and the message You lose! is displayed if num has a value of zero.

Compound Statements

Although only a single statement is permitted in the if and else parts of the if-else state-
ment, each single statement can be a compound statement. A compound statement is a
sequence of single statements between braces, as shown in this example:

{
statementl;
statement2;
statement3;
last statement;
}

Using braces to enclose a set of statements creates a single block of statements, which can
be used anywhere in a C++ program in place of a single statement. The next example shows
using a compound statement in the general form of an if-else statement:

if (expression)

{
statementl; // as many statements as necessary
statement?2; // can be put inside the braces
statement3; // each statement must end with a ;

}

else

{

statement4;
statement5;

last statement;

Chapter 4 147
The if-else Statement

Program 4.2 shows using a compound statement in an actual program. This program
checks whether the value in tempType is £. If so, the compound statement corresponding to
the if part of the if-else statement is executed. Any other letter in tempType results in
executing the compound statement corresponding to the else part.

Program 4.2

#include <iostream>
#include <iomanip>
using namespace std;

// a temperature conversion program
int main()
{

char tempType;

double temp, fahren, celsius;

cout << "Enter the temperature to be converted: ";

cin >> temp;

cout << "Enter an f if the temperature is in Fahrenheit";
cout << "\n or a c¢ if the temperature is in Celsius: ";
cin >> tempType;

// set output formats

cout << setiosflags (ios::fixed)
<< setiosflags (ios::showpoint)
<< setprecision(2);

if (tempType == 'f')
{
celsius = (5.0 / 9.0) * (temp - 32.0);
cout << "\nThe equivalent Celsius temperature is "
<< celsius << endl;
}
else
{
fahren = (9.0 / 5.0) * temp + 32.0;
cout << "\nThe equivalent Fahrenheit temperature is "
<< fahren << endl;

return 0;

148

Selection

A sample run of Program 4.2 follows.

Enter the temperature to be converted: 212
Enter an f if the temperature is in Fahrenheit
or a ¢ if the temperature is in Celsius: £

The equivalent Celsius temperature is 100.00

Block Scope

All statements contained in a compound statement constitute a single block of code, and any
variable declared in this block has meaning only between its declaration and the closing
braces defining the block. For example, take a look at the following example, which consists
of two blocks of code:

{ // start of outer block
int a = 25;
int b = 17;
cout << "The value of a is " << a
<< " and b is " << b << endl;

{ // start of inner block
double a = 46.25;
int ¢ = 10;
cout << "a is now " << a
<< " b is now " << Db
<< " and ¢ is " << ¢ << endl;
} // end of inner block

cout << "a 1is now " << a << " and b is " << b << endl;
} // end of outer block

"This section of code produces the following output:

The value of a is 25 and b is 17
a is now 46.25 b is now 17 and c is 10
a is now 25 and b is 17

This output is produced as follows: The first block of code defines two variables named a
and b, which can be used anywhere in this block after their declarations, including any block
inside this outer block. In the inner block, two new variables have been declared, named a and
c. Therefore, at this stage, four different variables have been created, two with the same name.
When a variable is referenced, the compiler first attempts to access a variable with the correct
name that has been declared in the block containing the reference. If the referenced variable
hasn’t been defined in the block, the compiler attempts to access the variable declared in the
next outer block, until a valid access results.

Chapter 4 149
The if-else Statement

Point of Information

Placement of Braces in a Compound Statement

A common practice for some C++ programmers is placing the opening brace of a
compound statement on the same line as the if and else statements. Using this con-
vention, the if statement in Program 4.2 would look like the following example. (This
placement is a matter of style only—both styles are used, and both are acceptable.)

if (tempType == 'f') {
celsius = (5.0 / 9.0) * (temp - 32.0);
cout << "\nThe equivalent Celsius temperature is "
<< celsius << endl;

}
else {
fahren = (9.0 / 5.0) * temp + 32.0;
cout << "\nThe equivalent Fahrenheit temperature is "
<< fahren << endl;
}

Therefore, the values of the variables a and c referenced in the inner block use the values
of the variables a and ¢ declared in that block. Because no variable named b was declared in
the inner block, the value of b displayed from inside the inner block is obtained from the outer
block. Finally, the last cout object, which is outside the inner block, displays the value of the
variable a declared in the outer block. If an attempt is made to display the value of ¢ anywhere
in the outer block, the compiler issues an error message stating that ¢ is an undefined symbol.

T'he area in a program where a variable can be used is formally referred to as the scope of
the variable, and you delve into this subject in Chapter 6.

One-Way Selection
A useful modification of the if-else statement involves omitting the else part of the state-
ment and has this shortened and often useful form:

if (expression)
statement;
The statement following if (expression) is executed only if the expression has a

non-zero value (a true condition). As before, the statement can be a compound statement.
Figure 4.3 shows the flowchart for this statement.

150 Selection

J

previous
statement

Jd

is no
condition
true?

] |_yes

statement ’

i

JL
next

statement
JL

Figure 4.3 A one-way if statement

"T'his modified form of the if statement is called a one-way if statement. Program 4.3 uses
this statement to check a car’s mileage and display a message only for cars that have been
driven more than 3000.0 miles.

Program 4.3

#include <iostream>
using namespace std;

int main()

{

const double LIMIT = 3000.0;
int idNum;
double miles;

cout << "Please type in car number and mileage: ";
cin >> idNum >> miles;

Chapter 4 151
The if-else Statement

if(miles > LIMIT)
cout << " Car " << idNum << " is over the limit." << endl;

cout << "End of program output." << endl;

return 0;

To show the one-way selection criteria in action, Program 4.3 was run twice, each time
with different input data. Only the input data for the first run causes the message
Car 256 is over the limit to be displayed.

Please type in car number and mileage: 256 3562.8
Car 256 is over the limit.
End of program output.

and

Please type in car number and mileage: 23 2562.3
End of program output.

Problems Associated with the if-else Statement
Two of the most common problems encountered in using C++’s if-else statement are the
following;:

e Misunderstanding the full implications of what an expression is
e Using the assignment operator, =, in place of the relational operator ==

Recall that an expression is any combination of operands and operators that yields a result.
This definition is much broader and more encompassing than is apparent at first. For example,
all the following are valid C++ expressions:

age + 5
age = 30
age == 40

Assuming the variables are declared correctly, each of these expressions yields a result.
The following example uses the cout object to display the value of these expressions when
age is initially assigned the value 18:

age = 18;

cout << "The value of the first expression is " << (age + 5) << endl;
cout << "The value of the second expression is " << (age = 30) << endl;
cout << "The value of the third expression is " << (age == 40) << endl;

152

Selection

"T'his code produces the following display:

The value of the first expression is 23
The value of the second expression is 30
The value of the third expression is 0

As this output shows, each expression has a value associated with it. The value of the first
expression is the sum of the variable age plus 5, which is 23. The value of the second expres-
sion is 30, which is also assigned to the variable age. The value of the third expression is 0
because age is not equal to 40, and a false condition is represented in C++ with the value 0. If

the value in age had been 40, the relational expression a == 40 would be true and have the
value 1.
Say the relational expression age == 40 was intended to be used in the if statement

if (age == 40)
cout << "Happy Birthday!";

but was mistyped as age = 40, resulting in the following:

if (age = 40)
cout << "Happy Birthday!";

Because the mistake results in a valid C++ expression, and any C++ expression can be
tested by an if statement, the resulting if statement is valid and causes the message
Happy Birthday! to be displayed regardless of what value was previously assigned to age.
Can you see why?

The condition tested by the if statement doesn’t compare the value in age to the
number 40. It assigns the number 40 to age. That is, the expression age = 40 isn’t a rela-
tional expression at all; it’s an assignment expression. At the completion of the assignment, the
expression itself has a value of 40. Because C++ treats any non-zero value as true, the cout
statement is executed. Another way of looking at it is to realize that the if statement is
equivalent to the following statements:

age = 40; // assign 40 to age
if (age) // test the value of age
cout << "Happy Birthday!";

Because a C++ compiler has no means of knowing that the expression being tested isn’t
the one you want, you must be especially careful when writing conditions.

Chapter 4
The if-else Statement

153

Point of Information

The Boolean Data Type

Before the current ANSI/ISO C++ standard, C++ didn’t have a built-in Boolean data type
with its two Boolean values, true and false. Because this data type wasn't originally
part of the language, a tested expression could not evaluate to a Boolean value. Therefore,
the syntax

if (Boolean expression is true)
execute this statement;

also wasn't built into C or C++. Instead, C++ uses the more encompassing syntax,

if (expression)
execute this statement;

where expression is any expression that evaluates to a numeric value. If the value of
the tested expression is a non-zero value, it's considered true, and only a zero value is
considered false.

As the ANSI/ISO C++ standard specifies, C++ has a built-in Boolean data type contain-
ing the values true and false. Boolean variables are declared with the bool keyword.
As currently implemented, the actual values that the Boolean values true and false
represent are the integer values 1 and 0. For example, examine the following program,
which declares two Boolean variables:

#include <iostream>
using namespace std;
int main()
{

bool tl1, t2;

tl = true;
t2 = false;
cout << "The value of tl is " << tl
<< "\nand the value of t2 is " << t2 << endl;

return 0;

}
This program produces the following output:

The value of tl is 1
and the value of t2 is 0

continued

154

Selection

Point of Information

The Boolean Data Type (continued)

As shown by this output, the Boolean values true and false are represented by the
integer values 1 and 0 and have the following relationships:

!true= is false
tfalse= is true

Additionally, applying a postfix or prefix ++ operator to a variable of type bool sets
the Boolean value to true. The postfix and prefix -- operators can't be applied to
Boolean variables.

Boolean values can also be compared, as shown in the following code:

if (tl == t2)

cout << "The values are equal" << endl;
else

cout << "The values are not equal" << endl;

Last, assigning any non-zero value to a Boolean variable results in the variable being
set to true (a value of 1), and assigning a zero value to a Boolean results in the variable
being set to false (a value of 0).

]
A
=

{

EXERCISES 4.2

1. (Practice) Write suitable if statements for the following conditions:

a.

b.

If an angle is equal to 90 degrees, print the message “T'he angle is a right angle.”; else, print
the message “The angle is not a right angle.”

If the temperature is above 100 degrees, display the message “above the boiling point of
water”; else, display the message “below the boiling point of water.”

. If the number is positive, add the number to the variable positivesum; else, add the num-

ber to the variable negativesum.

. If the slope is less than 0.5, set the variable £1lag to 0; else, set £1lag to 1.
. If the difference between slopel and slope?2 is less than 0.001, set the variable approx to

0; else, calculate approx as the quantity (slopel - slope2) / 2.0.
If the frequency is above 60, display the message “The frequency is too high.”

. If the difference between templ and temp2 exceeds 2.3, calculate the variable error as

(templ - temp2) * factor.

. If x 1s greater than y and z is less than 20, request that the user input a value for the

variable p.
If distance is greater than 20 and less than 35, request that the user input a value for the
variable time.

Chapter 4 155
The if-else Statement

2. (Practice) Write if statements corresponding to the conditions shown in the following

flowcharts:
b. ‘

false
ace<25 c==15
‘ true ‘tr ue
sum= count= credit=10 credit=8
sum +a count+1 limit=1200 limit=800

false

id>22

‘true

count==10

‘true
average
factor=.7 =sum/count
A .
display
’ average

\ 4

156

10.

Selection

. (Practice) Write a C++ program that asks the user to input two numbers. If the first number

entered is greater than the second number, the program should print the message “The first
number is greater.”; else, it should print the message “The first number is smaller.” Test your
program by entering the numbers 5 and 8 and then using the numbers 11 and 2. What do you
think your program will display if the two numbers entered are equal? Test this case.

. (Program) a. In a pass/fail course, a student passes if the grade is greater than or equal to 70

and fails if the grade is lower than 70. Write a C++ program that accepts a grade and prints the

message “A passing grade” or “A failing grade,” as appropriate.

b. How many runs should you make for the program written in Exercise 4a to verify that it’s
operating correctly? What data should you input in each program run?

. (Program) a. If money is left in a particular bank for more than 5 years, the bank pays inter-

est at a rate of 4.5%; otherwise, the interest rate is 3.0%. Write a C++ program that uses the

cin object to accept the number of years in the variable numYears and display the correct

interest rate, depending on the value input into numYears.

b. How many runs should you make for the program written in Exercise 5a to verify that it’s
operating correctly? What data should you input in each program run?

. (Practice) a. Write a C++ program to display the message “PROCEED WITH TAKEOFF”

or “ABORT TAKEOFF” depending on the input. If the character g is entered in the variable

code, the first message should be displayed; otherwise, the second message should be

displayed.

b. How many runs should you make for the program written in Exercise 6a to verify that it’s
operating correctly? What data should you input in each program run?

. (Program) Write, compile, and run a C++ program that accepts a user-input integer number

and determines whether it’s even or odd. The output should display the message “The
entered number is even.” or “T'he entered number is odd.” corresponding to the number the
user entered. (Hint: An even number has a 0 remainder when divided by 2.)

. (Program) Write, compile, and run a C++ program that accepts a user-entered number and

calculates the square root and the reciprocal. Before calculating the square root, validate that
the number isn’t negative, and before calculating the reciprocal, check that the number isn’t
zero. If either condition occurs, display a message stating that the operation can’t be calculated.

. (Program) Years that are evenly divisible by 400 or are evenly divisible by 4 but not by 100

are leap years. For example, because 1600 is evenly divisible by 400, 1600 was a leap year.
Similarly, because 1988 is evenly divisible by 4 but not by 100, it was also a leap year. Using
this information, write a C++ program that accepts the year as user input, determines whether
the year is a leap year, and displays a message telling the user whether the entered year is or
is not a leap year.

(Program) a. Write, compile, and run a C++ program to compute and display a person’s
weekly salary as determined by the following conditions: If the hours worked are less than or
equal to 40, the person receives $12.00 per hour; otherwise, the person receives $480.00 plus

11.

12.

13.

14.

15.

Chapter 4 157
The if-else Statement

$18.00 for ecach hour worked over 40 hours. The program should request the hours worked as

input and display the salary as output.

b. How many runs should you make for the program written in Exercise 10a to verify that it’s
operating correctly? What data should you input in each program run?

(Program) a. A senior salesperson is paid $800 a week, and a junior salesperson, $500 a

week. Write a C++ program that accepts as input a salesperson’s status in the character vari-

able status. If status equals s, the senior salesperson’s salary should be displayed; other-

wise, the junior salesperson’s salary should be displayed.

b. How many runs should you make for the program written in Exercise 11a to verify that it’s
operating correctly? What data should you input in each program run?

(Program) a. Write a C++ program that displays the message “I feel great today!” or “I feel

down today #$*!” depending on the input. If the character u is entered in the variable ch, the

first message should be displayed; otherwise, the second message should be displayed.

b. How many runs should you make for the program written in Exercise 12a to verify that it’s
operating correctly? What data should you input in each program run?

(Program) a. Write a program to display the following two prompts:

Enter a month (use a 1 for Jan, etc.):
Enter a day of the month:

Have your program accept and store a number in the variable month in response to the first

prompt and accept and store a number in the variable day in response to the second prompt.

If the month entered isn’t between 1 and 12, display a message informing the user that an

invalid month has been entered. If the day entered isn’t between 1 and 31, display a message

informing the user that an invalid day has been entered.

b. What will your program do if the user enters a number with a decimal point for the month?
How can you make sure your if statements check for an integer number?

(Program) a. Write, compile, and run a C++ program that accepts a character as input data and

determines whether the character is a lowercase letter. A lowercase letter is any character that’s

greater than or equal to “a” and less than or equal to “z.” If the entered character is a lowercase

letter, display the message “I'he character just entered is a lowercase letter.” If the entered

letter isn’t lowercase, display the message “The character just entered is not a lowercase letter.”

b. Modify the program written for Exercise 14a to also determine whether the entered char-
acter is an uppercase letter. An uppercase letter is any character greater than or equal to “A”
and less than or equal to “Z.”

(Program) Write, compile, and run a C++ program that first determines whether an entered
character is a lowercase or an uppercase letter (see Exercise 14). If the letter is lowercase,
determine and print its position in the alphabet. For example, if the entered letter is ¢, the
program should print 3 because c is the third letter in the alphabet. (Hinz: If the entered char-
acter is lowercase, its position can be determined by subtracting 'a' from the letter and add-
ing 1.) Similarly, if the letter is uppercase, determine and print its position in the alphabet. For
example, if the entered letter is G, the program should print 7 because G is the seventh letter
in the alphabet. (Hinz: If the entered character is uppercase, its position can be determined by
subtracting 'A"' from the letter and adding 1.)

158 Selection

16. (Program) Write, compile, and run a C++ program that asks the user to input two numbers.
After your program accepts these numbers by using one or more cin object calls, have it
check the numbers. If the first number entered is greater than the second number, the pro-
gram should print the message “The first number is greater.”; otherwise, it should print the
message “The first number is not greater than the second.” Test your program by entering
the numbers 5 and 8 and then using the numbers 11 and 2. What will your program display if
the two numbers entered are equal?

17. (Debug) The following program displays the message Hello there! regardless of the letter
input. Determine where the error is and why the program always causes the message to be
displayed.

#include <iostream>
using namespace std;
int main()

{

char letter;

cout << "Enter a letter: ";
cin >> letter;
if (letter = 'm')
cout << "Hello there!" << endl;

return 0;

4.3 Nested if Statements

As you have seen,an if-else statement can contain any valid C++ simple or compound state-
ments, including another if-else statement. Therefore, one or more if-else statements can
be included in either part of an 1 £-else statement. Including one or more if statements inside
an existing if statement is called a nested if statement. For example, substituting the one-way
if statement

if (distance > 500)
cout << "snap";

for statementl in this if statement

if (hours < 9)
statementl;
else
cout << "pop";

Chapter 4 159
Nested if Statements

results in the following nested if statement:

if (hours < 9)

{
if (distance > 500)
cout << "snap";
}
else

cout << "pop";

T'he braces around the inner one-way if statement are essential because in their absence,
C++ associates an else with the closest unpaired if. Therefore, without the braces, the pre-
ceding statement is equivalent to the following:

if (hours < 9)
if (distance > 500)
cout << "snap";
else
cout << "pop";

In this example, the else is paired with the inner i£, which destroys the meaning of the
original if-else statement. Notice also that the indentation is irrelevant, as far as the compiler
is concerned. Whether the indentation exists or not, the statement is compiled by associating
the last else with the closest unpaired if, wnless braces are used to alter the default pairing. The
process of nesting if statements can be extended indefinitely, so the cout << "snap"; state-
ment could be replaced by a complete if-else statement or another one-way if statement.

The if-else Chain

In general, nesting in which one if-else statement is placed inside the if part of another
if-else statement tends to be confusing and is best avoided in practice. However, an
extremely useful construction is placing one if-else statement inside the else part of
another if-else statement. Typically, this nesting is written in the following form:

if (expression_1)
statementl;

else if (expression_2)
statement?2;

else
statement3;

"This useful construction, called an if-else chain, is used extensively in programming
applications. Each condition is evaluated in order, and if any condition is true, the correspond-
ing statement is executed, and the remainder of the chain is terminated. The statement associ-
ated with the final else is executed only if no previous condition is satisfied. This final else
serves as a default or catch-all case that’s useful for detecting an impossible condition or an
error condition.

160 Selection

T'he chain can be continued indefinitely by repeatedly making the last statement another
if-else statement. Therefore, the general form of an if-else chain is as follows:

if (expression_1)
statementl;

else if (expression_2)
statement?2;

else if (expression_3)
statement3;

else if (expression_n)
statement n;

else
last_statement;

As with all C++ statements, each statement can be a compound statement bounded by
braces. To illustrate using an if-else chain, Program 4.4 displays a person’s marital status
corresponding with a letter input. The following letter codes are used:

Input Code Marital Status
M Married

S Single

D Divorced

W Widowed

Program 4.4

#include <iostream>
using namespace std;

int main()

{

char marcode;

cout << "Enter a marital code: ";
cin >> marcode;

if (marcode == 'M')

cout << "Individual is married." << endl;
else if (marcode == 'S')

cout << "Individual is single." << endl;

Chapter 4 161
Nested if Statements

else if (marcode == 'D')
cout << "Individual is divorced." << endl;
else if (marcode == 'W')
cout << "Individual is widowed." << endl;
else
cout << "An invalid code was entered." << endl;

return 0;

As another example of an if-else chain, take a look at determining the monthly income
of a salesperson by using the following commission schedule:

Monthly Sales Income

Greater than or equal to $50,000 $375 plus 16% of sales
Less than $50,000 but greater than or equal to $40,000 $350 plus 14% of sales
Less than $40,000 but greater than or equal to $30,000 $325 plus 12% of sales
Less than $30,000 but greater than or equal to $20,000 $300 plus 9% of sales
Less than $20,000 but greater than or equal to $10,000 $250 plus 5% of sales
Less than $10,000 $200 plus 3% of sales

The following if-else chain can be used to determine the correct monthly income; the
monthlySales variable is used to store the salesperson’s current monthly sales:

if (monthlySales >= 50000.00)

income = 375.00 + .16 * monthlySales;
else if (monthlySales >= 40000.00)

income = 350.00 + .14 * monthlySales;
else if (monthlySales >= 30000.00)

income = 325.00 + .12 * monthlySales;
else if (monthlySales >= 20000.00)

income = 300.00 + .09 * monthlySales;
else if (monthlySales >= 10000.00)

income = 250.00 + .05 * monthlySales;
else

income = 200.000 + .03 * monthlySales;

Notice that this example makes use of the chain stopping after a true condition is found
by checking for the highest monthly sales first. If the salesperson’s monthly sales are less than
$50,000, the if-else chain continues checking for the next highest sales amount, and so on,
until the correct category is obtained. Program 4.5 uses this if-else chain to calculate and
display the income corresponding with the value of monthly sales input in the cin object.

162

Selection

Program 4.5

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

double monthlySales,

cout <<

income;

"Enter the value of monthly sales: ";

4

cin >> monthlySales;
if (monthlySales >= 50000.00)
income = 375.00 + .16 * monthlySales;
else if (monthlySales >= 40000.00)
income = 350.00 + .14 * monthlySales;
else if (monthlySales >= 30000.00)
income = 325.00 + .12 * monthlySales;
else if (monthlySales >= 20000.00)
income = 300.00 + .09 * monthlySales;
else if (monthlySales >= 10000.00)

income = 250.00 + .05 * monthlySales;
else

income = 200.00 + .03 * monthlySales;
cout << setiosflags(ios::showpoint)

<< setiosflags(ios::
<< setprecision(2)

fixed)

<< "The income is $" << income << endl;

return 0;

A sample run of Program 4.5 follows:

Enter the value of monthly sales:

The income is $4674.27

EXERCISES 4.3

36243.89

1. (Practice) An acute angle is less than 90 degrees, an obtuse angle is greater than 90 degrees,
and a right angle is equal to 90 degrees. Using this information, write a C++ program that
accepts an angle, in degrees, and displays the type of angle corresponding to the degrees

entered.

Chapter 4 163
Nested if Statements

2. (Program) The grade level of undergraduate college students is typically determined accord-
ing to the following schedule:

Number of Credits Completed Grade Level
Less than 32 Freshman

32 t0o 63 Sophomore
64 to 95 Junior

96 or more Senior

Using this information, write a C++ program that accepts the number of credits a student has
completed, determines the student’s grade level, and displays the grade level.

3. (Program) A student’s letter grade is calculated according to the following schedule:

Numerical Grade Letter Grade
Greater than or equal to 90

Less than 90 but greater than or equal to 80
Less than 80 but greater than or equal to 70
Less than 70 but greater than or equal to 60
Less than 60

n|o|n|w|>

Using this information, write, compile, and run a C++ program that accepts a student’s numerical
grade, converts the numerical grade to an equivalent letter grade, and displays the letter grade.

4. (Program) The interest rate paid on funds deposited in a bank is determined by the amount
of time the money is left on deposit. For a particular bank, the following schedule is used:

Time on Deposit Interest Rate
Greater than or equal to 5 years .040
Less than 5 years but greater than or equal to 4 years .035
Less than 4 years but greater than or equal to 3 years .030
Less than 3 years but greater than or equal to 2 years .025
Less than 2 years but greater than or equal to 1 year .020
Less than 1 year .015

Write, compile, and run a C++ program that accepts the time funds are left on deposit and
displays the interest rate corresponding with the time entered.

S. (Program) Fluid flowing through a pipe can flow in a smooth, constant manner, called laminar
flow; in a chaotic manner, called turbulent flow; or in an intermediate stage between smooth
and turbulent flow, which is called transitional flow. In practice, a value known as the Reynolds
number can be used to determine the type of flow. For a Reynolds number below 2000, the
flow is laminar, and for a Reynolds number above 3000, the flow is turbulent. For a Reynolds
number between 2000 and 3000, the flow is transitional.

164

Selection

Using this information, write, compile, and run a C++ program that accepts a Reynolds num-
ber as user input and displays a message indicating whether the flow is laminar, turbulent,
or transitional.

. (Program) The tolerance of critical components in a system is determined according to the

following schedule:

Specification Status Tolerance

Space exploration Less than 0.1%

Military grade Greater than or equal to 0.1% and less than 1%
Commercial grade Greater than or equal to 1% and less than 10%
Toy grade Greater than or equal to 10%

Using this information, write, compile, and run a C++ program that accepts a component’s
tolerance reading and determines the specification that should be assigned to it.

. (Program) a. Write, compile, and run a program that accepts two real numbers and a select

code from a user. If the entered select code is 1, have the program add the two previously

entered numbers and display the result; if the select code is 2, the numbers should be multi-

plied; and if the select code is 3, the first number should be divided by the second number.

b. Determine what the program written in Exercise 7a does when the entered numbers are
3 and 0 and the select code is 3.

c. Modify the program written in Exercise 7a so that division by 0 isn’t allowed, and a message
is displayed when this division is attempted.

. (Program) The quadrant in which a line starting from the origin is located is determined by

the angle the line makes with the positive x axis, as follows:

Angle from the Positive x Axis Quadrant
Between 0 and 90 degrees [

Between 90 and 180 degrees I

Between 180 and 270 degrees Il

Between 270 and 360 degrees \%

a. Using this information, write, compile, and run a C++ program that accepts the angle of the
line as user input and determines and displays the correct quadrant for the input data. (Noze:
If the angle is exactly 0, 90, 180, or 270 degrees, the corresponding line doesn’t reside in any
quadrant but lies on an axis.)

b. Modify the program written for Exercise 8a to display a message that identifies an angle of

0 degrees as the positive x axis, an angle of 90 degrees as the positive y axis, an angle of
180 degrees as the negative x axis, and an angle of 270 degrees as the negative y axis.

9.

10.

11.

Chapter 4 165
Nested if Statements

(Program) Write, compile, and run a C++ program that accepts a number followed by one
space and then a letter. If the letter following the number is f, the program is to treat the
number entered as a temperature in degrees Fahrenheit, convert the number to the equiva-
lent degrees Celsius, and display a suitable message. If the letter following the number is c,
the program is to treat the number entered as a temperature in degrees Celsius, convert the
number to the equivalent degrees Fahrenheit, and display a suitable message. If the letter is
neither f nor ¢, the program is to display a message that the data entered is incorrect and then
terminate. Use an if-else chain in your program and make use of these conversion formulas:
Celsius = (5.0] 9.0) x (Fahrenheit - 32.0)

Fahrenheit = (9.0] 5.0) x Celsius + 32.0

(Program) Many states base yearly car registration fees on an automobile’s model year and
weight, using a schedule similar to the following:

Model Year Weight Weight Class Registration Fee
1990 or earlier Less than 2700 Ibs 1 26.50
2700 to 3800 Ibs 2 35.50
More than 3800 Ibs 3 56.50
1991 to 1999 Less than 2700 lbs 4 35.00
2700 to 3800 lbs 5 45.50
More than 3800 Ibs 6 62.50
2000 or later Less than 3500 Ibs 7 49.50
3500 or more lbs 8 62.50

Using this information, write, compile, and run a C++ program that accepts an automobile’s
year and weight and determines and displays its weight class and registration fee.

(Debug) Using the commission schedule from Program 4.5, the following program calculates
monthly income:

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

double monthlySales, income;

cout << "Enter the value of monthly sales: ";

cin >> monthlySales;

if (monthlySales >= 50000.00)
income = 375.00 + .16 * monthlySales;

if (monthlySales >= 40000.00 && monthlySales < 50000.00)
income = 350.00 + .14 * monthlySales;

if (monthlySales >= 30000.00 && monthlySales < 40000.00)
income = 325.00 + .12 * monthlySales;

166 Selection

if (monthlySales >= 20000.00 && monthlySales < 30000.00)
income = 300.00 + .09 * monthlySales;

if (monthlySales >= 10000.00 && monthlySales < 20000.00)
income = 250.00 + .05 * monthlySales;

if (monthlySales < 10000.00)
income = 200.00 + .03 * monthlySales;

cout << setiosflags(ios::showpoint)
<< setiosflags(ios:: fixed)
<< setprecision(2)
<< "\n\nThe income is $" << income << endl;

return 0;

}

a. Will this program produce the same output as Program 4.5?
b. Which program is better? Why?

12. (Debug) The following program was written to produce the same result as Program 4.5:

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

double monthlySales, income;

cout << "Enter the value of monthly sales: ";
cin >> monthlySales;

if (monthlySales < 10000.00)
income = 200.00 + .03 * monthlySales;
else if (monthlySales >= 10000.00)
income = 250.00 + .05 * monthlySales;
else if (monthlySales >= 20000.00)
income = 300.00 + .09 * monthlySales;
else if (monthlySales >= 30000.00)
income = 325.00 + .12 * monthlySales;
else if (monthlySales >= 40000.00)
income = 350.00 + .14 * monthlySales;
else if (monthlySales >= 50000.00)
income = 375.00 + .16 * monthlySales;

cout << setiosflags(ios::showpoint)
<< setiosflags(ios:: fixed)

Chapter 4 167
The switch Statement

<< setprecision(2)
<< "The income is $" << income << endl;

return 0;

}

a. What does this program do?
b. For what values of monthly sales does this program calculate the correct income?

4.4 The switch Statement

An if-else chain is used in programming applications in which one set of instructions
must be selected from many possible alternatives. A switch statement is an alternative to the
if-else chain for cases that involve comparing an integer expression with a specific value. It
has this general form:

switch (integer expression)
{ // start of compound statement
case value_1: // terminated with a colon
statementl;
statement2;

break;

case value 2: // terminated with a colon
statementm;
statementn;

case value n: // terminated with a colon
statementw;
statementx;
break;

default: // terminated with a colon
statementaa;
statementbb;

} // end of switch and compound statement

168

Selection

The switch statement uses four new keywords: switch, case, default, and break.
The following discussion explains what each of these keywords does.

The switch keyword identifies the start of the switch statement. The expression in
parentheses after switch is then evaluated, and the result is compared with alternative values
contained in the compound statement. The expression in the switch statement must evaluate
to an integer result, or a compilation error results.

In the switch statement, the case keyword identifies values that are compared with the
switch expression’s value. The case values are compared in the order in which they’re listed
until a match is found, and then execution begins with the statement following the match. As
shown in Figure 4.4, the switch expression’s value determines where execution actually begins.

switch (expression) // evaluate expression

{
Start here if » case value 1:
expression equals value_1 .
break;
Start here if » case value 2:
expression equals value_2 .
break;
Start here if » case value 3:
expression equals value_3 .
break;
[
o
°
Start here if » case value n:
expression equals value_n .
break;
Start here if (0 ——————» default:
previous match .
} // end of switch statement

Figure 4.4 The expression determines an entry point for execution

A switch statement can contain any number of case labels in any order. If the value of
the expression doesn’t match any of the case values, however, no statement is executed unless
the default keyword is encountered. (The default keyword is optional and operates just
like the last else in an if-else chain.) If the value of the expression doesn’t match any case
value, program execution begins with the statement following the default keyword.

Chapter 4 169
The switch Statement

After the switch statement has located an entry point, all further case value evaluations
are ignored. Execution continues through the end of the compound statement unless the
break keyword is encountered, which identifies the end of a case and causes an immediate
exit from the switch statement. Just as the case keyword identifies possible entry points in
the compound statement, the break keyword determines terminating points. If break state-
ments are omitted, all cases following the matching case value, including the default case,
are executed.

When writing a switch statement, you can use multiple case values to refer to the same
set of statements; the default keyword is optional, as mentioned. For example, take a look at
the following:

switch (number)
{
case 1:
cout << "Have a Good Morning\n";
break;
case 2:
cout << "Have a Happy Day\n";
break;
case 3:
case 4:
case 5:
cout << "Have a Nice Evening\n";

If the value stored in the number variable is 1, the message Have a Good Morning is
displayed. Similarly, if the value of number is 2, the second message is displayed. Finally, if the
value of number is 3, 4, or 5, the last message is displayed. Because the statement to be exe-
cuted for the last three cases is the same, the case statements for these values can be “stacked
together,” as shown in the example. Also, because there’s no default keyword, no message is
printed if the value of number isn’t one of the listed case values. Although listing case values
in increasing order is a good programming practice, it’s not required by the switch statement.
A switch statement can have any number of case values, in any order; only the values you're
testing for must be listed.

Program 4.6 uses a switch statement to select the arithmetic operation (addition, multi-
plication, or division) to perform on two numbers, depending on the value of the opselect
variable.

Program 4.6

#include <iostream>
using namespace std;
int main()

{

int opselect; H@D

170 Selection

double fnum, snum;

cout << "Please type in two numbers: ";
cin >> fnum >> snum;

cout << "Enter a select code: ";

cout << "\n 1 for addition";

cout << "\n 2 for multiplication";
cout << "\n 3 for division : ";

cin >> opselect;

switch (opselect)

{
case 1:
cout << "The sum of the numbers entered is "
<< fnum+snum << endl;
break;
case 2:
cout << "The product of the numbers entered is "
<< fnum*snum << endl;
break;
case 3:
cout << "The first number divided by the second is "
<< fnum/snum << endl;
break;
} // end of switch
return 0;
} // end of main()

In the following two sample runs, the display clearly identifies the case that was selected:

Please type in two numbers: 12 3
Enter a select code:
1 for addition
2 for multiplication
3 for division : 2
The product of the numbers entered is 36

and

Please type in two numbers: 12 3
Enter a select code:
1 for addition
2 for multiplication
3 for division : 3
The first number divided by the second is 4

Chapter 4 171
The switch Statement

In reviewing Program 4.6, notice the break statement in the last case statement. Although
it’s not necessary, terminating the last case in a switch statement with a break is a good pro-
gramming practice. [t prevents a possible program error later if another case statement is added
to the switch statement. With the addition of a new case, the break keyword between cases
ensures that you won’t forget to include the break at the time of the modification.

Because character data types are always converted to integers in an expression, a switch
statement can also be used to “switch” based on the value of a character expression. For
example, assuming choice is a character variable, the following switch statement is valid:

switch(choice)
{
case 'a': case 'e': case 'i': case 'o': case 'u':
cout << "The character in choice is a vowel\n";

break;
default:
cout << "The character in choice is not a vowel\n";
break; // this break is optional
} // end of switch statement

EXERCISES 4.4

1. (Modify) Rewrite the following if-else chain by using a switch statement:

if (letterGrade == 'A'")

cout << "The numerical grade is between 90 and 100\n";
else if (letterGrade == 'B')

cout << "The numerical grade is between 80 and 89.9\n";
else if (letterGrade == 'C')

cout << "The numerical grade is between 70 and 79.9\n";
else if (letterGrade == 'D')

cout << "How are you going to explain this one?\n";
else
{

cout << "Of course I had nothing to do with my grade.\n";
cout << "It must have been the professor's fault.\n";

}

2. (Modify) Rewrite the following if-else chain by using a switch statement:
if (bondType == 1)
{
inData();
check();
}
else if (bondType == 2)
{

172

Selection

dates();

leapYr();
}
else if (bondType == 3)
{

yield();

maturity();
}
else if (bondType == 4)
{

price();

roi();
}
else if (bondType == 5)
{

files();

save();
}
else if (bondType == 6)
{

retrieve();

screen();

}

3. (Program) Each storage drive in a shipment is stamped with a code from 1 to 4, indicating
the following storage capacities:

Code Capacity
1 2 GB

2 4 GB

3 16 GB

4 32 GB

Write, compile, and run a C++ program that accepts the code number as an input value and,
based on the value entered, displays the correct storage drive capacity.

4. (Modify) Rewrite Program 4.4 by using a switch statement.

S. (Modify) Repeat Exercise 9 in Section 4.3, using a switch statement instead of an
if-else chain.

6. (Modify) Rewrite Program 4.6 by using a character variable for the select code.

7. (For thought) Determine why the if-else chain in Program 4.5 can’t be replaced with a
switch statement.

Chapter 4 173
Common Programming Errors

4.5 Common Programming Errors

Three programming errors are common with C++’s selection statements:

1. Using the assignment operator, =, in place of the relational operator ==. This error can
cause frustration because any expression can be tested by an if-else statement, so
it’s not a syntax error that the compiler will pick up. Rather, it’s a logic error, which can
be difficult to locate. For example, the statement

if (opselect = 2)

cout << "Happy Birthday";
else

cout << "Good Day";

always results in the message Happy Birthday being displayed, regardless of the
initial value in the opselect variable. The reason is that the assignment expression
opselect = 2 has a value of 2, which is considered a true value in C++. The correct
expression to determine the value in opselect is opselect ==

2. Letting the if-else statement appear to select an incorrect choice. In this typical
debugging problem, the programmer mistakenly concentrates on the tested condition
as the source of the problem. For example, assume the following if-else statement
is part of your program:

if (key == 'F'")

{
contemp = (5.0/9.0) * (intemp - 32.0);
cout << "Conversion to Celsius was done";

}
else
{
contemp = (9.0/5.0) * intemp + 32.0;
cout << "Conversion to Fahrenheit was done";
}

This statement always displays Conversion to Celsius was done when the vari-
able key contains an F. Therefore, if this message is displayed when you believe key
doesn’t contain F, you should investigate key’s value. As a general rule, whenever a
selection statement doesn’t act as you think it should, test your assumptions about the
values assigned to the tested variables by displaying their values. If an unanticipated
value is displayed, you have at least isolated the source of the problem to the variables
rather than the structure of the if-else statement. From there, you have to deter-
mine where and how the incorrect value was produced.

174 Selection

3. Using nested if statements without including braces to indicate the structure. Without
braces, the compiler defaults to pairing elses with the closest unpaired ifs, which
sometimes destroys the selection statement’s original intent. To avoid this problem
and create code that’s adaptable to change, writing all if-else statements as com-
pound statements in this form is useful:

if (expression)

{

one or more statements in here
}
else
{

one or more statements in here
}

No matter how many statements are added later, this form maintains the if state-
ment’s original intent.

4.6 Chapter Summary

1. Relational expressions, also called conditions, are used to compare operands. If a relational
expression is true, the value of the expression is the integer 1. If the relational expression
is false, it has an integer value of 0. Relational expressions are created by using the following
relational operators:

Relational Operator Meaning Example

< Less than age < 30

> Greater than height > 6.2

<= Less than or equal to taxable <= 20000
>= Greater than or equal to temp >= 98.6

== Equal to grade == 100

1= Not equal to number != 250

2. More complex conditions can be constructed from relational expressions by using C++’s
logical operators, && (AND), | | (OR), and ! (NOT).

3. An if-else statement is used to select between two alternative statements based on an
expression’s value. Although relational expressions are usually used for the tested expres-
sion, any valid expression can be used. In testing an expression, if-else statements inter-
pret a non-zero value as true and a zero value as false. The general form of an if-else
statement is as follows:

if (expression)
statementl;

else
statement2;

Chapter 4 175
Chapter Summary

"This form is a two-way selection statement. If the expression has a non-zero value, it’s con-
sidered true and statementl is executed; otherwise, statement?2 is executed.

. An if-else statement can contain other if-else statements. In the absence of braces,
each else is associated with the closest preceding unpaired if.

. The if-else chain is a multiway selection statement with this general form:

if (expression_1)
statement 1;

else if (expression_2)
statement 2;

else if (expression_3)
statement_3;

else if (expression_m)
statement m;

else
statement n;

Each expression is evaluated in the order in which it appears in the chain. If an expression
is true (has a non-zero value), only the statement between this expression and the next
else if or else is executed, and no further expressions are tested. The final else is
optional, and the statement corresponding to the final else is executed only if no previous
expressions are true.

. A compound statement consists of any number of single statements enclosed by the brace
pair { and }. Compound statements are treated as a single unit and can be used anywhere
a single statement is used.

. Variables have meaning only in the block in which they’re declared, which includes any
inner block contained in the declaring block.

. The switch statement is a multiway selection statement with this general form:

switch (integer expression)
{ // start of compound statement
case value 1: // terminated with a colon
statementl;
statement2;

break;

case value 2: // terminated with a colon
statementm;
statementn;

176 Selection

break;

case value_n: // terminated with a colon
statementw;
statementx;
break;

default: // terminated with a colon
statementaa;
statementbb;

} // end of switch and compound statement

For this statement, the value of an integer expression is compared with integer or character
constants or constant expressions. Program execution is transferred to the first matching
case and continues through the end of the switch statement, unless an optional break
statement is encountered. The case values in a switch statement can appear in any order,
and an optional default case can be included. The default case is executed if no other
cases are matched.

4.7 Chapter Supplement: A Closer Look at Testing

In theory, a comprehensive set of test runs would reveal all possible program errors and ensure
that a program works correctly for any combination of input and computed data. In practice,
this level of testing requires checking all possible combinations of statement execution.
Because of the time and effort required, this goal is usually impossible except for extremely
simple programs. To see why this is so, take a look at Program 4.7.

Program 4.7

#include <iostream>
using namespace std;

int main()

{
int num;
cout << "Enter a number: ";
cin >> num;

Chapter 4 177
Chapter Supplement: A Closer Look at Testing

if (num == 5)

cout << "Bingo!\n";
else

cout << "Bongo!\n";

return 0;

Program 4.7 has two paths that can be traversed as the program progresses from its open-
ing brace to its closing brace. The first path, which is executed when the input number is 5, is
in this sequence:

cout << "Enter a number";
cin >> num;
cout << "Bingo!\n";

The second path, which is executed when any number except 5 is input, includes this
sequence of instructions:

cout << "Enter a number";
cin >> num;
cout << "Bongo!\n";

"Testing each possible path through Program 4.7 requires two runs with a judicious selec-
tion of test input data to make sure both paths of the if statement are exercised. Adding one
more if statement in the program increases the number of possible execution paths by a fac-
tor of two and requires four (that is, 22) runs for complete testing. Similarly, a program consist-
ing of three unnested if-else statements requires eight (that is, 23) runs for complete testing,
and a program containing four unnested if-else statements requires 16 (that is, 24) test runs.

Now consider a program consisting of only 10 modules, with each module containing five
if statements. Assuming the modules are always called in the same sequence, there are
32 possible paths through each module (2%) and more than 1,000,000,000,000,000 (259, repre-
senting the number of modules multiplied by the number of if statements per module) pos-
sible paths through the complete program (all modules executed in sequence). The time
needed to create test data and the computer runtime required to exercise each path with the
test data make complete testing of this program virtually impossible.

T'he inability to test all combinations of statement execution sequences fully has led to
the programming proverb “There is no error-free program.” It has also led to the realization
that any testing should be well thought out to maximize the possibility of locating errors. At a
minimum, test data should include suitable values for input data, illegal input values that the
program should reject, and limiting values that are checked by selection statements in the
program.

Chapter

5.1 The while Statement

5.2 Interactive while Loops

5.3 The for Statement

5.4 The do while Statement
5.5 Common Programming Errors
5.6 Chapter Summary

Repetition

The programs you’ve examined so far have illustrated the programming concepts involved in input, out-
put, assignment, and selection capabilities. By this time, you should have gained enough experience to be
comfortable with these concepts and the mechanics of implementing them in C++. Many problems, how-
ever, require a repetition capability, in which the same calculation or sequence of instructions is repeated,
over and over; using different sets of data. Examples of this type of repetition include continual checking
of user data entries until an acceptable entry, such as a valid password, is entered; counting and accumu-
lating running totals; and constant acceptance of input data and recalculation of output values that stop
only at entry of a sentinel value.

This chapter explores the different methods programmers use in constructing repeating sections of code
and explains how they can be implemented in C++. More commonly, a section of code that’s repeated is
referred to as a loop because after the last statement in the code is executed, the program can branch, or
loop, back to the first statement and start another repetition through the code. Each repetition is also
referred to as an iteration or a pass through the loop. In this chapter, you explore the C++ statements used
1o create loops: while, for, and do-while.

180

Repetition

5.1 The while Statement

A while statement is a general repetition statement that can be used in a variety of program-
ming situations. It has this general form:

while (expression)
statement;

The expression in parentheses is evaluated in exactly the same manner as one in an if-else
statement; the difference is in how the expression is used. As you have seen, when the expres-
sion in an if-else statement is true (has a non-zero value), the statement following the
expression is executed once. In a while statement, the statement following the expression is
executed repeatedly as long as the expression evaluates to a non-zero value. Naturally, this
means that somewhere in the while statement must be a statement altering the tested expres-
sion’s value. As you’ll see, this is indeed the case. For now, however, considering just the
expression and the statement following the parentheses, the computer uses this process in
evaluating a while statement:

1. Test the expression
2. If the expression has a non-zero (true) value
a. execute the statement following the parentheses
b. go back to Step 1
else
exit the while statement and execute the next executable statement following
the while statement

Notice that Step 2b forces program control to be transferred back to Step 1. This transfer
of control back to the start of a while statement to reevaluate the expression is what forms the
program loop. The while statement literally loops back on itself to recheck the expression until
it evaluates to zero (becomes false). This rechecking means the loop must contain a provision
that permits altering the tested expression’s value. As you’ll see, this provision is indeed made.

Figure 5.1 shows the looping process a while statement produces. A diamond shape is
used to show the two entry and two exit points required in the decision part of the while
statement.

To make this looping process more tangible, consider the relational expression
count <= 10 and the statement cout << count;. Using these elements, you can write the
following valid while statement:

while (count <= 10)
cout << count;

Although this statement is valid, the alert reader will realize that it creates a situation in
which the cout statement is called forever (or until you stop the program) or not called at all.
Here’s why this happens: If count has a value less than or equal to 10 when the expression is
first evaluated, a call to cout is made. The while statement then automatically loops back on
itself and retests the expression. Because you haven’t changed the value stored in count, the
expression is still true, and another call to cout is made. This process continues forever, or
until the program containing this statement is stopped prematurely by the user. However, if

Chapter 5 181
The while Statement

count starts with a value greater than 10, the expression is false to begin with, and the call to
cout is never made.

enter the
while statement
o I. expression
evaluates
to zero
test A exit the
th i i
€ expression while statement

_ (step 1) (afalse condition)
3 | expression
evaluates
to a non-zero
number
. L (atrue condition)

loop execute the
statement
after the
parentheses
(step 2a)

A

go back and
reevaluate the
expression
(step 2b)

Figure 5.1 Anatomy of a while loop

How do you set an initial value in count to control what the while statement does the
first time the expression is evaluated? The answer, of course, is to assign values to each variable
in the tested expression before the while statement is encountered. For example, the follow-
ing sequence of instructions is valid:

count = 1;
while (count <= 10)
cout << count << " ";

Using this sequence of instructions ensures that count starts with a value of 1. You could
assign any value to count in the assignment statement. What’s important is to assign sonze
value. In practice, the assigned value depends on the application.

You must still change the value of count so that you can finally exit the while statement.
Doing so requires an expression such as count = count + 1 to increment the value of
count each time the while statement is executed. The fact that a while statement provides

182

Repetition

for repetition of a single statement doesn’t prevent including an additional statement to
change the value of count. All you have to do is replace the single statement with a compound
statement, as in this example:

count = 1; // initialize count
while (count <= 10)
{

cout << count << " ";

count++; // increment count
}

Note that, for clarity, each statement in the compound statement is placed on a different
line. This format is consistent with the convention adopted for compound statements in
Chapter 4.

Now analyze the preceding sequence of instructions. The first assignment statement sets
count equal to 1. The while statement is then entered, and the expression is evaluated for the
first time. Because the value of count is less than or equal to 10, the expression is true, and the
compound statement is executed. The first statement in the compound statement uses the cout
object to display the value of count. The next statement adds 1 to the value currently stored in
count, making this value equal to 2. The while statement then loops back to retest the expres-
sion. Because count is still less than or equal to 10, the compound statement is executed again.
"This process continues until the value of count reaches 11. Program 5.1 shows these statements
in an actual program.

Program 5.1

#include <iostream>

using namespace std;

int main()

{

int count;

count = 1; // initialize count
while (count <= 10)

{

cout << count << " ";
count++; // increment count

return 0;

"This is the output for Program 5.1:

1 2 3 4 5 6 7 8 9 10

Chapter 5 183
The while Statement

Note that there’s nothing special about the name count used in Program 5.1. Any valid
integer variable could have been used.

Before you look at other examples of the while statement, two comments on Program 5.1
are in order. First, the statement count++ can be replaced with any statement that changes the
value of count. A statement such as count = count + 2;, for example, causes every second
integer to be displayed. Second, it’s the programmer’s responsibility to ensure that count is
changed in a way that leads to a normal exit from the while statement. For example, if you
replace the expression count++ with the expression count--, the value of count never
exceeds 10 and an infinite loop is created. An infinite loop is one that never ends. The com-
puter doesn’t tap you on the shoulder and say, “Excuse me. You’ve created an infinite loop.”
The program just keeps displaying numbers until you realize it isn’t working as you expected.

Now that you have some familiarity with the while statement, see whether you can read
and determine the output of Program 5.2.

Program 5.2

#include <iostream>

using namespace std;

int main()

{

int i;
i = 10;
while (i >= 1)
{
cout << i << " ",
i--; // subtract 1 from i
}

return 0;

The assignment statement in Program 5.2 initially sets the int variable i to 10. The
while statement then checks whether the value of i is greater than or equal to 1. While the
expression is true, the value of i is displayed by the cout object, and the value of 1 is decre-
mented by 1. When i finally reaches 0, the expression is false, and the program exits the while
statement. Therefore, Program 5.2 produces the following display when it runs:

10 9 8 7 6 5 4 3 2 1

"To understand the power of the while statement, consider the task of printing a table of
numbers from 1 to 10 with the numbers’ squares and cubes. You can do this with a simple
while statement, as shown in Program 5.3.

184 Repetition

Program 5.3

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
int num;
cout << "NUMBER SQUARE CUBE\n"
<< Memmmem e -——-\n";
num = 1;
while (num < 11)
{
cout << setw(3) << num << " "
<< setw(3) << num * num << " "
<< setw(4) << num * num * num << endl;
num++; // increment num
}
return 0;
}

When Program 5.3 runs, the following display is produced:

NUMBER SQUARE CUBE
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

Note that the expression used in Program 5.3 is num < 11. For the integer variable num,
this expression is exactly equivalent to the expression num <= 10. The choice of which to use
is entirely up to you.

If you want to use Program 5.3 to produce a table of 1000 numbers, all you do is change
the expression in the while statement from num < 11 to num < 1001. Changing the 11 to
1001 produces a table of 1000 lines—not bad for a simple five-line while statement.

Chapter 5 185
The while Statement

All the program examples of the while statement use fixed-count loops because the
tested condition is a counter that checks for a fixed number of repetitions. In a variation on the
fixed-count loop, the counter isn’t incremented by 1 each time through the loop but by some
other value. For example, suppose you have the task of producing a Celsius-to-Fahrenheit
temperature conversion table. Fahrenheit temperatures corresponding to Celsius tempera-
tures from 5 to 50 degrees are to be displayed in increments of 5 degrees, which can be done
with this series of statements:

celsius = 5; // starting Celsius value
while (celsius <= 50)
{
fahren = (9.0/5.0) * celsius + 32.0;
cout << setw(4) << celsius
<< setw(1l3) << fahren << endl;
celsius = celsius + 5;

As before, the while statement consists of everything from the word while through the
compound statement’s closing brace. Before the program enters the while loop, you must
make sure a value is assigned to the counter being evaluated, and there’s a statement to alter
the counter’s value in the loop (in increments of 5) to ensure an exit from the while loop.
Program 5.4 illustrates using similar code in a complete program.

Program 5.4

#include <iostream>
#include <iomanip>
using namespace std;

// a program to convert Celsius to Fahrenheit
int main()

{

const int MAXCELSIUS = 50;
const int STARTVAL =
const int STEPSIZE =
int celsius;

double fahren;

cout << "DEGREES DEGREES\n"
<< "CELSIUS FAHRENHEIT\n"

KK Mo \n";

celsius = STARTVAL;

186 Repetition

// set output formats for floating-point numbers only
cout << setiosflags(ios::showpoint) << setiosflags(ios::fixed)
<< setprecision(2);

while (celsius <= MAXCELSIUS)
{
fahren = (9.0/5.0) * celsius + 32.0;
cout << setw(4) << celsius

<< setw(1l3) << fahren << endl;
celsius = celsius + STEPSIZE;

}

return 0;

}

"This is the display produced when Program 5.4 runs:

DEGREES DEGREES
CELSIUS FAHRENHEIT

5 41.00
10 50.00
15 59.00
20 68.00
25 77.00
30 86.00
35 95.00
40 104.00
45 113.00
50 122.00

EXERCISES 5.1

1. (Modify) Rewrite Program 5.1 to print the numbers 2 to 10 in increments of 2. The output
of your program should be the following:

2 4 6 8 10

2. (Modify) Rewrite Program 5.4 to produce a table starting at a Celsius value of -10 and ending
with a Celsius value of 60, in increments of 10 degrees.

3. (Desk check) a. For the following program, determine the total number of items displayed
as well as the first and last numbers printed:

#include <iostream>
using namespace std;

Iy

Chapter 5 187
The while Statement

int main()
{
int num = 0;
while (num <= 20)
{
num++;
cout << num << " ";

return 0;

b. Enter and run the program from Exercise 3a on a computer to verify your answers to the
exercise.

c. How would the output be affected if the two statements in the compound statement were
reversed (that is, if the cout statement were placed before the num++ statement)?

. (Program) Write, compile, and run a C++ program that converts gallons to liters. The program
should display gallons from 10 to 20 in 1-gallon increments and the corresponding liter equiv-
alents. Use the relationship that 1 gallon = 3.785 liters.

. (Program) Write, compile, and run a C++ program that converts feet to meters. T'he program
should display feet from 3 to 30 in 3-foot increments and the corresponding meter equivalents.
Use the relationship that 3.28 feet = 1 meter.

. (Program) A machine purchased for $28,000 is depreciated at a rate of $4000 a year for 7 years.
Write, compile, and run a C++ program that computes and displays a depreciation table for
7 years. The table should have this form:

END-OF-YEAR ACCUMULATED

YEAR DEPRECIATION VALUE DEPRECIATION
1 4000 24000 4000
2 4000 20000 8000
3 4000 16000 12000
4 4000 12000 16000
5 4000 8000 20000
6 4000 4000 24000
7 4000 0 28000

. (Program) An automobile travels at an average speed of 55 mph for 4 hours. Write, compile,
and run a C++ program that displays the distance, in miles, the car has traveled after 0.5, 1.0,
1.5, and so on hours until the end of the trip.

. (Program) a. The following is an approximate conversion formula for converting Fahrenheit
to Celsius temperatures:

Celsius = (Fahrenheit - 30) | 2

Using this formula, and starting with a Fahrenheit temperature of 0 degrees, write a C++ pro-
gram that determines when the approximate equivalent Celsius temperature differs from the

188 Repetition

exact equivalent value by more than 4 degrees. (Hint: Use a while loop that terminates when

the difference between approximate and exact Celsius equivalents exceeds 4 degrees.)

b. Using the approximate Celsius conversion formula given in Exercise 8a, write a C++ pro-
gram that produces a table of Fahrenheit temperatures, exact Celsius equivalent tempera-
tures, approximate Celsius equivalent temperatures, and the difference between the exact
and approximate equivalent Celsius values. The table should begin at 0 degrees Fahrenheit,
use 2-degree Fahrenheit increments, and terminate when the difference between exact and
approximate values is more than 4 degrees.

5.2 Interactive while Loops

Combining interactive data entry with the repetition capabilities of the while statement pro-
duces adaptable and powerful programs. To understand the concept, take a look at Program 5.5,
in which a while statement is used to accept and then display four user-entered numbers, one
at a time. Although the program uses a simple idea, it highlights the flow of control concepts
needed to produce more useful programs.

Program 5.5

#include <iostream>
using namespace std;

int main()

{
const int MAXNUMS = 4;
int count;
double num;

cout << "\nThis program will ask you to enter "
<< MAXNUMS << " numbers.\n";

count = 1;

while (count <= MAXNUMS)

{
cout << "\nEnter a number: ";
cin >> num;
cout << "The number entered is " << num;
count++;
}

cout << endl;

return 0;

Chapter 5 189
Interactive while Loops

The following is a sample run of Program 5.5. The bolded numbers were input in response
to the prompts:

This program will ask you to enter 4 numbers.

Enter a number: 26.2

The number entered is 26.2
Enter a number: 5

The number entered is 5

Enter a number: 103.456

The number entered is 103.456
Enter a number: 1267.89

The number entered is 1267.89

Review the program so that you understand clearly how the output was produced. The
first message displayed is caused by execution of the first cout statement. This statement is
outside and before the while statement, so it’s executed once, before any statement in the
while loop.

After the while loop is entered, the statements in the compound statement are executed
while the tested condition is true. The first time through the compound statement, the mes-
sage Enter a number: is displayed. The program then calls cin, which forces the computer
to wait for a number to be entered at the keyboard. After a number is typed and the Enter
key is pressed, the cout object displays the number. The variable count is then incremented
by 1. This process continues until four passes through the loop have been made and the value
of count is 5. Each pass causes the message Enter a number: to be displayed, causes one
call to cin to be made, and causes the message The number entered is to be displayed.
Figure 5.2 shows this flow of control.

Instead of simply displaying the entered numbers, Program 5.5 can be modified to use the
entered data. For example, you can add the numbers entered and display the total. To do this,
you must be careful about how you add the numbers because the same variable, num, is used
for each number entered. For this reason, the entry of a new number in Program 5.5 auto-
matically causes the previous number stored in num to be lost. Therefore, each number
entered must be added to the total before another number is entered. This is the required
sequence:

Enter a number
Add the number to the total

How do you add a single number to a total? A statement such as total = total + num;
does the job perfectly. It’s the accumulation statement introduced in Section 3.1. After each
number is entered, the accumulating statement adds the number to the total, as shown in
Figure 5.3. Figure 5.4 illustrates the flow of control for adding the numbers.

190

Repetition

start ’

set count
equal tol

print a
message

is count no - ’
less than or S p Sl
equg to (condition is false) end of program
| ' yes

print the
message
Enter a
number

loop
using Cln
print value
of number
add 1 to
count
)
go back and

retest count

accept a
number {

J (condmon is true)

these statements
are executed

each time the loop
is traversed

Figure 5.2 Flow of control diagram for Program 5.5

Chapter 5 191
Interactive while Loops

new number

accept a new
cin number

the variable num |

new number

goes in here

the variable total L num
total -
N new N an

okl Ltotal = total + num

Figure 5.3 Accepting and adding a number to a total

start ’
set count

to 1

to 0

is count l print total /

< 42
yes I'
\
accept a op ’

num

St
add num
to total

set total l

add 1 to
count

Figure 5.4 Accumulation flow of control

192 Repetition

In reviewing Figure 5.4, observe that a provision has been made for initially setting the total
to 0 before the while loop is entered. If you cleared the total inside the while loop, it would
be set to 0 each time the loop was executed, and any value stored previously would be erased.

Program 5.6 incorporates the necessary modifications to Program 5.5 to total the numbers
entered. As shown, the statement total = total + num; is placed immediately after the
call to cin. Putting the accumulating statement at this point in the program ensures that the
entered number is “captured” immediately into the total.

Program 5.6

#include <iostream>
using namespace std;

int main()

{
const int MAXNUMS = 4;
int count;
double num, total;

cout << "\nThis program will ask you to enter "
<< MAXNUMS << " numbers.\n";

count = 1

total 0

.
4
.
4

while (count <= MAXNUMS)
{
cout << "\nEnter a number: ";
cin >> num;
total = total + num;
cout << "The total is now " << total;
count++;

cout << "\n\nThe final total is " << total << endl;

return 0;

To make sure you understand, review Program 5.6. The variable total was created to
store the total of the numbers entered. Before entering the while statement, the value of
total is set to 0 to make sure any previous value in the storage location(s) assigned to this
variable is erased. Inside the while loop, the statement total = total + num; is used to
add the value of the entered number to total. As each value is entered, it’s added to the exist-
ing total to create a new total. Therefore, total becomes a running subtotal of all the values

Chapter 5 193
Interactive while Loops

entered. Only after all numbers are entered does total contain the final sum of all the num-
bers. After the while loop is finished, a cout statement is used to display this sum.

Using the same data entered in the sample run for Program 5.5, the following sample run
of Program 5.6 was made:

This program will ask you to enter 4 numbers.

Enter a number: 26.2

The total is now 26.2
Enter a number: 5

The total is now 31.2
Enter a number: 103.456
The total is now 134.656
Enter a number: 1267.89
The total is now 1402.546

The final total is 1402.546

Having used an accumulating assignment statement to add the numbers entered, you can
go further and calculate the average of the numbers. Where do you calculate the average—
inside the while loop or outside it? In the case at hand, calculating an average requires that
both a final sum and the number of items in that sum be available. The average is then com-
puted by dividing the final sum by the number of items. At this stage, you must ask, “At what
point in the program is the correct sum available, and at what point is the number of items
available?”

In reviewing Program 5.6, you can see that the correct sum needed for calculating the
average 1s available after the while loop is finished. In fact, the whole purpose of the while
loop is to ensure that the numbers are entered and added correctly to produce a correct sum.
After the loop is finished, you also have a count of the number of items used in the sum.
However, because of the way the while loop was constructed, the number in count (5)
when the loop is finished is 1 more than the number of items (4) used to obtain the total.
Knowing this, you simply subtract 1 from count before using it to determine the average. With
this information as background, see whether you can read and understand Program 5.7.

Program 5.7

#include <iostream>
using namespace std;

int main()
{
const int MAXNUMS = 4;
int count;
double num, total, average;

194 Repetition

cout << "\nThis program will ask you to enter "
<< MAXNUMS << " numbers.\n\n";

count = 1;

total 0;

while (count <= MAXNUMS)

{
cout << "Enter a number: ";
cin >> num;
total = total + num;
count++;

count--;

average = total / count;

cout << "\nThe average of the numbers is "
<< average << endl;

return 0;

Program 5.7 is almost identical to Program 5.6, except for the calculation of the average.
The constant display of the total inside and after the while loop has also been removed. The
loop in Program 5.7 is used to enter and add four numbers. Immediately after the loop is
exited, the average is computed and displayed. A sample run of Program 5.7 follows:

This program will ask you to enter 4 numbers.

Enter a number: 26.2
Enter a number: 5
Enter a number: 103.456
Enter a number: 1267.89

The average of the numbers is 350.637

Sentinels

All the loops created so far have been examples of fixed-count loops, in which a counter is used
to control the number of loop iterations. By means of a while statement, variable-condition
loops can also be constructed. For example, when entering grades, you might not want to count
the number of grades that will be entered. Instead, you prefer to enter grades continuously,
and at the end, type a special data value to signal the end of data input.

Chapter 5 195
Interactive while Loops

In programming, data values used to signal the start or end of a data series are called
sentinels. Sentinel values must, of course, be selected so as not to conflict with legitimate data
values. For example, if you’re constructing a program to process a student’s grades, and
assuming no extra credit is given that could produce a grade higher than 100, you could use
any grade higher than 100 as a sentinel value. Program 5.8 illustrates this concept: Data is
requested and accepted continuously until a number larger than 100 is entered. Entering a
number higher than 100 alerts the program to exit the while loop and display the sum of the
numbers entered.

Program 5.8

#include <iostream>
using namespace std;

int main()

{
const int HIGHGRADE = 100;
double grade, total;

grade = 0;

total 0;

cout << "\nTo stop entering grades, type in any number";
cout << "\n greater than 100.\n\n";

cout << "Enter a grade: ";

cin >> grade;

while (grade <= HIGHGRADE)

{
total = total + grade;

cout << "Enter a grade: ";
cin >> grade;

cout << "\nThe total of the grades is " << total << endl;

return 0;

196 Repetition

Point of Information

Loop Types

A loop that evaluates a condition before any statements in the loop are executed is
referred to as a pretest loop or an entrance-controlled loop. In C++, these loops are
created by using while or for statements.

A loop that evaluates a condition at the end of the repeating section of code is
referred to as a posttest loop or an exit-controlled loop. These loops always execute
the loop statements at least once before the condition is tested. The do-while state-
ment is used to construct this type of loop.

In addition to where the condition is tested (pretest or posttest), repeating sections of
code are classified by the type of condition being tested. In a fixed-count loop, the
condition is used to keep track of how many repetitions have occurred. In this type of
loop, a fixed number of calculations are performed or a fixed number of lines are print-
ed, at which point the repeating section of code is exited. All of C++'s repetition state-
ments can be used to create fixed-count loops.

In a variable-condition loop, the tested condition doesn’t depend on a count being
reached, but on a variable that can change interactively with each pass through the
loop. When a specified value is encountered, regardless of how many iterations have
occurred, repetitions stop. All of C++'s repetition statements can be used to create
variable-condition loops.

The following lines show a sample run of Program 5.8. As long as grades less than or equal
to 100 are entered, the program continues to request and accept additional data. When a num-
ber less than or equal to 100 is entered, the program adds this number to the total. When a
number greater than 100 is entered, the loop is exited, and the sum of the grades that were
entered is displayed.

To stop entering grades, type in any number
greater than 100.

Enter a grade: 95
Enter a grade: 100
Enter a grade: 82
Enter a grade: 101

The total of the grades is 277

Chapter 5 197
Interactive while Loops

break and continue Statements

"Two useful statements in connection with repetition statements are the break and continue
statements. You encountered the break statement in Section 4.4 when learning about the
switch statement. This is the format of the break statement:

break;

A break statement, as its name implies, forces an immediate break, or exit, from the
switch,while, for, and do-while statements (discussed in the next sections). For example,
execution of the following while loop is terminated immediately if a number greater than 76
is entered:

while(count <= 10)

{
cout << "Enter a number: ";
cin >> num;
if (num > 76)
{
cout << "You lose!\n";
break; // break out of the loop
}
else
cout << "Way to go!\n";
count++;
}

// break jumps to here

The break statement violates structured programming principles because it provides a
second, nonstandard exit from a loop. Nevertheless, the break statement is extremely useful
for breaking out of loops when an unusual condition is detected. It’s also used to exit from a
switch statement, but it’s because the matching case value has been detected and processed.

The continue statement is similar to the break statement but applies only to loops cre-
ated with while, do-while, and for statements. This is the general format of a continue
statement:

continue;

When continue is encountered in a loop, the next iteration of the loop begins immedi-
ately. For while loops, this means execution is transferred automatically to the top of the loop,
and reevaluation of the tested expression is initiated. Although the continue statement has
no direct effect on a switch statement, it can be included in a switch statement, which is also
contained in a loop. The effect of continue is the same: The next loop iteration begins.

198 Repetition

As a general rule, the continue statement is less useful than the break statement, but it’s
convenient for skipping over data that shouldn’t be processed while remaining in a loop. For
example, invalid grades are simply ignored in the following section of code, and only valid
grades are added to the total:!

while (count < 30)
{
cout << "Enter a grade: ";
cin >> grade;
if(grade < 0 || grade > 100)
continue;
total = total + grade;
count++;

The Null Statement
All statements must be terminated by a semicolon. A semicolon with nothing preceding it is
also a valid statement, called the null statement, as shown:

4

It’s a do-nothing statement used where a statement is required syntactically, but no action
1s called for. Typically, null statements are used with while or for statements. Program 5.9¢ in
Section 5.3 shows an example of a for statement using a null statement.

EXERCISES 5.2

1. (Modify) Rewrite Program 5.6 to compute the total of eight numbers.

2. (Modify) Rewrite Program 5.6 to display this prompt:

Please type in the total number of data values to be added:

In response to this prompt, the program should accept a user-entered number, and then use it
to control the number of times the while loop is executed. So if the user enters 5 in response
to the prompt, the program should request the input of five numbers and display the total after
five numbers have been entered.

3. (Modify) Rewrite Program 5.7 to compute the average of 10 numbers.

Although this section of code illustrates the flow of control the continue statement provides, it’s not the preferred way of achieving
the correct result. Instead of using an if statement and a continue statement to exclude invalid data, a better method is including
valid data with these statements:
if (grade >= 0 && grade <= 100)
{
total = total + grade;
count++;

}

Chapter 5 199
Interactive while Loops

4. (Modify) Rewrite Program 5.7 to display the following prompt:

Please type in the total number of data values to be averaged:

In response to this prompt, the program should accept a user-entered number, and then use it
to control the number of times the while loop is executed. So if the user enters 6 in response
to the prompt, the program should request an input of six numbers and display the average of
the next six numbers entered.

S. (Debug) By mistake, a programmer puts the statement average = total / count; in the
while loop immediately after the statement total = total + num; in Program 5.7. As a
result, the while loop becomes the following:
while (count <= MAXNUMS)

{
cout << "Enter a number: ";
cin >> num;
total = total + num;
average = total / count;
count++;
}
a. Will the program yield the correct result with this while loop?
b. From a programming perspective, which while loop is better to use, and why?

6. (Program) a. Write a C++ program to convert meters to feet. T'he program should request the
starting meter value, the number of conversions to be made, and the increment between met-
ric values. The display should have appropriate headings and list the meters and correspond-
ing feet value. If the number of iterations is greater than 10, have your program substitute a
default increment of 10. Use the relationship that 1 meter = 3.281 feet.

b. Run the program written in Exercise 6a on a computer. Verify that your program begins at
the correct starting meter value and contains the exact number of conversions specified in
your input data.

7. (Modify) a. Modify the program written in Exercise 6a to request the starting meter value,
the ending meter value, and the increment. Instead of the condition checking for a fixed
count, it checks for the ending meter value. If the number of iterations is greater than 20, have
your program substitute a default increment of (ending value - starting value) | 19.

b. Run the program written in Exercise 7a on a computer. Verify that your output starts at the
correct beginning value and ends at the correct ending value.

8. (Program) a. Write a C++ program to convert Celsius degrees to Fahrenheit. The program
should request the starting Celsius value, the number of conversions to be made, and the
increment between Celsius values. The display should have appropriate headings and list the
Celsius value and the corresponding Fahrenheit value. Use the relationship that Fakrenheit =
(9.0]5.0) * Celsius + 32.0.

b. Compile and run the program written in Exercise 8a on a computer. Verify that your pro-
gram begins at the correct starting Celsius value and contains the exact number of conver-
sions specified in your input data.

200

9.

10.

11.

Repetition

(Program) An arithmetic series is defined by the following;:
a+(a+d) +(a+2d)+(a+3d)+ " +[(a+n-1)d)]

a 1s the first term.
d is the “common difference.”
7 1s the number of terms to be added.

Using this information, write a C++ program that uses a while loop to display each term and
determine the sum of the arithmetic series having @ = 1, 4 = 3, and » = 100. Make sure your
program displays the value it has calculated.

(Program) A geometric series is defined by the following:

a+ar+ar*+ari+ " +ar’ !

a 1s the first term.
r1s the “common ratio.”
2 1s the number of terms in the series.

Using this information, write a C++ program that uses a while loop to display each term and
determine the sum of a geometric series having = 1, 7= .5, and #» = 10. Make sure your pro-
gram displays the value it has calculated.

(Program) a. The data in the following chart was collected on a recent automobile trip:
Mileage Gallons
22,495 Full tank
22,841 12.2
23,185 11.3
23,400 10.5
23,772 11.0
24,055 12.2
24,434 14.7
24,804 14.3
25,276 15.2

Write, compile, and run a C++ program that accepts a mileage and gallons value and calculates

the miles per gallon (mpg) for that segment of the trip. The mpg is calculated as the difference

in mileage between fill-ups divided by the number of gallons of gasoline used in the fill-up.

b. Modify the program written for Exercise 11a to also compute and display the cumulative
mpg after each fill-up. The cumulative mpg is calculated as the difference between mileage
at each fill-up and mileage at the start of the trip divided by the sum of gallons used to that
point in the trip.

Chapter 5 201
The for Statement

12. (Program) a. A bookstore summarizes its monthly transactions by keeping the following
information for each book in stock:

Book identification number

Inventory balance at the beginning of the month
Number of copies received during the month
Number of copies sold during the month

Write a C++ program that accepts this data for each book and then displays the book identifi-
cation number and an updated book inventory balance, using this relationship:

New balance = Inventory balance at the beginning of the month
+ Number of copies received during the month
- Number of copies sold during the month

Your program should use a while statement with a fixed-count condition so that information

on only three books is requested.

b. Compile and run the program written in Exercise 12a. Review the display your program
produces and verify that the output is correct.

13. (Modify) Modify the program you wrote for Exercise 12 to keep requesting and displaying
results until a sentinel value of 999 is entered. Compile and run your program. Review the
display your program produces and verify that the output is correct.

5.3 The for Statement

A for statement performs the same functions as the while statement but uses a different
form. In many situations, especially those using a fixed-count condition, the for statement’s
format is easier to use than the while statement equivalent. This is the general form of the
for statement:

for (initializing list; expression; altering list)
statement;

Although the for statement looks a little complicated, it’s really quite simple if you con-
sider each part separately. Inside the parentheses of the for statement are three items, sepa-
rated by semicolons. Each item is optional and can be described separately, but the semicolons
must always be present, even if you don’t use the items. As you’ll see, the items in parentheses
correspond to the initialization, expression evaluation, and expression altering values you've
already used with the while statement.

"Iypically, variables need to be initialized or other evaluations need to be made before
entering a repetition loop, so the for statement allows grouping all initializing statements as
the first set of items inside for’s parentheses. The items in this initializing list are
executed only once, before the expression is evaluated for the first time.

The middle item in parentheses, expression, is any valid C++ expression, and there’s no
difference in the way for and while statements use this expression. In both statements, as
long as the expression has a non-zero (true) value, the statement following the parentheses is

202

Repetition

executed. So before the first check of the expression, initial values for the tested expression’s
variables must be assigned, and before the expression is reevaluated, there must be one or
more statements that alter these values.

The for statement also provides a single place for all expression-altering statements: the
altering list, the last item inside for’s parentheses. All items in this list are executed by
the for statement at the end of the loop, just before the expression is reevaluated.

Figure 5.5 illustrates the internal workings of a for loop. As shown, when the for loop is
completed, control is transferred to the first executable statement following the loop.

enter the
for statement

initializing
statements

A1

expression’s value

evaluate is zero
the N exit the
ex:)ersets?s(:on (false condition) ~ for statement

expression’s value

™\ is non-zero
‘ _ | (true condition)
execute the
statement
00 after the
P parentheses
execute the

altering list

go back and
retest the condition

Figure 5.5 The for statement’s flow of control

Chapter 5 203
The for Statement

"To avoid having to show every step, you can use a simplified set of flowchart symbols to
describe for loops. If you use the following flowchart symbol to represent a for statement,

for
statement

you can then illustrate a complete for loop, as shown in Figure 5.6.

enter the for
statement

1

expression’s value

a for IS 2610 exit the for
(expression) o statement
(false condition)
expression’s value is non-zero
p (true condition)

{

statement 1

through

statement n

}

Figure 5.6 A simplified for loop flowchart

The following examples show the correspondence between while and for statements.
First, take a look at this while statement:

count = 1;

while (count <= 10)

{
cout << count << " ";
count++;

Here’s the corresponding for statement:

for (count = 1; count <= 10; count++)
cout << count << " ";

204

Repetition

Point of Information

Where to Place the Opening Braces

When the for loop contains a compound statement, professional C++ programmers use
two styles of writing for loops. The style used in this book takes the following form:

for (expression)
{
compound statement in here

}

An equally acceptable style places the compound statement’s opening brace on the
first line. Using this style, a for loop looks like the following:

for (expression) {
compound statement in here

}

The advantage of the first style is that the braces line up under one another, making
it easier to locate brace pairs. The advantage of the second style is that it makes the
code more compact and saves a line, so more code can be viewed in the same display
area. Both styles are used but are almost never intermixed. Select whichever style
appeals to you and be consistent in its use. As always, the indentation you use in the
compound statement (two or four spaces or a tab) should also be consistent throughout
all your programs. The combination of styles you select becomes a “signature” for your
programming work.

As this example shows, the only difference between the for and while statements is the
placement of equivalent expressions. Grouping the initialization, expression test, and altering
list in the for statement is convenient, especially when you’re creating fixed-count loops.
Now look at this for statement:

for (count = 2; count <= 20; count = count + 2)
cout << count << " ";

In this statement, all the loop control information is contained in the parentheses. The
loop starts with a count of 2, stops when the count exceeds 20, and increments the loop coun-
ter in steps of 2. Program 5.9 shows this for statement in an actual program. A blank space is
placed between output values for readability.

Chapter 5 205
The for Statement

Program 5.9

#include <iostream>
using namespace std;
int main()
{
int count;
for (count = 2; count <= 20; count = count + 2)
cout << count << " ";

return 0;

"This is the output of Program 5.9:
2 46 8 10 12 14 16 18 20

The for statement doesn’t require having any of the items inside for’s parentheses or
using them for initializing or altering the values in the expression statements; however, the two
semicolons must be included in these parentheses. For example, the construction
for (; count <= 20 ;) isvalid

If the initializing list is missing, the initialization step is omitted when the for statement
is executed. Therefore, the programmer must provide the required initializations before the
for statement is encountered. Similarly, if the altering list is missing, any expressions needed
to alter the evaluation of the tested expression must be included in the statement part of the
loop. The for statement only ensures that all expressions in the initializing list are executed
once, before evaluation of the tested expression, and all expressions in the altering list are
executed at the end of the loop, before the tested expression is rechecked. Program 5.9 can be
rewritten in any of the three ways shown in Programs 5.9a, 5.9b, and 5.9c¢.

Program 5.9a

#include <iostream>
using namespace std;

int main()

{

int count;

count = 2; // initialized outside the for statement
for (; count <= 20; count = count + 2)
cout << count << " ";

return 0;

206 Repetition

Program 5.9b

#include <iostream>
using namespace std;
int main()

{

int count;

count = 2; // initialized outside the for statement
for(; count <= 20;)
{

cout << count << " ";

count = count + 2; // alteration statement

return 0;

Program 5.9c

#include <iostream>
using namespace std;
int main() // all expressions inside for's parentheses

{
int count;

for (count = 2; count <= 20; cout << count << " ", count = count + 2);

return 0;

In Program 5.9a, count is initialized outside the for statement, and the first list inside the
parentheses is left blank. In Program 5.9b, both the initializing list and the altering list are
outside the parentheses. Program 5.9b also uses a compound statement in the for loop, with
the expression-altering statement included in the compound statement. Finally, Program 5.9¢
has included all items inside the parentheses, so there’s no need for any useful statement fol-
lowing the parentheses. In this example, the null statement (;) satisfies the syntax require-
ment of one statement to follow for’s parentheses.

Also, observe in Program 5.9¢ that the altering list (the last set of items in parentheses)
consists of two items, and a comma has been used to separate these items. Using commas to
separate items in both the initializing and altering lists is required if either of these lists con-
tains more than one item.

Chapter 5 207
The for Statement

Last, note that these three programs are all inferior to Program 5.9, and although you
might encounter them in your programming career, you shouldn’t use them. The for state-
ment in Program 5.9 is much clearer because all items pertaining to the tested expression are
grouped together inside the parentheses. Keeping the for loop structure “clean,” as in
Program 5.9, is important and a good programming practice.

Although the initializing and altering lists can be omitted from a for statement, omitting
the tested expression results in an infinite loop. For example, this statement creates an infi-

nite loop:
for (count = 2; ; count++)
cout << count << " ";

As with the while statement, both break and continue statements can be used in a for
loop. A break forces an immediate exit from the for loop, as it does in the while loop. A
continue, however, forces control to be passed to the altering list in a for statement, after
which the tested expression is reevaluated. This action differs from continue’s action in a
while statement, where control is passed directly to reevaluation of the tested expression.

Finally, many programmers use the initializing list of a for statement to both declare and
initialize the counter variable and any other variables used primarily in the for loop. For
example, in this for statement, the variable count is both declared and initialized inside the
for statement:

for(int count = 0; count < 10; count++)
cout << count << " ";

As always, having been declared, count can now be used anywhere after its declaration in
the body of the function containing the declaration.

"To understand the enormous power of for loops, consider the task of printing a table of
numbers from 1 to 10, including their squares and cubes, by using a for statement. This table
was produced previously by using a while loop in Program 5.3. You might want to review
Program 5.3 and compare it with Program 5.10 to get a better sense of the equivalence
between for and while statements.

. Program 5.10

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
const int MAXNUMS = 10;
int num;
cout << endl; // print a blank line
cout << "NUMBER SQUARE CUBE\n"
<L Mmoo ——=-\n";

208

Repetition

for (num = 1; num <= MAXNUMS; numt++)

cout << setw(3) << num << " "
<< setw(3) << num * num << " "
<< setw(4) << num * num * num << endl;

return 0;

When Program 5.10 is run, this is the display produced:

NUMBER SQUARE CUBE
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

Simply changing the number 10 in the for statement of Program 5.10 to 1000 creates a
loop that’s executed 1000 times and produces a table of numbers from 1 to 1000. As with the
while statement, this small change produces an immense increase in the program’s processing
and output. Notice also that the expression num++ was used in the altering list in place of the
equivalent num = num + 1.

Interactive for Loops

Using the cin object inside a for loop creates an interactive for loop, much like using this
object in a while loop. For example, in Program 5.11, a cin object is used to input a set of
numbers. As each number is input, it’s added to a total. When the for loop is exited, the aver-
age 1s calculated and displayed.

Program 5.11

#include <iostream>

using namespace std;

// This program calculates the average
// of MAXCOUNT user-entered numbers
int main()

{

Chapter 5 209
The for Statement

const int MAXCOUNT = 5;
int count;
double num, total, average;

total = 0.0;

for (count = 0; count < MAXCOUNT; count++)

cout << "Enter a number: ";
cin >> num;
total = total + num;

average = total / count;
cout << "The average of the data entered is " << average

<< endl;

return 0;

The for statement in Program 5.11 creates a loop that’s executed five times. The user is
prompted to enter a number each time through the loop. After each number is entered, it’s
added to the total immediately. Although total was initialized to 0 before the for statement,
this initialization could have been included with the initialization of count, as follows:

for (total = 0.0, count = 0; count < MAXCOUNT; count++)

Additionally, the declarations for both total and count could have been included with
their initializations inside the initializing list, as follows:

for (double total = 0.0, int count = 0; count < MAXCOUNT; count++)

Any of these for constructs is considered a good programming practice. Which one you
choose is simply a matter of your own programming style.

Nested Loops
In many situations, using a loop within another loop, called a nested loop, is convenient. Here’s
a simple example of a nested loop:

for(i = 1; i <= 5; i++) // start of outer loop <----- +
{ /7 I
cout << "\ni is now " << i << endl; // |
// |

for(j = 1; j <= 4; j++) // start of inner loop |
cout << " j = " << j; // end of inner loop |

} // end of outer loop e +

210 Repetition

The first loop, controlled by the value of i, is called the outer loop. The second loop, con-
trolled by the value of j, is called the inner loop. Notice that all statements in the inner loop
are contained in the boundaries of the outer loop, and a different variable is used to control
each loop. For each trip through the outer loop, the inner loop runs through its entire sequence
T'herefore, each time the i counter increases by 1, the inner for loop executes completely and
goes through four values (j takes on the values 1 to 4), as shown in Figure 5.7. Program 5.12
includes this type of loop in a working program.

=3 e

Figure 5.7 For each value of i, j loops four times

Program 5.12

#include <iostream>
using namespace std;

int main()

{

int i,5;

Chapter 5 211
The for Statement

for(i = 1; i <= 5; i++) // start of outer loop <----+
{ /7 |
cout << "\ni is now " << i << endl; // |
// |

for(j = 1; J <= 4; j++)// start of inner loop |
cout << " j = " << j; // end of inner loop |

} // end of outer loop <----+

return 0;

"This is the output of a sample run of Program 5.12:

i is now 1
j=1 3j=2 j=3 j=4
i is now 2
j=1 3j=2 j=3 j=4
i is now 3
j=1 3j=2 j=3 j=4
i is now 4
j=1 3j=2 j=3 j=4
i is now 5
j=1 j=2 j=3 j=4

"To understand the usefulness of a nested loop, take a look at using one to compute the
average grade for each student in a class of 20 students. Each student has taken four exams
during the semester. The final grade is calculated as the average of these exam grades. An
outer loop consisting of 20 passes is used to compute the average grade for each student. The
inner loop consists of four passes, and one exam grade is entered in each inner loop pass. As
each grade is entered, it’s added to the total for the student, and at the end of the loop, the
average is calculated and displayed. Because both the outer and inner loops are fixed-count
loops of 20 and 4, respectively, for statements are used to create these loops. Program 5.13
uses a nested loop to make the required calculations.

Program 5.13

#include <iostream>
using namespace std;

int main()

{

const int NUMGRADES = 4;
const int NUMSTUDENTS = 20;

int i,7; =

double grade, total, average;

212

Repetition

for

{

total = 0;

(i = 1; i <= NUMSTUDENTS; i++) // start of outer loop

// clear the total for this student

for (j = 1; j <= NUMGRADES; j++) // start of inner loop

{

}

average

cout << "Enter an examination grade for student: "
<< j << ":v;
cin >> grade;
total = total + grade; // add the grade to the total
// end of the inner for loop
total / NUMGRADES; // calculate the average

cout << "\nThe average for student " << i

<< " is " << average << "\n\n";
// end of the outer for loop

return 0;

In reviewing Program 5.13, pay particular attention to the initialization of total in the

outer loop, before the inner loop is entered: total is initialized 20 times, once for each stu-
dent. Also, notice that the average is calculated and displayed immediately after the inner loop
is finished. Because the statements that compute and print the average are also in the outer
loop, 20 averages are calculated and displayed. The entry and addition of each grade in the
inner loop uses techniques you have seen before and should be familiar with now.

EXERCISES 5.3

1. (Practice) Write a for statement for each of the following cases:

a.

b.

Use a counter named i that has an initial value of 1, a final value of 20, and an increment
of 1.

Use a counter named icount that has an initial value of 1, a final value of 20, and an incre-
ment of 2.

. Use a counter named 7 that has an initial value of 1, a final value of 100, and an increment

of 5.

. Use a counter named icount that has an initial value of 20, a final value of 1, and an incre-

ment of -1.

. Use a counter named icount that has an initial value of 20, a final value of 1, and an incre-

ment of -2.
Use a counter named count that has an initial value of 1.0, a final value of 16.2, and an
increment of 0.2.

. Use a counter named xcnt that has an initial value of 20.0, a final value of 10.0, and an

increment of -0.5.

Chapter 5 213
The for Statement

2. (Desk check) Determine the number of times each for loop is executed for the for state-
ments written in Exercise 1.

3. (Desk check) Determine the value in total after each of the following loops is executed:
a. total = 0;
for (1 = 1; i <= 10; i =1 + 1)
total = total + 1;
b. total = 1;
for (count = 1; count <= 10; count = count + 1)
total = total * 2;
c. total = 0;
for (i = 10; i <= 15; i = 1i + 1)
total = total + i;
d. total = 50
for (1 = 1; i <=10; 1 = i + 1)
total = total - i;
e. total = 1;
for (icnt = 1; icnt <= 8; ++icnt)
total = total * icnt;
f. total = 1.0;
for (j = 1; j <= 5; ++3j)
total = total / 2.0;

’
’

4. (Desk check) Determine the output of the following program:

#include <iostream>
using namespace std;

int main()

{
int i;
for (i = 20; i >= 0; i -= 4)
cout << i;
return 0;
}

5. (Modify) Modify Program 5.10 to produce a table of the numbers 0 through 20 in increments
of 2, with their squares and cubes.

6. (Modify) Modify Program 5.10 to produce a table of numbers from 10 to 1, instead of 1 to 10,
as it currently does.

7. (Program) a. Write, compile, and run a C++ program that displays a table of 20 temperature
conversions from Fahrenheit to Celsius. The table should start with a Fahrenheit value of
20 degrees and be incremented in values of 4 degrees. Recall that Celsius = (5.0/9.0) x
(Fahrenheit - 32.0).

b. Modify the program written for Exercise 7a to request the number of conversions to be made.

214

8.

10.

11.

Repetition

(Program) Write, compile, and run a C++ program that converts Fahrenheit to Celsius tem-
perature in increments of 5 degrees. The initial value of Fahrenheit temperature and the total
conversions to be made should be requested as user input during program execution. Recall
that Celsius = (5.0/9.0) x (Fahrenheit - 32.0).

. (Program) a. Write, compile, and run a C++ program that accepts five values of gallons, one

at a time, and converts each value entered to its liter equivalent before the next value is

requested. Use a for loop in your program. There are 3.785 liters in 1 gallon of liquid.

b. Modify the program written for Exercise 9a to request the number of data items to be
entered and converted first.

(Program) a. An old Arabian legend has it that a fabulously wealthy but unthinking king
agreed to give a beggar 1 cent and double the amount for 64 days. Using this information,
write, compile, and run a C++ program that displays how much the king must pay the beggar
on each day. The output of your program should appear as follows:

Day Amount Owed
0.01
0.02
3 0.04
64

b. Modify the program you wrote for Exercise 10a to determine on which day the king will
have paid the beggar a total of one million dollars.

(Debug) Is the following program correct? If it is, determine its output. If it’s not, determine
the error and correct it so that the program will run.

#include <iostream>
using namespace std;

int main()

{

for(int i = 1; i < 10; i++)
cout << i << ‘\n’;

for (j = 1; i < 5; i++)
cout << i << endl;

return 0;

12.

13.

14.

Chapter 5 215
The for Statement

(Program) a. Write, compile, and run a C++ program that calculates and displays the amount

of money available in a bank account that initially has $1000 deposited and earns interest at

the rate of 3% a year. Your program should display the amount available at the end of each year

for a period of 10 years. Use the relationship that the money available at the end of each year

= the amount of money in the account at the start of the year + .03 x the amount available at

the start of the year.

b. Modify the program written for Exercise 12a to prompt the user for the amount of money
initially deposited in the account.

c. Modify the program written for Exercise 12a to prompt the user for both the amount of
money initially deposited and the number of years to be displayed.

d. Modify the program written for Exercise 12a to prompt the user for the amount of money
initially deposited, the interest rate to be used, and the number of years to be displayed.

(Program) According to legend, the island of Manhattan was purchased from the native
Indian population in 1626 for $24. Assuming this money was invested in a Dutch bank paying
4% simple interest per year, construct a table showing how much money the native population
would have at the end of each 50-year period, starting in 1626 and ending 400 years later. Use
the relationship that the money available at the end of each 50-year period = the amount of
money in the account at the start of period x the quantity (1 + .04)%.

(Program) A well-regarded manufacturer of widgets has been losing 4% of its sales each year.
The company’s annual profit is 10% of sales. This year, the company has had $10 million in
sales and a profit of $1 million. Determine the expected sales and profit for the next 10 years.
Your program should produce a display in the following form:

SALES AND PROFIT PROJECTION

YEAR EXPECTED SALES PROJECTED PROFIT
1 $10000000.00 $1000000.00

2 $ 9600000.00 $ 960000.00

3

10

216

15.

16.

17.

18.

Repetition

(Program) Four experiments are performed, and each experiment has six test results. The
results for each experiment are given in the following list. Write, compile, and run a C++ pro-
gram using a nested loop to compute and display the average of the test results for each
experiment.

Ist experiment results: 23.2 31 16.9 27.5 25.4 28.6
2nd experiment results: 34.8 45.2 27.9 36.8 33.4 39.4
3rd experiment results: 19.4 16.8 10.2 20.8 18.9 13.4
4th experiment results: 36.9 39.5 49.2 45.1 42.7 50.6

(Modify) Modify the program written for Exercise 15 so that the number of test results for
each experiment is entered by the user. Write your program so that a different number of test
results can be entered for each experiment.

(Program) a. A bowling team consists of five players, and each player bowls three games.
Write, compile, and run a C++ program that uses a nested loop to enter each player’s scores
and then computes and displays the average score for each bowler. Assume each bowler has
the following scores:
Ist bowler: 286 252 265
2nd bowler: 212 186 215
3rd bowler: 252 232 216
4th bowler: 192 201 235
5th bowler: 186 236 272
b. (Modify) Modify the program written for Exercise 17a to calculate and display the average
team score. (Hinr: Use a second variable to store the total of all players’ scores.)
c. (Modify) Rewrite the program written for Exercise 17a to eliminate the inner loop. To do
this, you have to input three scores for each bowler rather than enter one at a time. Each
score must be stored in its own variable name before the average is calculated.

(Program) Write, compile, and run a C++ program that calculates and displays the yearly
amount available if $1000 is invested in a bank account for 10 years. Your program should
display the amounts available for interest rates from 6% to 12%, inclusive, in 1% increments.
Use a nested loop, with the outer loop having a fixed count of 7 and the inner loop having a
fixed count of 10. The first iteration of the outer loop should use an interest rate of 6% and
display the amount of money available at the end of the first 10 years. In each subsequent pass
through the outer loop, the interest rate should be increased by 1%. Use this relationship:
money available at end of each year = amount of money in account at start of the year + inter-
est rate x amount available at start of the year.

Chapter 5 217
The do-while Statement

5.4 The do-while Statement

Both while and for statements evaluate an expression at the start of the repetition loop. In
some cases, however, testing an expression at the end of the loop is more convenient. For
example, suppose you have constructed the following while loop to calculate sales taxes:

cout << "Enter a price: ";
cin >> price;
while (price != SENTINEL)
{
salestax = RATE * price;
cout << "The sales tax is $" << salestax;
cout << "\nEnter a price: ";
cin >> price;

Using this while statement requires duplicating the prompt and cin statement before the
loop and then inside the loop, as done in this example, or resorting to another method to force
execution of statements in the while loop first.

A do-while statement, as its name implies, allows you to perform some statements before
an expression is evaluated at the end of the loop. In many situations, this approach can be used
to eliminate the duplication shown in the previous example. It has this general form in C++:

do
statement;
while (expression); -——————don’tforget the final semicolon, which is required here

As with all C++ programs, the single statement in the do-while can be replaced with a
compound statement. Figure 5.8 shows a flow control diagram illustrating the operation of the
do statement.

218 Repetition

enter the
do statement

execute the
statement
after the
word do

\| 1

expression’s value

is zero .
ev?#;ate A, exitthe

expression (false condition) do statement

loop

expression’s value

is non-zero
\/ (true condition)

go back and
execute the statement

Figure 5.8 The do statement’s flow of control

As shown, all statements within the do-while statement are executed at least once before
the expression is evaluated. Then, if the expression has a non-zero value, the statements are
executed again. This process continues until the expression evaluates to zero (becomes false).
For example, take a look at the following do-while statement:

do
{

cout << "\nEnter a price: ";
cin >> price;

if (abs(price - SENTINEL) < 0.0001) break;
salestax = RATE * price;

cout << "The sales tax is $" << salestax;

}
while (price != SENTINEL);

Chapter 5 219
The do-while Statement

Observe that only one prompt and cin statement are used because the tested expression
is evaluated at the end of the loop.

As with all repetition statements, the do-while statement can always replace or be
replaced by an equivalent while or for statement. The choice of which statement to use
depends on the application and the programmer’s preferred style. In general, while and for
statements are preferred because anyone reading the program can clearly see what’s being
tested up front, at the top of the program loop.

Validity Checks

The do-while statement is particularly useful in filtering user-entered input and providing
data validation checks. For example, an operator is required to enter a valid customer identifi-
cation number between 100 and 1999. A number outside this range is rejected, and a new
request for a valid number is made. The following section of code supplies the data filter
needed to verify the entry of a valid identification number:

do

{
cout << "\nEnter an identification number: ";
cin >> idNum;

}

while (idNum < 100 || idNum > 1999);

In this code, a request for an identification number is repeated until a valid number is
entered. This section of code is “bare bones,” in that it doesn’t alert the operator to the cause
of the new request for data or allow premature exit from the loop if a valid identification num-
ber can’t be found. The following code is an alternative for removing the first drawback:

do
{

cout << "\nEnter an identification number: ";

cin >> idNum;

if (idNum < 100 || idNum > 1999)

{

cout << "\n An invalid number was Jjust entered"
<< "\nPlease check the ID number and reenter";

}
else
break; // break if a valid ID number was entered
} while(1l); // this expression is always true

A break statement is used to exit from the loop. Because the expression the do-while
statement is evaluating is always 1 (true), an infinite loop has been created that’s exited only
when the break statement is encountered.

220

Repetition

EXERCISES 5.4

1. (Program) a. Using a do-while statement, write, compile, and run a C++ program to accept

a grade. The program should request a grade continuously as long as an invalid grade is

entered. An invalid grade is any grade less than 0 or greater than 100. After a valid grade has

been entered, your program should display the value of the grade entered.

b. Modify the program written for Exercise 1a so that the user is alerted when an invalid grade
has been entered.

c. Modify the program written for Exercise 1b so that it allows the user to exit the program by
entering the number 999.

d. Modify the program written for Exercise 1b so that it automatically terminates after five
invalid grades are entered.

. (Program) a. Write, compile, and run a C++ program that continuously requests a grade to be

entered. If the grade is less than 0 or greater than 100, your program should print a message

informing the user that an invalid grade has been entered; else, the grade should be added to

a total. When a grade of 999 is entered, the program should exit the repetition loop and com-

pute and display the average of the valid grades entered.

b. Run the program written in Exercise 2a on a computer and verify the program by using
appropriate test data.

. (Program) a. Write, compile, and run a C++ program to reverse the digits of a positive integer

number. For example, if the number 8735 is entered, the number displayed should be 5378.
(Hint: Use a do-while statement and continuously strip off and display the number’s units
digit. If the variable num initially contains the number entered, the units digit is obtained as
(num % 10)). After a units digit is displayed, dividing the number by 10 sets up the number
for the next iteration. Therefore, (8735 % 10) is 5and (8735 / 10) is 873. The do-while
statement should continue as long as the remaining number is not 0.

b. Run the program written in Exercise 3a on a computer and verify the program by using

appropriate test data.

. (Practice) Repeat any of the exercises in Section 5.3, using a do-while statement rather than

a for statement.

5.5 Common Programming Errors

When using repetition statements, beginning C++ programmers are prone to making the fol-
lowing seven errors:

1. The most troublesome error for new programmers is the “off by one” error, in which the
loop executes one too many or one too few times than was intended. For example,
the loop created by the statement for(i = 1; i < 11; i++) executes 10 times,
not 11, even though the number 11 is used in the statement. An equivalent loop can be
constructed by using the statement for(i = 1; i <= 10; i++).

Chapter 5 221
Common Programming Errors

However, if the loop is started with an initial value of i = 0, using the statement
for(i = 0; i < 11; i++), the loop is traversed 11 times, as is a loop constructed
with the statement for(i = 0; i <= 10; i++). In constructing loops, you must
pay particular attention to both the initial and final conditions used to control the loop
to make sure the number of loop traversals isn’t off by one too many or one too few
executions.

The next two errors pertain to the tested expression, and you have already encountered
them with the if and switch statements:

2. Inadvertently using the assignment operator, =, in place of the equality operator, ==, in
the tested expression—for example, typing the assignment expression a = 5 instead
of the correct relational expression a==5. Because the tested expression can be any
valid C++ expression, including arithmetic and assignment expressions, the compiler
doesn’t detect this error.

3. Using the equality operator, ==, when testing double-precision operands. For example,
the expression fnum == 0.01 should be replaced by a test requiring that the absolute
value fnum - 0.01 be less than an acceptable amount. The reason is that all numbers
are stored in binary form. Using a finite number of bits, decimal numbers such as 0.01
have no exact binary equivalent, so tests requiring equality with these numbers can fail.
(See Section 4.1 for a more complete description of this numerical accuracy problem.)

The next three errors are particular to the for statement:

4. Placing a semicolon at the end of for’s parentheses, which often produces a do-nothing
loop. For example, take a look at these statements:

for(count = 0; count < 10; count++);
total = total + num;

The semicolon at the end of the first line of code is a null statement. It has the effect
of creating a loop that’s executed 10 times with nothing done except incrementing and
testing count. This error tends to occur because C++ programmers are used to ending
most lines with a semicolon.

5. Using commas to separate items in a for statement instead of the required semicolons,
as in this example:

for (count = 1, count < 10, count++)

Commas must be used to separate items in the initializing and altering lists, but semi-
colons must be used to separate these lists from the tested expression.

6. Changing the value of the control variable used in the tested condition both inside the
body of a for loop and in its altering list. For example, take a look at this for loop:

for(int i=0; i<10; i++)
cout << i++;

In this code, the value of the variable being tested (in this case, i) is changed in two
places, which is a serious logic error.

222

Repetition

7. The final common programming error is omitting the final semicolon from the do-
while statement. This error is usually made by programmers who have learned to omit
the semicolon after the parentheses of a while statement and carry over this habit
when encountering the reserved word while at the end of a do-while statement.

5.6 Chapter Summary

1. A section of repeating code is referred to as a loop. A loop is controlled by a repetition state-

ment that tests a condition to determine whether the code is to be executed. Each pass
through the loop is referred to as a repetition or an iteration. The tested condition must
always be set explicitly before its first evaluation by the repetition statement. Inside the
loop, there must always be a statement that permits altering the condition so that the loop,
after it’s entered, can be exited.

2. There are three basic type of loops: while, for, and do-while. The while and for loops

are pretest or entrance-controlled loops. In this type of loop, the tested condition is evalu-
ated at the beginning of the loop, which requires setting the tested condition explicitly
before loop entry. If the condition is true, loop repetitions begin; otherwise, the loop is not
entered. [terations continue as long as the condition remains true. In C++, while and for
loops are constructed by using while and for statements.

The do-while loop is a posttest or an exit-controlled loop, in which the tested condition is
evaluated at the end of the loop. This type of loop is always executed at least once. As long
as the tested condition remains true, do-while loops continue to execute.

3. Loops are also classified according to the type of tested condition. In a fixed-count loop,

the condition is used to keep track of how many repetitions have occurred. In a variable-
condition loop, the tested condition is based on a variable that can change interactively
with each pass through the loop.

4. In C++, a while loop is constructed by using a while statement. This is the most com-

monly used form of this statement:

while (expression)
{
statements;

}

The expression in parentheses is the condition that’s tested to determine whether the
statement following the parentheses, which is generally a compound statement, is executed.
T'he expression is evaluated in the same manner as one in an if-else statement; the dif-
ference is how the expression is used. In a while statement, the statement following the

Chapter 5 223
Chapter Summary

expression is executed repeatedly as long as the expression retains a non-zero value, instead
of just once, as in an if-else statement. An example of a while loop follows:

count = 1; // initialize count
while (count <= 10)
{

cout << count << " ";

count++; // increment count
}

The first assignment statement sets count equal to 1. The while statement is then
entered, and the expression is evaluated for the first time. Because the value of count is
less than or equal to 10, the expression is true, and the compound statement is executed.
The first statement in the compound statement uses the cout statement to display the
value of count.

The next statement adds 1 to the value currently stored in count, making this value equal
to 2. The while statement then loops back to retest the expression. Because count is still
less than or equal to 10, the compound statement is executed again. This process continues
until the value of count reaches 11.

Because the while statement always checks its expression at the top of the loop, any vari-
ables in the tested expression must have values assigned before the while is encountered.
In addition, the while loop must contain a statement that alters the tested expression’s value.

. In C++, a for loop is constructed by using a for statement. This statement performs the
same functions as the while statement but uses a different form. In many situations, espe-
cially those using a fixed-count condition, the for statement format is easier to use than its
while statement equivalent. This is the most commonly used form of the for statement:

for (initializing list; expression; altering list)
{
statements;

}

Inside the parentheses of the for statement are three items, separated by semicolons. Each
of these items is optional, but the semicolons must be present.

The initializing list is used to set any initial values before the loop is entered; gener-
ally, it’s used to initialize a counter. Statements in the initializing list are executed only once.
T'he expression in the for statement is the condition being tested: It’s tested at the start
of the loop and before each iteration. The altering Iist contains loop statements that

224 Repetition

aren’t within the compound statement; generally, it’s used to increment or decrement a
counter each time the loop is executed. Multiple statements in both initializing and altering
lists are separated by commas. Here’s an example of a for loop:

for (total = 0, count = 1; count < 10; count++)
{

cout << "Enter a grade: ";

total = total + grade;
}

In this for statement, the initializing list is used to initialize both total and count. The
expression determines that the loop will execute as long as the value in count is less than
10, and the altering list specifies that the value of count is incremented by 1 each time
through the loop.

6. The for statement is extremely useful in creating fixed-count loops because you can
include initializing statements, the tested expression, and statements affecting the tested
expression in parentheses at the top of a for loop for easy inspection and modification.

7. The do-while statement is used to create posttest loops because it checks its expression
at the end of the loop. Checking at the end of the loop ensures that the body of a do loop
is executed at least once. A do-while loop must contain at least one statement that alters
the tested expression’s value.

Chapter

6.1 Function and Parameter

Declarations
6.2 Returning a Single Value Modularity Using
6.3 Returning Multiple Values Functions

6.4 Variable Scope

6.5 Variable Storage Class

6.6 Common Programming Errors
6.7 Chapter Summary

6.8 Chapter Supplement: Generating
Random Numbers

Professional programs are designed, coded, and tested much like hardware: as a set of modules inte-
grated to perform a completed whole. A good analogy is an automobile; one major module is the engine,
another is the transmission, a third the braking system, a fourth the body, and so on. All these modules
are linked together and placed under the driver’s control, which can be compared to a main () program
module. The whole now operates as a complete unit, able to do useful work, such as driving to the store.
During the assembly process, each module is constructed, tested, and found to be free of defects (bugs)
before it’s installed in the final product.

In this analogy, each major car component can be compared to a function. For example, the driver
calls on the engine when the gas pedal is pressed. The engine accepts inputs of fuel, air, and electricity to
turn the driver’s request into a useful product—power—and then sends this output to the transmission
Jor further processing. The transmission recerves the engine’s output and converts it to a form the wheels
can use. An additional input to the transmission is the driver’s selection of gears (drive, reverse, neutral,
and so on).

The engine, transmission, and other modules “know” only the universe bounded by their inputs and
outputs. The driver doesn’t need to know the internal operation of the modules being controlled. All that's
required is knowing what each module does and how to “call” on it when the module’s output is needed.

226

Modularity Using Functions

Communication between modules is restricted to passing inputs to each module as it’s called on to perform
i1s task, and each module operates in a fairly independent manner. Programmers use this same modular
approach to create and maintain reliable C++ programs by using functions.

As you have seen, each C++ program must contain a main () function. In addition to this required
Sfunction, C++ programs can also contain any number of other functions. In this chapter; you learn how
o write these functions, pass data to them, process the passed data, and return a result.

6.1 Function and Parameter Declarations

In creating C++ functions, you must be concerned with the function itself and how it interacts
with other functions, such as main (). Interaction with a function includes passing data to a
function correctly when it’s called (inputs) and returning values from a function (outputs)
when it ceases operation. This section describes the first part of the interface, passing data to
a function and having the function receive, store, and process the transmitted data correctly.

As you have already seen with mathematical functions, a function is called, or used, by
giving the function’s name and passing any data to it, as arguments, in the parentheses follow-
ing the function name (see Figure 6.1). The called function must be able to accept the data
passed to it by the function doing the calling. Only after the called function receives the data
successfully can the data be manipulated to produce a useful result.

Sfunction-name (data passed to function);

This identifies the This passes data
called function to the function

Figure 6.1 Calling and passing data to a function

"To clarify the process of sending and receiving data, take a look at Program 6.1, which calls
a function named findMax (). The program, as shown, is not yet complete. After the function
findMax () is written and included in Program 6.1, the completed program, consisting of the
functions main() and £indMax(), can be compiled and run.

Program 6.1

#include <iostream>
using namespace std;
void findMax(int, int); // the function declaration (prototype)

int main()

{

int firstnum, secnum;

Chapter 6 227
Function and Parameter Declarations

cout << "\nEnter a number: ";

cin >> firstnum;

cout << "Great! Please enter a second number: ";
cin >> secnum;

findMax(firstnum, secnum); // the function is called here

return 0;

First, examine the declaration and calling of the findMax () function from main(). You
then see how to write £indMax () to accept data passed to it, determine the largest or maxi-
mum value of the two passed values, and display the maximum value.

The £indMax () function is referred to as the called function because it’s called or sum-
moned into action by its reference in main (). The function that does the calling—in this case,
main()—is referred to as the calling function. The terms “called” and “calling” come from
standard phone usage, in which one party calls the other: The person initiating the call is the
calling party, and the person receiving the call is the called party. The same terms describe
function calls. The called function—in this case, findMax ()—is declared as a function that
expects to receive two integer numbers and to return no value (a void) to main (). This decla-
ration is formally called a function prototype. The function is then called by the last statement
in the program.

Function Prototypes

Before a function can be called, it must be declared to the function that will do the calling. The
declaration statement for a function is referred to as a function prototype. The function proto-
type tells the calling function the type of value that will be formally returned, if any, and the
data type and order of the values the calling function should transmit to the called function.
For example, the function prototype used in Program 6.1

void findMax(int, int);

declares that the findMax () function expects two integer values to be sent to it and returns
no value (void).

Function prototypes can be placed with the variable declaration statements of the calling
function, above the calling function name, as in Program 6.1, or in a separate header file
specified with an #include preprocessor statement. The function prototype for findMax ()
could have been placed before or after the statement #include <iostream>, before main(),
or within main (). (The reasons for the choice of placement are explained in Section 6.3.) The
general form of function prototype statements is as follows:

returnDataType functionName(list of argument data types);

228

Modularity Using Functions

The returnDataType refers to the type of value the function returns. Here are some
examples of function prototypes:

int fmax(int, int);
double swap(int, char, char, double);
void display(double, double);

The function prototype for fmax() declares that this function expects to receive two
integer arguments and returns an integer value. The function prototype for swap () declares
that this function requires four arguments—consisting of an integer, two characters, and a
double-precision argument, in that order—and returns a double-precision number. Finally, the
function prototype for display() declares that this function requires two double-precision
arguments and doesn’t return any value. This function might be used to display the results of
a computation without returning any value to the called function.

Using function prototypes permits the compiler to error-check data types. If the function
prototype doesn’t agree with data types defined when the function is written, a warning mes-
sage is displayed when the program is compiled. The prototype also serves another task: It
ensures that all arguments passed to the function are converted to the declared data type when
the function is called.

Calling a Function

Calling a function is rather easy. The only requirements are using the name of the function and
enclosing any data passed to the function in the parentheses following the function name,
using the same order and type declared in the function prototype. The items enclosed in
parentheses are called arguments of the called function (see Figure 6.2).

findMax (firstnum, secnum);

This identifies This causes two
the findMax () values to be passed
function to findMax ()

Figure 6.2 Calling and passing two values to findMax ()

If a variable is one of the arguments in a function call, the called function receives a copy
of the value stored in the variable. For example, the statement findMax (firstnum, secnum);
calls the findMax () function and causes the values stored in the variables firstnum and
secnum to be passed to findMax (). The variable names in parentheses are arguments that
provide values to the called function. After values are passed, control is transferred to the
called function.

As shown in Figure 6.3, the findMax () function does 7of receive the variables named
firstnum and secnum and has no knowledge of these variable names.! The function simply
receives the values in these variables and must then determine where to store these values
before it does anything else. Although this procedure for passing data to a function might
seem surprising, it’s actually a safety measure for ensuring that a called function doesn’t

IIn Section 6.3, you see how C++ also allows direct access to the calling function’s variables by using reference variables.

Chapter 6 229
Function and Parameter Declarations

inadvertently change data stored in a variable. The function gets a copy of the data to use.
It can change its copy and, of course, change any variables declared inside it. However,
unless specific steps to do so are taken, a function isn’t allowed to change the contents of
variables declared in other functions.

stored in firstnum a the variable
g a value firstnum
S
>
©
ey
<
©
O mstored in secnum ~ the variable
% a value secnum
>
o
<
=]
=
©
O]

findMax(firstnum, secnum);

Send the Send the
value to value to
findMax() findMax()

Figure 6.3 The findMax () function receives actual values

Next, you begin writing the £indMax () function to process the values passed to it.

Defining a Function
A function is defined when it’s written. Each function is defined once (that is, written once) in
a program and can then be used by any other function in the program that declares it suitably.

Like the main () function, every C++ function consists of two parts, a function header and
a function body, as shown in Figure 6.4. The function header’s purpose is to identify the data
type of the value the function returns, give the function a name, and specify the number,
order, and type of arguments the function expects. The function body’s purpose is to operate
on the passed data and return, at most, one value directly back to the calling function. (In
Section 6.3, you see how a function can be made to return multiple values indirectly by using
its arguments.)

T'he function header is always the first line of a function and contains the function’s return
value type, its name, and the names and data types of its arguments. Because findMax ()
doesn’t formally return any value and receives two integer values, the following function
header can be used:

void findMax(int x, int y) <e—————no semicolon

Modularity Using Functions

function header line ’} Function header
{
constant and
variable declarations; Function body
any other C++ Statements;
}

Figure 6.4 The general format of a function

The argument names in parentheses in the header are called the formal parameters of the
function (or parameters, for short).2 Therefore, the parameter x is used to store the first value
passed to £indMax () and the parameter y is used to store the second value passed at the time
of the function call. The function doesn’t know where the values come from when the call is
made from main (). The first part of the call procedure the computer executes involves going
to the variables firstnum and secnum and retrieving the stored values. These values are then
passed to £indMax () and stored in the parameters x and y (see Figure 6.5).

findMax (firstnum,secnum); : y This statement

] T calls findMax ()
The value The value
in firstnum in secnum
is passed is passed

findMax(int x, int y)

4 7

The The
parameter parameter
named x named y

Figure 6.5 Storing values in parameters

The function name and all parameter names in the header—in this case, findMax, x, and
y—are chosen by the programmer. Any names selected according to the rules for choosing
variable names can be used. Each parameter listed in the function header must include a data
type. If more than one parameter is declared in the function header, they must be separated
by commas and have their data types declared separately.

ZThe portion of the function header containing function names and parameters is formally referred to as a “function declarator.” The
items enclosed in parentheses, the parameters, are specifications for the arguments. The arguments are the values provided when the
function is called.

Chapter 6 231
Function and Parameter Declarations

Point of Information

Function Definitions and Function Prototypes

When you write a function, you're formally creating a function definition. Each definition
begins with a header line that includes a parameter list, if any, enclosed in parentheses
and ends with the closing brace that terminates the function’s body. The parentheses are
required whether or not the function uses any parameters. The following is a commonly
used syntax for a function definition:

returnDataType functionName (parameter list)
{

constant declarations

variable declarations

other C++ statements

return value

}

As you've learned, a function prototype declares a function. The syntax for a function
prototype, which provides the function’s return data type, the function’s name, and the
function’s parameter list, is as follows:

returnDataType functionName(list of parameter data types);

The prototype, along with precondition and postcondition comments (see the next
Point of Information box), should give users all the programming information needed to
call the function successfully.

Generally, all function prototypes are placed at the top of the program, and all defini-
tions are placed after the main () function. However, this placement can be changed.
The only requirement in C++ is that a function can’t be called before it has been
declared or defined.

Now that the function header for £indMax () has been written, you can construct its body.
The function is to select and display the larger of the two numbers passed to it.

A function body begins with an opening brace, {, contains any necessary declarations and
other C++ statements, and ends with a closing brace, }. This structure should be familiar
because it’s the same one used in all the main() functions you’ve seen so far. This required
structure shouldn’t be a surprise because main () is a function and must adhere to the rules for
constructing all legitimate functions, as shown here:

{

variable declarations and
other C++ statements

232

Modularity Using Functions

Point of Information

Preconditions and Postconditions

Preconditions are any set of conditions a function requires to be true if it's to operate
correctly. Similarly, a postcondition is a condition that will be true after the function is
executed, assuming the preconditions are met.

Preconditions and postconditions are typically documented as user comments. For
example, examine the following declaration and comments:

bool leapyr(int)
// Precondition: the integers must represent a year in a

// : four-digit form, such as 2011
// Postcondition: a value of true is returned if the year is
// : a leap year; otherwise, false is returned

Precondition and postcondition comments should be included with function proto-
types and function definitions whenever clarification is needed.

In the body of the findMax () function, one variable is declared to store the maximum of
the two numbers passed to it. An if-else statement is then used to find the maximum of the
two numbers. Finally, a cout statement is used to display the maximum. The following shows
the complete function definition for findMax():

void findMax() (int x, int y)

{ // start of function body
int maxnum; // variable declaration
if (x >= vy) // find the maximum number

maxnum = X;
else
maxnum = y;

cout << "\nThe maximum of the two numbers is "
<< maxnum << endl;

return;
} // end of function body and end of function

Notice that the parameter declarations are made in the function header, and the variable
declaration is made immediately after the function body’s opening brace. This placement is in
keeping with the concept that parameter values are passed to a function from outside the func-
tion, and variables are declared and assigned values from inside the function body. Program 6.2
includes the findMax () function in the program code previously listed in Program 6.1.

Chapter 6 233
Function and Parameter Declarations

Program 6.2

#include <iostream>
using namespace std;
void findMax(int, int); // the function prototype

int main()
{
int firstnum, secnum;
cout << "\nEnter a number: ";
cin >> firstnum;
cout << "Great! Please enter a second number: ";
cin >> secnum;

findMax(firstnum, secnum); // the function is called here

return 0;

// following is the function findMax()

void findMax(int x, int y)

{ // start of function body
int maxnum; // variable declaration
if (x >= vy) // find the maximum number
maxnum = X;
else

maxnum = y;

cout << "\nThe maximum of the two numbers is
<< maxnum << endl;

return;
} // end of function body and end of function

Program 6.2 can be used to select and print the maximum of any two integer numbers the
user enters. A sample run of Program 6.2 follows, with user-entered numbers shown in bold:

Enter a number: 25
Great! Please enter a second number: 5

The maximum of the two numbers is 25

234

Modularity Using Functions

The placement of the £indMax () function after the main() function in Program 6.2 is a
matter of choice. Usually, main () is listed first because it’s the driver function that gives any-
one reading the program an idea of what the complete program is about before encountering
the details of each function. In no case, however, can the definition of f£indMax () be placed
inside main (). This rule applies to all C++ functions, which must be defined by themselves
outside any other function. Each C++ function is a separate and independent entity with its
own parameters and variables; nesting functions is zever permitted.

Placement of Statements
C++ doesn’t impose a rigid statement-ordering structure on programmers. The general rule for
placing statements in a C++ program is simply that all preprocessor directives, symbolic con-
stants, variables, and functions must be declared or defined before they can be used. As noted
previously, although this rule permits placing both preprocessor directives and declaration
statements throughout a program, doing so results in poor program structure.

As a matter of good programming form, the following statement ordering should form the
basic structure around which all C++ programs are constructed:

preprocessor directives
function prototypes

int main()
{
// symbolic constants
// variable declarations

// other executable statements

// return statement

// function definitions

As always, comment statements can be intermixed anywhere in this basic structure.

Function Stubs

An alternative, used by all programmers, to completing each function required in a complete
program is writing the main() function first and then using placeholders for the final func-
tions. To understand how this alternative works, take another look at Program 6.1. For conve-
nience, its code has been reproduced here. As it’s currently written, this program can’t be
compiled and run until the £indMax () function is included.

#include <iostream>
using namespace std;
void findMax(int, int); // the function declaration (prototype)

int main()

{

Chapter 6 235
Function and Parameter Declarations

int firstnum, secnum;

cout << "\nEnter a number: ";

cin >> firstnum;

cout << "Great! Please enter a second number: ";
cin >> secnum;

findMax(firstnum, secnum); // the function is called here

return 0;

This program would be complete if there were a function definition for findMax().
However, you really don’t need a correct £indMax () function to test and run what has been
written; you just need a function that aczs as though it is. A “fake” findMax () that accepts the
correct number and types of parameters and returns values of the proper form for the function
call is all you need for initial testing. This fake function, called a stub, is the beginning of a
final function and can be used as a placeholder for the final function until it’s completed. A
stub for findMax () is as follows:

void findMax(int x, int y)

{
cout << "In findMax()\n";
cout << "The value of x is " << x << endl;
cout << "The value of y is " << y << endl;

"This stub function can now be compiled and linked with the previously completed code
to produce an executable program. The code for the function can then be further developed
with the “real” code when it’s completed, replacing the stub portion.

The minimum requirement of a stub function is that it compiles and links with its calling
module. In practice, it’s a good idea to have a stub display a message that it has been entered
successfully and display the values of its received parameters, as in the stub for findMax().
As the function is refined, you let it do more, perhaps allowing it to return intermediate or
incomplete results. This incremental, or stepwise, refinement is an important concept in effi-
cient program development that gives you the means to run a program that doesn’t yet meet
all its final requirements.

Functions with Empty Parameter Lists

Although useful functions having an empty parameter list are extremely limited, they can
occur. (You see one such function in Exercise 15 at the end of this section.) The function pro-
totype for this type of function requires writing the keyword void or nothing at all between
the parentheses following the function’s name. For example, both these prototypes

int display();
and

int display(void);

236

Modularity Using Functions

Point of Information

Isolation Testing

One of the most successful software testing methods is always embedding the code
being tested in an environment of working code. For example, you have two untested
functions called in the following order, and the result the second function returns is
incorrect:

function 1 o
is incorrect

‘ calls N function 2 ‘ A, Returned value

From the information shown in this figure, one or possibly both of the functions
could be operating incorrectly. The first order of business is to isolate the problem to a
specific function.

One powerful method of performing this code isolation is to decouple the functions.
You do this by testing each function separately or by testing one function first and, only
after you know it's operating correctly, reconnecting it to the second function. Then, if
an error occurs, you have isolated the error to the transfer of data between functions or
to the internal operation of the second function.

This specific procedure is an example of the basic rule of testing, which states that
each function should be tested only in a program in which all other functions are known
to be correct. This rule means one function must first be tested by itself, using stubs if
needed for any called functions, and a second tested function should be tested by itself
or with a previously tested function, and so on. This testing procedure ensures that each
new function is isolated in a test bed of correct functions, with the final program built
from tested function code.

indicate that the display () function takes no parameters and returns an integer. A function
with an empty parameter list is called by its name with nothing written inside the required
parentheses following the function’s name. For example, the statement display () ; correctly
calls the display () function, whose prototype is shown in the preceding example.

Default Arguments3
C++ provides default arguments in a function call for added flexibility. The primary use of
default arguments is to extend the parameter list of existing functions without requiring any
change in the calling argument lists already used in a program.

Default argument values are listed in the function prototype and transmitted automati-
cally to the called function when the corresponding arguments are omitted from the function
call. For example, the function prototype

void example(int, int = 5, double = 6.78);

3This topic can be omitted on first reading without loss of subject continuity.

Chapter 6 237
Function and Parameter Declarations

provides default values for the last two arguments. If any of these arguments are omitted when
the function is actually called, the C++ compiler supplies the default values. Therefore, all the
following function calls are valid:

example(7, 2, 9.3) // no defaults used
example(7, 2) // same as example(7, 2, 6.78)
example(7) // same as example(7, 5, 6.78)

Four rules must be followed when using default arguments:

Default values should be assigned in the function prototype.+
If any parameter is given a default value in the function prototype, all parameters fol-
lowing it must also be supplied with default values.

e If one argument is omitted in the actual function call, all arguments to its right must
also be omitted. The second and third rules make it clear to the C++ compiler which
arguments are being omitted and enable the compiler to supply correct default values
for the missing arguments, starting with the rightmost argument and working in
toward the left.

e 'T'he default value used in the function prototype can be an expression consisting of
both constants and previously declared variables. If this kind of expression is used, it
must pass the compiler’s check for validly declared variables, even though the expres-
sion’s actual value is evaluated and assigned at runtime.

Default arguments are extremely useful when extending an existing function to include
more features that require additional arguments. Adding new arguments to the right of the
existing arguments and giving each new argument a default value permits all existing function
calls to remain as they are. In this way, the effect of the changes is conveniently isolated from
existing code in the program.

Reusing Function Names (Overloading)s

C++ provides the capability of using the same function name for more than one function,
referred to as function overloading. The only requirement for creating more than one function
with the same name is that the compiler must be able to determine which function to use
based on the parameters’ data types (not the data type of the return value, if any). For example,
take a look at these three functions, all named cdabs ():

void cdabs(int x) // compute and display absolute value of an integer
{
if ((x<0)
X = -X;
cout << "The absolute value of the integer is " << x << endl;

4Some compilers accept default assignments in the function definition.
>This topic can be omitted on first reading without loss of subject continuity.

238

Modularity Using Functions

void cdabs(float x) // compute and display absolute value of a float
{
if (x<0)
X = -X;
cout << "The absolute value of the float is " << x << endl;

void cdabs(double x) // compute and display absolute value of a double
{
if ((x<0)
X = -X;
cout << "The absolute value of the double is " << x << endl;

Which of the three cdabs () functions is actually called depends on the argument types
supplied at the time of the call. Therefore, the function call cdabs (10); causes the compiler
to use the function named cdabs () that expects an integer argument, and the function call
cdabs (6.28f); causes the compiler to use the function named cdabs() that expects a
double-precision argument.6

Notice that overloading a function’s name simply means using the same name for more
than one function. Each function that uses the name must still be written and exists as a
separate entity. T'he use of the same function name doesn’t require code in the functions to be
similar, although good programming practice dictates that functions with the same name
should perform essentially the same operations. All that’s required to use the same function
name is ensuring that the compiler can distinguish which function to select, based on the data
types of the arguments when the function is called. Clearly, however, if the only difference in
the overloaded functions is the argument types, a better programming solution is simply creat-
ing a function template, discussed in the next section. Using overloaded functions, however, is
extremely useful with constructor functions, explained in Section 10.3.

Function Templates?

In most high-level languages, including C++’s immediate predecessor, C, each function must
be coded separately, even if function overloading is used to give multiple functions the same
name. For example, consider determining and displaying a number’s absolute value. If the
number passed to the function can be an integer, a single-precision, or a double-precision

6Selection of the correct function is accomplished by a process called “name mangling.” Using this process, the function name the C++
compiler actually generates differs from the function name used in the source code. The compiler appends information to the source
code function name, depending on the type of data being passed, and the resulting name is said to be a “mangled” version of the source
code name.

7This topic can be omitted on first reading without loss of subject continuity.

Chapter 6 239
Function and Parameter Declarations

value, three distinct functions must be written to handle each case correctly. Therefore, if the
function name abs () is used, these three functions would have the following prototypes:

void abs(int);
void abs(float);
void abs(double);

Clearly, each of these functions performs essentially the same operation but on different
parameter data types. A much cleaner solution is writing a general function that handles all
three parameter data types, but the compiler can set parameters, variables, and even return
type based on the data type used when the function is called. You can write this type of func-
tion in C++ by using a function template, which is a single, complete function that serves as a
model for a family of functions. The function from the family that’s actually created depends
on subsequent function calls. To make this concept more concrete, take a look at a function
template that computes and displays the absolute value of a passed argument:

template <class T>
void showabs (T number)
{
if (number < 0)
number = -number;
cout << "The absolute value of the number "
<< " is " << number << endl;

return;

For the moment, ignore the first line, template <class T>, and look at the second line,
consisting of the function header void showabs (T number). Notice that this function header
has the same syntax used for all function definitions, except the T where a data type is usually
placed. For example, if the function header were void showabs(int number), you should
recognize it as a function named showabs () that expects one integer argument to be passed to
itand returns no value. Similarly, if the function header were void showabs (double number),
you should recognize it as a function that expects one double-precision argument to be passed
to it when the function is called.

The advantage of using the T in the function template header is that it represents a gen-
eral data type that’s replaced by an actual data type, such as int, £loat, double, and so forth,
when the compiler encounters an actual function call. For example, if a function call with an
integer argument is encountered, the compiler uses the function template to construct a func-
tion that expects an integer parameter. Similarly, if a call is made with a double-precision argu-
ment, the compiler constructs a function that expects a double-precision parameter. As a spe-
cific example, take a look at Program 6.3.

240 Modularity Using Functions

Program 6.3

#include <iostream>
using namespace std;

template <class T>
void showabs (T number)
{
if (number < 0)
number = -number;
cout << "The absolute value of the number is "
<< number << endl;

return;

int main()

{
int numl = -4;
float num2 = -4.23F;
double num3 = -4.23456;

showabs (numl);
showabs (num2) ;
showabs (num3) ;

return 0;

Notice the three function calls made in the main() function; they call the function
showabs () with an integer, float, and double value. Now review the function template for
showabs () and look at the first line, template <class T>.This line, called a template prefix,
is used to inform the compiler that the function immediately following is a template using a
data type named T. In the function template, the T is used in the same manner as any other
data type, such as int, float, and double. When the compiler encounters an actual function
call for showabs (), the data type of the argument passed in the call is substituted for T
throughout the function. In effect, the compiler creates a specific function, using the template,
that expects the argument type in the call.

Chapter 6 241
Function and Parameter Declarations

Because Program 6.3 makes three calls to showabs (), each with a different argument data
type, the compiler creates three separate showabs () functions. The compiler knows which
function to use based on the arguments passed at the time of the call. This is the output dis-
played when Program 6.3 runs:

The absolute value of the number is 4
The absolute value of the number is 4.23
The absolute value of the number is 4.23456

The letter T in the template prefix template <class T> is simply a placeholder for a
data type that’s defined when the function is actually called. Any letter or identifier that’s not
a keyword can be used instead, so the showabs () function template could just as well have
been defined as follows:

template <class DTYPE>
void showabs (DTYPE number)
{
if (number < 0)
number = -number;
cout << "The absolute value of the number is "
<< number << endl;

return;

In this regard, sometimes it’s simpler and clearer to read the word c/ass in the template
prefix as the words data type. With this substitution, you can read the template prefix
template <class T> as “I’'m defining a function template that has a data type named T.”
Then, in the defined function’s header and body, the data type T (or any other letter or identi-
fier defined in the prefix) is used in the same manner as any built-in data type, such as int,
float, and double.

EXERCISES 6.1

1. (Practice) For the following function headers, determine the number, type, and order
(sequence) of the values that must be passed to the function:
a. void factorial(int n)

. void price(int type, double yield, double maturity)

. void yield(int type, double price, double maturity)

. void interest(char flag, double price, double time)

. void total(double amount, double rate)
void roi(int a, int b, char ¢, char d, double e, double f)

e o o6 T

. void getval(int item, int iter, char decflag, char delim)

242

Modularity Using Functions

. (Practice) a. Write a function named check () that has three parameters. The first parameter

should accept an integer number, and the second and third parameters should accept a double-

precision number. The function body should just display the values of data passed to the func-

tion when it’s called. (Noze: When tracing errors in functions, having the function display values

it has been passed is helpful. Quite often, the error isn’t in what the function body does with

data, but in the data received and stored.)

b. Include the function written in Exercise 2a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

. (Practice) a. Write a function named findAbs() that accepts a double-precision number

passed to it, computes its absolute value, and displays the absolute value. A number’s absolute

value is the number itself if the number is positive and the negative of the number if the

number is negative.

b. Include the function written in Exercise 3a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

. (Practice) a. Write a function called mult () that accepts two double-precision numbers as

parameters, multiplies these two numbers, and displays the result.
b. Include the function written in Exercise 4a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

. (Practice) a. Write a function named sqrIt() that computes the square of the value passed

to it and displays the result. The function should be capable of squaring numbers with decimal

points.

b. Include the function written in Exercise 5a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

. (Practice) a. Write a function named powfun () that raises an integer number passed to it to

a positive integer power and displays the result. The positive integer should be the second

value passed to the function. Declare the variable used to store the result as a long-integer data

type to ensure enough storage for the result.

b. Include the function written in Exercise 6a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

. (Practice) a. Write a function that produces a table of the numbers from 1 to 10, their squares,

and their cubes. The function should produce the same display as Program 5.10.
b. Include the function written in Exercise 7a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

. (Modify) a. Modify the function written for Exercise 7a to accept the starting value of the

table, the number of values to be displayed, and the increment between values. If the incre-

ment isn’t set explicitly, the function should use a default value of 1. Name your function

selTab(). A call to selTab(6,5,2); should produce a table of five lines, the first line start-

ing with the number 6 and each succeeding number increasing by 2.

b. Include the function written in Exercise 8a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

9.

10.

11.

12.

13.

Chapter 6 243
Function and Parameter Declarations

(Program) a. The time in hours, minutes, and seconds is to be passed to a function named
totsec (). Write totsec () to accept these values, determine the total number of seconds in
the passed data, and display the calculated value.

b. Include the totsec () function written for Exercise 9a in a working program. T'he main ()
function should correctly call totsec() and display the value the function returns. Use
the following test data to verify your program’s operation: hours = 10, minutes = 36, and
seconds = 54. Make sure to do a hand calculation to verify the result your program displays.

(Program) a. The volume, V, of a sphere is given by this formula, where 7 is the sphere’s
radius:

47r’

Volume =

Using this formula, write, compile, and run a C++ function named spherevol () that accepts

a sphere’s radius and then calculates and displays its volume.

b. Include the function written in Exercise 10a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

(Program) a. Write and test a C++ function named makeMilesKmTable() to display a table

of miles converted to kilometers. The arguments to the function should be the starting and

stopping values of miles and the increment. The output should be a table of miles and their

equivalent kilometer values. Use the relationship that 1 mile = 1.61 kilometers.

b. Modify the function written for Exercise 12a so that two columns are displayed. For exam-
ple, if the starting value is 1 mile, the ending value is 20 miles, and the increment is 1, the
display should look like the following:

Miles = Kilometers Miles = Kilometers
1 1.61 11 17.70
2 3.22 12 19.31

10 16.09 20 32.18

(Hint: Find split = (start + stop) | 2. Let a loop execute from miles = start to split, and calculate
and print across one line the values of miles and kilometers for both miles and (miles - start +
split + 1).)

(Program) a. Write a C++ function that accepts an integer argument, determines whether the

passed integer is even or odd, and displays the result of this determination. (Hinz: Use the %

operator.)

b. Include the function written in Exercise 12a in a working program. Make sure your function
is called from main (). Test the function by passing various data to it.

(Program) A useful function using no parameters can be constructed to return a value for ©
that’s accurate to the maximum number of decimal places your computer allows. This value is
obtained by taking the arcsine of 1.0, which is n / 2, and multiplying the result by 2. In C++,
the required expressionis 2.0 * asin(1.0);the asin() function is included in the standard

244 Modularity Using Functions

C++ mathematics library. (Remember to include emath in your preprocessor directives.) Using
this expression, write a C++ function named pi () that calculates and displays the value of n.

(In the next section, you see how to return this value to the calling function.)

14. (Program) a. Write a function template named display() that displays the value of the

single argument passed to it when the function is called.

b. Include the function template created in Exercise 14a in a complete C++ program that calls
the function three times: once with a character argument, once with an integer argument,
and once with a double-precision argument.

6.2 Returning a Single Value

Using the method of passing data to a function explained in the previous section, the called
function receives only copies of the values contained in arguments at the time of the call.
(Review Figure 6.3 if it’s unclear to you.) When a value is passed to a called function in this
manner, the passed argument is referred to as a passed by value and is a distinct advantage of
C++.8 Because the called function doesn’t have direct access to the variables used as argu-
ments by the calling function, it can’t inadvertently alter the value stored in one of these

variables.

T'he function receiving the passed by value arguments can process the values sent to it in
any fashion and return one, and only one, “legitimate” value directly to the calling function
(see Figure 6.6). In this section, you see how this value is returned to the calling function. As
you might expect, given C++’s flexibility, there’s a way of returning more than a single value,

but that’s the topic of the next section.

A function can receive many values

IBEN

ERE!

Only one value can
be directly returned

Figure 6.6 A function directly returns at most one value

8This argument is also referred to as a “call by value.” These terms, however, don’t refer to the function call as a whole, but to how the

calling function passes values to the called function.

Chapter 6 245
Returning a Single Value

As with calling a function, returning a value directly requires handling the interface
between the called and calling functions correctly. From its side of the return transaction, the
called function must provide the following items:

e The data type of the returned value
e 'T'he actual value being returned

A function returning a value must specify, in its header, the data type of the value to be
returned. Recall that the function header includes both the function name and a parameter list.
For example, the £indMax () function written previously determines the maximum value of
two numbers passed to it. For convenience, the £indMax () code is listed again:

void findMax(int x, int y)

{ // start of function body
int maxnum; // variable declaration
if (x >=vy) // find the maximum number

maxnum = X;
else
maxnum = y;

cout << "\nThe maximum of the two numbers is "
<< maxnum << endl;
return;
} // end of function body and end of function

In this function header, x and y are the names chosen for the function’s parameters:
void findMax(int x, int y)

If findMax () is to return a value, its header must be amended to include the data type of
the value being returned. For example, if an integer value is to be returned, this is the correct
function header:

int findMax(int x, int y)

Similarly, if the function is to receive two floating-point values and return a floating-point
value, this is the correct function header:

float findMax(float x, float y)

If the function is to receive two double-precision values and return a double-precision
value, the function header should be the following:®

double findMax(double x, double y)

9The return data type is related to the parameter data types only as much as the returned value is determined by the parameter values.
In this case, because the function is used to return the maximum value of its parameters, it would make little sense to return a data
type that doesn’t match the function’s parameter data types.

246

Modularity Using Functions

Now see how to modify the findMax () function to return the maximum value of the two
numbers passed to it. To do this, you must first determine the data type of the value to be
returned and include this data type in the function header. Because the maximum value deter-
mined by £indMax () is stored in the integer variable maxnum, the function should return this
variable’s value. Returning an integer value from findMax () requires the following function
declaration:

int findMax(int x, int y)

Observe that it’s the same as the original function header for findMax (), with the key-
word int substituted for the keyword void.

Having declared the data type that £indMax () will return, all that remains is including a
statement in the function to cause the return of the correct value. To return a value, a function
must use a return statement, which has this form:10

return expression;

When the return statement is encountered, the expression is evaluated first. The value
of the expression is then automatically converted to the data type declared in the function
header before being sent back to the calling function. After the value is returned, program
control reverts to the calling function. Therefore, to return the value stored in maxnum, all
you need to do is include the statement return maxnum; before the closing brace of the
findMax () function. The complete function code is as follows:

These should —>int findMax(int x, int y) // function header

be the same { // start of function body
data type int maxnum; // variable declaration
if (x >=vy)
maxnum = X;
else

maxnum = Yy;

return maxnum; // return statement

4

In this new code for the £indMax () function, notice that the data type of the expression in
the return statement matches the data type in the function header. It’s up to the programmer
to ensure this match for every function returning a value. Failure to match the return value with
the function’s declared data type exactly might not result in an error when your program is
compiled, but it could lead to undesired results because the return value is always converted to
the data type declared in the function declaration. Usually, this is a problem only when the
fractional part of a returned floating-point or double-precision number is truncated because the
function was declared to return an integer value.

10Many programmers place the expression in parentheses, as in return (expression) ;. Although either form (with or without
parentheses) can be used, choose one and stay with it for consistency.

Chapter 6 247
Returning a Single Value

Having taken care of the sending side of the return transaction, you must now prepare the
calling function to receive the value sent by the called function. On the calling (receiving) side,
the calling function must

e Be alerted to the type of value to expect back from the called function.
e Use the return value correctly.

Alerting the calling function to the type of return value to expect is taken care of by the
function prototype. For example, including the function prototype

int findMax(int, int);

before the main() function is enough to alert main() that findMax() is a function that
returns an integer value.

"To actually use a return value, you must provide a variable to store the value or use the
value in an expression. To store the return value in a variable, you use a standard assignment
statement. For example, the following assignment statement can be used to store the value
returned by findMax () in the variable max:

max = findMax(firstnum, secnum);

This assignment statement does two things. First, the right side of the assignment state-
ment calls findMax (), and then the result returned by findMax() is stored in the variable
max. Because the value returned by £indMax () is an integer, the variable max must also be
declared as an integer variable in the calling function’s variable declarations.

The value a function returns need not be stored in a variable, but it can be used wher-
ever an expression is valid. For example, the expression 2 * findMax(firstnum, secnum)
multiplies the value returned by findMax () by 2, and the following statement displays the
return value:

cout << findMax(firstnum, secnum);

Program 6.4 illustrates including prototype and assignment statements for main() to
declare, call, and store a return value from f£indMax () correctly. As before, and in keeping
with the convention of placing the main () function first, the £indMax () function is placed
after main().

' Program 6.4

#include <iostream>
using namespace std;

int findMax(int, int); // the function prototype
int main()

{

int firstnum, secnum, max;

248 Modularity Using Functions

cout << "\nEnter a number: ";

cin >> firstnum;

cout << "Great! Please enter a second number: ";
cin >> secnum;

max = findMax(firstnum, secnum); // the function is called here

cout << "\nThe maximum of the two numbers is " << max << endl;

return 0;

3

int findMax(int x, int y)

{ // start of function body
int maxnum; // variable declaration
if (x >= vy) // find the maximum number

maxnum = X;
else
maxnum = y;

return maxnum; // return statement

In reviewing Program 6.4, note the four items introduced in this section. First, the function
prototype for findMax () is a statement ending with a semicolon, as all declaration statements
do; it alerts main() and any subsequent functions using findMax() to the data type that
findMax () returns. Second, an assignment statement is used in main() to store the return
value from the £indMax () call in the variable max. In Program 6.4, max is declared correctly as
an integer in main()’s variable declarations so that it matches the return value’s data type.

The third and fourth items concern coding the findMax() function: The first line of
findMax () declares that the function returns an integer value, and the expression in the
return statement evaluates to a matching data type. Therefore, £indMax () is internally con-
sistent in sending an integer value back to main(), and main() has been alerted to receive
and use the returned integer.

In writing your own functions, always keep these four items in mind. For another example,
see whether you can identify these four items in Program 6.5.

Chapter 6 249
Returning a Single Value

Program 6.5

#include <iostream>
using namespace std;

double tempvert(double); // function prototype

int main()

{
const int CONVERTS = 4; // number of conversions to be made
int count; // start of variable declarations
double fahren;

for(count = 1; count <= CONVERTS; count++)
{
cout << "\nEnter a Fahrenheit temperature: ";
cin >> fahren;
cout << "The Celsius equivalent is "
<< tempvert(fahren) << endl;

return 0;

// convert fahrenheit to celsius
double tempvert(double inTemp)

{
return (5.0/9.0) * (inTemp - 32.0);

In reviewing Program 6.5, first analyze the tempvert () function. Its definition begins with
the function header and ends with the closing brace after the return statement. The function
is declared as a double, meaning the expression in the function’s return statement must
evaluate to a double-precision number, which it does. Because a function header is not a state-
ment but the start of the code defining the function, it doesn’t end with a semicolon.

On the receiving side, main () has a prototype for the tempvert () function that agrees
with tempvert ()’s function definition. No variable is declared in main () to store the returned
value from tempvert () because the returned value is passed immediately to cout for display.

250 Modularity Using Functions

Finally, one purpose of declarations, as you learned in Chapter 2, is to alert the computer
to the amount of internal storage reserved for data. The prototype for tempvert () performs
this task and alerts the compiler to the type of storage needed for the return value. Had the
tempvert () function definition been placed before main (), the function header would serve
the same purpose, and the function prototype could be eliminated. Because main () is always
the first function in a program, however, you must include function prototypes for all functions
called by main () and any subsequent functions.

Inline Functions1
Calling a function places a certain amount of overhead on a computer. This overhead consists
of the following steps:

1. Placing argument values in a reserved memory region (called the stack) that the func-
tion has access to

2. Passing control to the function

3. Providing a reserved memory location for any return value (again, using the stack for
this purpose)

4. Returning to the correct point in the calling program

Paying this overhead is justified when a function is called many times because it can
reduce a program’s size substantially. Instead of the same code being repeated each time it’s
needed, the code is written once, as a function, and called whenever it’s needed.

For small functions that aren’t called many times, however, the overhead of passing and
returning values might not be warranted. It would still be convenient to group repeating lines
of code under a common function name and have the compiler place this code in the program
wherever the function is called. Inline functions provide this capability.

Telling the C++ compiler that a function is inline causes a copy of the function code to be
placed in the program at the point the function is called. For example, because the tempvert ()
function in Program 6.5 is fairly short, it’s an ideal candidate to be an inline function. To make
it, or any other function, an inline one simply requires placing the reserved keyword inline
before the function name and defining the function before any calls are made to it. Program 6.6
makes tempvert () an inline function.

Program 6.6

#include <iostream>
using namespace std;

inline double tempvert(double inTemp) // an inline function

{
return (5.0/9.0) * (inTemp - 32.0);

This section is optional and can be omitted on first reading without loss of subject continuity.

Chapter 6 251
Returning a Single Value

int main()

{

const int CONVERTS = 4; // number of conversions to be made
int count; // start of variable declarations
double fahren;

for(count =1

{

count <= CONVERTS; count++)

~e

cout << "\nEnter a Fahrenheit temperature: ";
cin >> fahren;
cout << "The Celsius equivalent is "

<< tempvert(fahren) << endl;

return 0;

Observe in Program 6.6 that the inline function is placed ahead of any calls to it. This
placement is a requirement of all inline functions, so a function prototype isn’t needed before
subsequent calling functions. Because the function is now inline, its code is expanded into the
program wherever it’s called.

The advantage of using an inline function is an increase in execution speed. Because the
inline function is expanded and included in every expression or statement calling it, no execu-
tion time is lost because of the call, return, and stack overhead a non-inline function requires.
The disadvantage is the increase in program size when an inline function is called repeatedly.
Each time an inline function is referenced, the complete function code is reproduced and
stored as an integral part of the program. A non-inline function, however, is stored in memory
only once. No matter how many times the function is called, the same code is used. Therefore,
inline functions should be used only for small functions that aren’t called extensively in a
program.

Templates with a Return Value12

In Section 6.1, you saw how to construct a function template. Returning a value from a func-
tion template is identical to returning a value from a function. For example, take a look at the
following function template:

template <class T> // template prefix
T abs(T value) // function header

{

T absnum; // variable declaration

if (value < 0)
absnum = -value;

127This section is optional and can be omitted on first reading without loss of subject continuity.

252 Modularity Using Functions

else
absnum = value;

return absnum;

In this template definition, the date type T is used to declare three items: the return type
of the function, the data type of a single function parameter named value, and one variable
declared within the function. Program 6.7 shows how this function template could be used in
the context of a complete program.

Program 6.7

#include <iostream>
using namespace std;

template <class T> // template prefix
T abs(T value) // function header

{

T absnum; // variable declaration
if (value < 0)

absnum = -value;
else

absnum = value;

return absnum;

int main()

{
int numl = -4;
float num2 = -4.23F;
double num3 = -4.23456;

cout << "The absolute value of " << numl
<< " is " << abs(numl) << endl;

cout << "The absolute value of " << num2
<< " is " << abs(num2) << endl;

cout << "The absolute value of " << num3
<< " is " << abs(num3) << endl;

return 0;

Chapter 6 253
Returning a Single Value

In the first call to abs () made within main(), an integer value is passed as an argument.
In this case, the compiler substitutes an int data type for the T data type in the function tem-
plate and creates the following function:

int abs(int value) // function header

{

int absnum; // variable declaration

if (value < 0)
absnum = -value;
else
absnum = value;

return (absnum);

Similarly, in the second and third function calls, the compiler creates two more functions:
one in which the data type T is replaced by the keyword £loat and one in which the data type
T is replaced by the keyword double. This is the output produced by Program 6.7:

The absolute value of -4 is 4
The absolute value of -4.23 is 4.23
The absolute value of -4.23456 is 4.23456

The value of using a function template is that one function definition has been used to
create three different functions, each of which uses the same logic and operations but operates
on different data types.

Finally, although both Programs 6.3 and 6.7 define a function template using a single
placeholder data type, function templates with more than one data type can be defined. For
example, the following template prefix can be used to create a function template requiring
three different data types:

template <class DTYPEl, class DTYPE2, class DTYPE3>

As before, in the function template’s header and body, the data types DTYPEL, DTYPE2, and
DTYPE3 are used in the same manner as any built-in data type, such as an int, float, and
double. Also, as noted previously, the names DTYPE1, DTYPE2, and DTYPE3 can be any non-
keyword identifier. Conventionally, the letter T followed by zero or more digits is used, such
as T, T1, T2, T3, and so forth.

EXERCISES 6.2

1. (Modify) Rewrite Program 6.4 so that the £indMax () function accepts two double-precision
arguments and returns a double-precision value to main (). Make sure to modify main() to
pass two double-precision values to findMax () and to accept and store the double-precision
value returned by findMax ().

254 Modularity Using Functions

2. (Practice) Write function headers for the following functions:
a. A function named check (), which has three parameters. The first parameter should accept
an integer number, the second parameter a floating-point number, and the third parameter
a double-precision number. The function returns no value.
b. A function named findabs () that accepts a double-precision number passed to it and
returns that number’s absolute value.
A function named mult () that accepts two floating-point numbers as parameters, multi-
plies these two numbers, and returns the result.
d. A function named square() that computes and returns the square of the integer value
passed to it.
e. A function named powfun () that raises an integer number passed to it to a positive integer
power (also passed as an argument) and returns the result as an integer.
f. A function named table() that produces a table of numbers from 1 to 10, their squares, and
their cubes. No arguments are to be passed to the function, and the function returns no value.

e

3. (Program) a. Write a function named rightTriangle() thataccepts the lengths of two sides
of a right triangle as the arguments « and 4. The subroutine should determine and return the
hypotenuse, ¢, of the triangle. (Hinz: Use Pythagoras’ theorem, ¢ = % + 4%.)

b. Include the function written for Exercise 3a in a working program. T’he main() function
should call rightTriangle() correctly and display the value the function returns. Test the
function by passing various data to it and verifying the returned value.

4. (Program) a. Write a C++ function named findabs () that accepts a double-precision num-
ber passed to it, computes its absolute value, and returns the absolute value to the calling
function. A number’s absolute value is the number itself if the number is positive and the
negative of the number if the number is negative.

b. Include the function written in Exercise 4a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

5. (Program) a. The volume, V, of a cylinder is given by the formula
V=nrL

where 7 is the cylinder’s radius and L is its length. Using this formula, write a C++ function

named cylvol() that accepts a cylinder’s radius and length and returns its volume.

b. Include the function written in Exercise 5a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

6. (Program) a. The surface area, S, of a cylinder is given by the formula
S=2nrl

where 7 is the cylinder’s radius, and / is the length of the cylinder. Using this formula, write a
C++ function named surfarea() that accepts a cylinder’s radius and length and returns its
surface area.

10.

11.

Chapter 6 255
Returning a Single Value

b. Include the function written in Exercise 6a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

. (Program) a. Write a function named totamt () that uses four parameters named quarters,

dimes, nickels, and pennies, which represent the number of each of these coins in a pig-

gybank. The function should determine the dollar value of the number of quarters, dimes,

nickels, and pennies passed to it and return the calculated value.

b. Include the function written in Exercise 7a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

. (Program) a. Write a function named daycount () that accepts a month, day, and year as its

input arguments; calculates an integer representing the total number of days from the turn of

the century to the date that’s passed; and returns the calculated integer to the calling function.

For this problem, assume each year has 365 days and each month has 30 days. Test your func-

tion by verifying that the date 1/1/00 returns a day count of 1.

b. Include the daycount() function written for Exercise 8a in a working program. The
main () function should correctly call daycount () and display the integer returned by the
function. Test the function by passing various data to it and verifying the returned value.

. (Program) a. A clever and simple method of preparing to sort dates into ascending (increas-

ing) or descending (decreasing) order is to convert a date in the form month/day/year into an
integer number with the formula daze = year x 10000 + month x 100 + day. For example, using
this formula, the date 12/6/1999 converts to the integer 19991206, and the date 2/28/2011 con-
verts to the integer 20110228. Sorting the resulting integer numbers puts dates into the correct
order automatically. Using this formula, write a function named convertdays () that accepts
a month, day, and year; converts the passed data into a single date integer; and returns the
integer to the calling function.
b. Include the convertdays () function written for Exercise 9a in a working program. The
main() function should call convertdays () correctly and display the integer the function
returns. Test the function by passing various data to it and verifying the returned value.

(Program) a. Write a function named ReadOneChar () that reads a key pressed on the key-

board and displays the integer code of the entered character.

b. Include the ReadOnecChar () function written for Exercise 10a in a working program. The
main () function should correctly call ReadoneChar () and display the integer the function
returns. Test the function by passing various data to it and verifying the returned value.

(Program) Heron’s formula for the area, A, of a triangle with sides of length «, 4, and ¢ is

A= \/[s(s - a)(s —b)(s —c)]
where

(ﬂ+b+£)
2

S =

256

12.

13.

14.

15.

Modularity Using Functions

Write, test, and execute a function that accepts the values of «, 4, and ¢ as parameters from a
calling function, and then calculates the values of s and [s(s - a)(s - b)(s - ¢)]. If this quantity is
positive, the function calculates A. If the quantity is negative, @, #, and ¢ do not form a triangle,
and the function should set A = -7. The value of A should be returned by the function. Test
the function by passing various data to it and verifying the returned value.

(Program) a. Write a function named whole() that returns the integer part of any number

passed to the function. (Hinz: Assign the passed argument to an integer variable.)

b. Include the function written in Exercise 12a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

(Program) a. Write a C++ function named fracpart () that returns the fractional part of any
number passed to it. For example, if the number 256.879 is passed to fracpart (), the num-
ber 0.879 should be returned. Have fracpart() call the whole() function you wrote in
Exercise 12. The number returned can then be determined as the number passed to
fracpart() less the returned value when the same argument is passed to whole(). The
completed program should consist of main () followed by fracpart () followed by whole().
b. Include the function written in Exercise 13a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

(Program) a. Years that are evenly divisible by 400 or are evenly divisible by 4 but not by 100
are leap years. For example, because 1600 is evenly divisible by 400, 1600 was a leap year.
Similarly, because 1988 is evenly divisible by 4 but not by 100, it was also a leap year. Using
this information, write a C++ function that accepts the year as user input and returns a 1 if the
passed year is a leap year or a 0 if it isn’t.

b. Include the function written in Exercise 14a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

(Program) a. A second-degree polynomial in x is given by the expression ax? + &x + ¢, where 4,
b, and ¢ are known numbers and « is not equal to 0. Write a C++ function named polyTwo
(a,b,c,x) that computes and returns the value of a second-degree polynomial for any passed
values of @, 4, ¢, and x.

b. Include the function written in Exercise 15a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

Chapter 6 257
Returning Multiple Values

16. (Program) a. The following is a useful programming algorithm for rounding a real number to
7 decimal places:

Step 1: Multiply the number by 10"

Step 2: Add 0.5.

Step 3: Delete the fractional part of the result.
Step 4: Divide by 10"

For example, using this algorithm to round the number 78.374625 to three decimal places
yields:

Step 1: 78.374625 x 10° = 78374.625

Step 2: 78374.625 + 0.5 = 78375.125

Step 3: Retaining the integer part = 78375
Step 4: 78375 divided by 103 = 78.375

Using this algorithm, write a C++ function that accepts a user-entered value and returns the

result rounded to two decimal places.

b. Include the function written in Exercise 16a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

6.3 Returning Multiple Values

In a typical function invocation, the called function receives values from its calling function,
stores and manipulates the passed values, and directly returns at most one value. When data is
passed in this manner, it’s referred to as a pass by value.

Calling a function and passing arguments by value is a distinct advantage of C++. It allows
functions to be written as independent entities that can use any variable or parameter name
without concern that other functions might be using the same name. It also alleviates any
concern that altering a parameter or variable in one function could inadvertently alter a param-
eter or variable’s value in another function. In this approach, parameters can be considered
initialized variables, or variables assigned values when the function is executed. At no time,
however, does the called function have direct access to any variable defined in the calling func-
tion, even if the variable is used as an argument in the function call.

At times, however, you need to modify this approach by giving a called function direct
access to its calling function’s variables. This approach allows one function—the called
function—to use and change the value of variables that have been defined in the calling func-
tion. Doing so requires passing the variable’s address to the called function. After the called
function has the variable’s address, it “knows where the variable lives,” so to speak, and can
access and change the value stored there.

258

Modularity Using Functions

Passing addresses is referred to as a function pass by reference!’ because the called func-
tion can reference, or access, the variable whose address has been passed. C++ provides two
types of address parameters: references and pointers. The next section describes the method
that uses reference parameters.

Passing and Using Reference Parameters
As always, when exchanging data between two functions, you must be concerned with both
the sending and receiving sides. From the sending side, calling a function and passing an
address as an argument that’s accepted as a reference parameter on the receiving side is the
same as calling a function and passing a value; the called function is summoned into action by
giving its name and a list of arguments. For example, the statement newval (firstnum,
secnum) ; calls the function named newval () and passes two arguments to it. Whether a value
or an address is actually passed depends on the parameter types declared for newval (). Now
take a look at writing the newval() function and prototype so that it receives the addresses
rather than the values of the variables firstnum and secnum, which are assumed to be double-
precision variables.

One of the first requirements in writing newval () is to declare two reference parameters
for accepting passed addresses. In C++, a reference parameter is declared with this syntax:

dataType& referenceName
For example, the reference declaration
double& numl;

declares that numl is a reference parameter used to store the address of a double. Similarly,
int& secnum; declares that secnum is a reference to an integer, and chars key; declares
that key is a reference to a character.

The ampersand, &, in C++ means “the address of.” Additionally, when & is used in a dec-
laration, it refers to “the address of” the preceding data type. Using this information, declara-
tions such as double& numl and int& secnum are sometimes more clearly understood if
they’re read backward. Reading the declaration doubles& numl in this manner yields the infor-
mation “numl is the address of a double-precision value.” (This topic is discussed in more
detail in Section 8.1.)

Because you need to accept two addresses in the parameter list for newval (), the declara-
tions double& numl and doubles& num2 can be used. Including these declarations in the
parameter list for newval (), and assuming the function returns no value (void), the function
header for newval () becomes the following:

void newval(double& numl, double& num2)
For this function header, the following is a suitable function prototype:

void newval (double&, double&);

13I¢’s also referred to as a “call by reference,” and again, both terms refer only to the argument whose address has been passed.

Chapter 6 259
Returning Multiple Values

"This prototype and function header are included in Program 6.8, which uses a newval()
function body that displays and alters the values stored in these reference variables from
within the called function.

Program 6.8

#include <iostream>
using namespace std;

void newval(double&, double&); // prototype with two reference parameters

int main()

{
double firstnum, secnum;
cout << "Enter two numbers: ";
cin >> firstnum >> secnum;
cout << "\nThe value in firstnum is: " << firstnum << endl;
cout << "The value in secnum is: " << secnum << "\n\n";
newval (firstnum, secnum); // call the function
cout << "The value in firstnum is now: " << firstnum << endl;
cout << "The value in secnum is now: " << secnum << endl;
return 0;

}

void newval (double& xnum, double& ynum)

{
cout << "The value in xnum is: " << xnum << endl;
cout << "The value in ynum is: " << ynum << "\n\n";
xnum = 89.5;
ynum = 99.5;
return;

}

In calling the newval () function in Program 6.8, you need to understand the connection
between the arguments used in the function call, firstnum and secnum, and the parameters
used in the function header, xnum and ynum. Bo#k refer to the same data items. The signifi-
cance is that the values in the arguments (firstnum and secnum) can now be altered from
within newval () by using the parameter names (xnum and ynum). Therefore, the parameters

260

Modularity Using Functions

xnum and ynum don’t store copies of the values in firstnum and secnum; instead, they access
the locations in memory set aside for these two arguments.

Figure 6.7 shows the equivalence of argument names in Program 6.8, which is the essence
of a pass by reference. The argument names and their matching parameter names are simply
different names referring to the same memory storage areas. In main (), these memory loca-
tions are referenced by the argument names firstnum and secnum, and in newval(), the
same locations are referenced by the parameter names xnum and ynum.

Inmain() the values
J

|. are referenced as
firstnum secnum
One value is stored One value is stored
xXnum ynum

In newval () the same values
) are referenced as

Figure 6.7 The equivalence of arguments and parameters in Program 6.8
The following is a sample run of Program 6.8:

Enter two numbers: 22.5 33.0

The value in firstnum is: 22.5
The value in secnum is: 33

The value in xnum is: 22.5

The value in ynum is: 33

The value in firstnum is now: 89.5
The value in secnum is now: 99.5

In reviewing this output, notice that the values initially displayed for the parameters xnum
and ynum are the same as those displayed for the arguments firstnum and secnum. Because
xnum and ynum are reference parameters, however, newval () now has direct access to the
arguments firstnum and secnum. Therefore, any change to xnum in newval() alters the
value of firstnum in main(), and any change to ynum changes secnum’s value. As the final
displayed values show, the assignment of values to xnum and ynum in newval () is reflected in
main() as the altering of f£irstnum’s and secnum’s values.

The equivalence between actual calling arguments and function parameters shown in
Program 6.8 provides the basis for returning multiple values from within a function. For
example, say you want to write a function to accept three values, compute these values’ sum

Chapter 6 261
Returning Multiple Values

and product, and return these computed results to the calling routine. By naming the function
calc() and providing five parameters (three for input data and two references for returned
values), the following function can be used:

void calc(double nl, double n2, double n3, double& sum, double& product)
{

sum = nl + n2 + n3;
product = nl * n2 * n3;
return;

"This function has five parameters named n1, n2, n3, sum, and product. Only the last two
are declared as references, so the first three arguments are passed by value and the last two
arguments are passed by reference. In this function, only the last two parameters are altered.
The value of the fourth parameter, sum, is calculated as the sum of the first three parameters,
and the last parameter, product, is computed as the product of the parameters n1, n2, and n3.
Program 6.9 includes this function in a complete program.i4

Program 6.9

#include <iostream>
using namespace std;

void calc(double, double, double, double&, double&); // prototype
int main()
{

double firstnum, secnum, thirdnum, sum, product;

cout << "Enter three numbers: ";
cin >> firstnum >> secnum >> thirdnum;

calc(firstnum, secnum, thirdnum, sum, product); // function call

cout << "\nThe sum of the numbers is: " << sum << endl;
cout << "The product of the numbers is: " << product << endl;

return 0;

void calc(double nl, double n2, double n3, double& sum, double& product)
{

(I

140ne of these values could, of course, be returned directly by the function.

Modularity Using Functions

sum = nl + n2 + n3;

product = nl * n2 * n3;

return;

In main(), the calc() function is called with the five arguments firstnum, secnum,
thirdnum, sum, and product. As required, these arguments agree in number and data type
with the parameters declared by calc(). Of the five arguments passed, only firstnum,
secnum, and thirdnum have been assigned values when the call to calc() is made. The
remaining two arguments haven’t been initialized and are used to receive values back from
calc().Depending on the compiler used, these arguments initially contain zeros or “garbage”
values. Figure 6.8 shows the relationship between actual and parameter names and the values
they contain after the return from calc().

Argument names used in main ()

! ! ! ! !

¥ s, ¢, pe)
s S R83 sy, Loy,
h: & & @& .
2.5 6.0 10.0
main() : : :
—— ' «—— Avaluelis passed —» | —— J— -
calc() ; ip ; 185 150.0
2.5 6.0 10.0 & &
2 3 b Cop ‘O"Oq
01;71 0,7;2 (11”3 QQ Uol‘

t t t t f

Parameter names used in calc()

Figure 6.8 The relationship between argument and parameter names

After calc() is called, it uses its first three parameters to calculate values for sum and
product and then returns control to main(). Because of the order of its actual calling argu-
ments, main () knows the values calculated by calc() as sum and product, which are then
displayed. Following is a sample run of Program 6.9:

Enter three numbers: 2.5 6.0 10.0

The sum of the entered numbers is: 18.5
The product of the entered numbers is: 150

As a final example of the usefulness of passing references to a called function, take a look
at constructing a function named swap () that exchanges the values of two of main()’s double-
precision variables. This type of function is useful when sorting a list of numbers.

Chapter 6 263
Returning Multiple Values

Because the value of more than one variable is affected, swap () can’t be written as a pass
by value function that returns a single value. The exchange of main()’s variables by swap ()
can be accomplished only by giving swap () access to main()’s variables. One way of doing
this is using reference parameters.

You have already seen how to pass references to two variables in Program 6.8. Now you
see how to construct a function to exchange the values in the passed reference parameters.
Exchanging values in two variables is done with this three-step exchange algorithm:

1. Save the first parameter’s value in a temporary location (see Figure 6.9a).

temp numl num?2
{ ' |
)
Figure 6.9a Save the first value

2. Store the second parameter’s value in the first variable (see Figure 6.9b).

temp numl num2
u' |
)
Figure 6.9b Replace the first value with the second value

3. Store the temporary value in the second parameter (see Figure 6.9c).

temp numl num2

Y \

Figure 6.9c Change the second value
Following is the swap () function written according to these specifications:

void swap(double& numl, double& num2)

{
double temp;

temp = numl; // save numl's value

numl = num2; // store num2's value in numl
num2 = temp; // change num2's value
return;

264 Modularity Using Functions

Notice that the use of references in swap()’s function header gives swap() access to
equivalent arguments in the calling function. Therefore, any changes to the two reference
parameters in swap() change the values in the calling function’s arguments automatically.
Program 6.10 contains swap () in a complete program.

Program 6.10

#include <iostream>
using namespace std;

void swap(double&, double&); // function receives two references

int main()

{

double firstnum = 20.5, secnum = 6.25;

cout << "The value stored in firstnum is: "
<< firstnum << endl;

cout << "The value stored in secnum is: "
<< secnum << "\n\n";

swap(firstnum, secnum); // call the function with references
cout << "The value stored in firstnum is now: "

<< firstnum << endl;
cout << "The value stored in secnum is now: "

<< secnum << endl;

return 0;

void swap(double& numl, double& num2)

{
double temp;
temp = numl; // save numl's value
numl = num2; // store num2's value in numl
num2 = temp; // change num2's value
return;

Chapter 6 265
Returning Multiple Values

The following is a sample run of Program 6.10:

The value stored in firstnum is: 20.5
The value stored in secnum is: 6.25

The value stored in firstnum is now: 6.25
The value stored in secnum is now: 20.5

As shown by this output, the values stored in main()’s variables have been modified from
within swap (), which was made possible by using reference parameters. If a pass by value had
been used instead, the exchange in swap () would affect only swap ()’s parameters and accom-
plish nothing with main()’s variables. A function such as swap () can be written only by using
a reference or some other means that provides access to main()’s variables. (This other means
is by pointers, the topic of Chapter 8.)

In using reference parameters, two cautions need to be mentioned. First, reference param-
eters must be variables (that is, they can’t be used to change constants). For example, calling
swap () with two constants, as in the call swap(20.5, 6.5), passes two constants to the func-
tion. Although swap () can execute, it doesn’t change the values of these constants.1

Second, a function call gives no indication that the called function will be using reference
parameters. The default in C++ is to make passes by value rather than passes by reference,
specifically to limit a called function’s capability to alter variables in the calling function. This
calling procedure should be adhered to whenever possible, which means reference parameters
should be used only in restricted situations that require multiple return values, as in the
swap () function in Program 6.10. The calc() function, included in Program 6.9, although
useful for illustration purposes, could also be written as two separate functions, each returning
a single value.

EXERCISES 6.3

(Practice) Write parameter declarations for the following:
a. A parameter named amount that will be a reference to a double-precision value

b. A parameter named price that will be a reference to a double-precision number
c. A parameter named minutes that will be a reference to an integer number

d. A parameter named key that will be a reference to a character

e. A parameter named yield that will be a reference to a double-precision number

N

(Practice) Three integer arguments are to be used in a call to a function named time (). Write
a suitable function header for time (), assuming that time () accepts these variables as the
reference parameters sec, min, and hours and returns no value to its calling function.

3. (Modify) a. Rewrite the findMax() function in Program 6.4 so that the variable max,
declared in main(), is used to store the maximum value of the two passed numbers. The
value of max should be set from within findMax (). (Hint: A reference to max has to be
accepted by findMax().)

15Most compilers catch this error.

266

ha

4

Modularity Using Functions

b. Include the function written in Exercise 3a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

(Program) a. Write a function named change () that has an integer parameter and six integer

reference parameters named hundreds, fifties, twenties, tens, fives, and ones. The

function is to consider the passed integer value as a dollar amount and convert the value into
the fewest number of equivalent bills. Using the reference parameters, the function should
alter the arguments in the calling function.

b. Include the function written in Exercise 4a in a working program. Make sure your function
is called from main() and returns a value to main() correctly. Have main() use a cout
statement to display the returned value. Test the function by passing various data to it and
verifying the returned value.

(Program) Write a function named time() that has an integer parameter named seconds
and three integer reference parameters named hours, mins, and secs. The function is to
convert the passed number of seconds into an equivalent number of hours, minutes, and sec-
onds. Using the reference parameters, the function should alter the arguments in the calling
function.

. (Program) Write a function named yearCalc() that has an integer parameter representing

the total number of days from the date 1/1/2000 and reference parameters named year, month,
and day. The function is to calculate the current year, month, and day given the number of days
passed to it. Using the reference parameters, the function should alter the arguments in the
calling function. For this problem, assume each year has 365 days, and each month has 30 days.

(Program) Write a function named liquid() that has an integer number parameter and
reference parameters named gallons, quarts, pints, and cups. The passed integer repre-
sents the total number of cups, and the function is to determine the numbers of gallons, quarts,
pints, and cups in the passed value. Using the reference parameters, the function should alter
the arguments in the calling function. Use these relationships: 2 cups = 1 pint, 4 cups = 1 quart,
and 16 cups = 1 gallon.

(Desk check) The following program uses the same argument and parameter names in both
the calling and called functions. Determine whether doing so causes any problem for the
compiler.

#include <iostream>

using namespace std;

void time(int&, int&); // function prototype
int main()

{

int min, hour;

Chapter 6 267
Variable Scope

cout << "Enter two numbers :";
cin >> min >> hour;
time(min, hour);

return 0;

}
void time(int& min, int& hour) // accept two references
{

int sec;

sec = (hour * 60 + min) * 60;

cout << "The total number of seconds is " << sec << endl;

return;

6.4 Variable Scope

Now that you have begun to write programs containing more than one function, you can look
more closely at the variables declared in each function and their relationship to variables in
other functions. By their nature, C++ functions are constructed to be independent modules. As
you have seen, values are passed to a function by using the function’s parameter list, and a
single value can be returned from a function by using a return statement. Seen in this light,
a function can be thought of as a closed box, with slots at the top to receive values and a single
slot at the bottom to return a value (see Figure 6.10).

Values passed to the function

A single value directly
returned by the function

Figure 6.10 A function can be considered a closed box

The metaphor of a closed box is useful because it emphasizes that what goes on inside the
function (including all variable declarations in the function body) is hidden from the view of
all other functions. Because the variables created in a function are conventionally available
only to the function, they are said to be local to the function, or local variables. This term refers

268 Modularity Using Functions

to the scope of an identifier; scope is the section of the program where the identifier, such as a
variable, is valid or “known.” This section of the program is also referred to as where the vari-
able is “visible.”

A variable can have a local scope or a global scope. A variable with a local scope is simply
one with storage locations set aside for it by a declaration statement in a function body. L.ocal
variables are meaningful only when used in expressions or statements inside the function that
declared them, so the same variable name can be declared and used in more than one function.
For each function that declares the variable, a separate and distinct variable is created.

All the variables you have used until now have been local variables, a result of placing
declaration statements inside functions and using them as definition statements that cause the
computer to reserve storage for the declared variable. As you’ll see in the next section, declara-
tion statements can be placed outside functions and need not act as definitions that reserve
new storage areas for the declared variable.

A variable with global scope, more commonly termed a global variable, has storage created
for it by a declaration statement located outside any function. These variables can be used by
all functions placed after the global variable declaration. Program 6.11 shows using a global
variable, and the same variable name has been used on purpose inside both functions in the
program

Program 6.11

#include <iostream>
using namespace std;

int firstnum; // create a global variable named firstnum

void valfun(); // function prototype (declaration)

int main()

{
int secnum; // create a local variable named secnum
firstnum = 10; // store a value into the global variable
secnum = 20; // store a value into the local variable
cout << "From main(): firstnum = " << firstnum << endl;
cout << "From main(): secnum = " << secnum << endl;
valfun(); // call the function valfun

cout << "\nFrom main() again: firstnum = "
<< firstnum << endl;
cout << "From main() again: secnum = " << secnum << endl;

Chapter 6 269
Variable Scope

return 0;

void valfun() // no values are passed to this function

{

int secnum; // create a second local variable named secnum

secnum = 30; // this only affects this local variable's value

cout << "\nFrom valfun(): firstnum = " << firstnum << endl;
cout << "From valfun(): secnum = " << secnum << endl;
firstnum = 40; // changes firstnum for both functions
return;

The variable £irstnum in Program 6.11 is a global variable because its storage is created
by a definition statement located outside a function. Because both main () and valfun() fol-
low the definition of firstnum, both functions can use this global variable with no further
declaration needed.

Program 6.11 also contains two separate local variables, both named secnum. Storage for
the secnum variable named in main() is created by the definition statement in main(). A
different storage area for the secnum variable in valfun() is created by the definition state-
ment in the valfun () function. Figure 6.11 shows the three distinct storage areas reserved by
the three definition statements in Program 6.11.

Each variable named secnum is local to the function in which its storage is created, and
each variable can be used only from within its corresponding function. Therefore, when secnum
is used in main(), the storage area main() reserves for its secnum variable is accessed, and
when secnum is used in valfun(), the storage areca valfun () reserves for its secnum variable
is accessed. The following output is produced when Program 6.11 runs:

From main(): firstnum = 10
From main(): secnum = 20

From valfun(): firstnum = 10
From valfun(): secnum = 30

From main() again: firstnum = 40
From main() again: secnum = 20

Now analyze this output to see how local and global variables work. Because firstnum is
a global variable, both main () and valfun() can use and change its value. Initially, both func-
tions print the value of 10 that main() stored in firstnum. Before returning, valfun()
changes the value of firstnum to 40, which is the value displayed when firstnum is next
displayed from within main().

270 Modularity Using Functions

firstnum
main()
secnum
N

storage for
one integer

valfun()
secnum

(—

storage for
one integer

Figure 6.11 The three storage areas reserved by Program 6.11

Because each function “knows” only its own local variables, main() can send only the
value of its secnum to cout, and valfun() can send only the value of its secnum to cout.
T'herefore, whenever secnum is obtained from main (), the value of 20 is displayed, and when-
ever secnum is obtained from valfun(), the value 30 is displayed. C++ doesn’t confuse the
two secnum variables because only one function can execute at a time. While a function is
executing, only variables and parameters that are “in scope” for that function (global and local)
can be accessed.

The scope of a variable in no way influences or restricts its data type. Just as a local vari-
able can be a character, integer, Boolean, double, or any other data type that’s been introduced,
global variables can be all these data types, as shown in Figure 6.12. A variable’s scope is deter-
mined by the placement of the definition statement that reserves storage for it and optionally
by a declaration statement that makes it visible, whereas a variable’s data type is determined
by using a keyword (char, int, bool, double, and so on) before the variable’s name in a dec-
laration statement.

Scope

I

local r global
char I int I bool Idoublel char [int I bool Idouble

\ . J

-

R

Data type
Figure 6.12 Relating the scope and type of a variable

Chapter 6 271
Variable Scope

Scope Resolution Operator

When a local variable has the same name as a global variable, all references to the variable
name made within the local variable’s scope refer to the local variable. This situation is shown
in Program 6.12, where the variable name number is defined as both a global and local variable.

' Program 6.12

#include <iostream>
using namespace std;

double number = 42.8; // a global variable named number

int main()

{
double number = 26.4; // a local variable named number
cout << "The value of number is " << number << endl;
return 0;

}

When Program 6.12 runs, the following output is displayed:
The value of number is 26.4

As this output shows, the local variable name takes precedence over the global variable.
In these cases, you can still access the global variable by using C++’s scope resolution operator,
which has the symbol : :. This operator must be placed immediately before the variable name,
as in : :number. When used in this manner, the : : tells the compiler to use the global variable.
As an example, the scope resolution operator is used in Program 6.12a.

' Program 6.12a

#include <iostream>
using namespace std;

double number = 42.5; // a global variable named number
int main()
{

double number = 26.4; // a local variable named number

cout << "The value of number is " << ::number << endl;

272 Modularity Using Functions

return 0;

"This is the output produced by Program 6.12a:
The value of number is 42.5

As this output indicates, the scope resolution operator causes the global, rather than the
local, variable to be accessed.

Misuse of Globals

Global variables allow programmers to “jump around” the normal safeguards provided by func-
tions. Instead of passing variables to a function, it’s possible to make all variables global. Do nor
do this. By indiscriminately making all variables global, you destroy the safeguards C++ provides
to make functions independent and insulated from each other, including designating the type
of arguments a function needs, the variables used in the function, and the return value.

Using only global variables can be especially disastrous in large programs with many user-
created functions. Because all variables in a function must be declared, creating functions that
use global variables requires remembering to write the appropriate global declarations at the
top of each program using the function—they no longer come along with the function. More
devastating, however, is trying to track down an error in a large program with global variables.
Because a global variable can be accessed and changed by any function following the global
declaration, locating the origin of an erroneous value is a time-consuming and frustrating task.

Global definitions, however, are sometimes useful in creating symbolic constants that
must be shared between many functions. In this case, defining the symbolic constant once as
global variable is easier. Doing so also alerts anyone reading the program that many functions
use the constant. Most large programs almost always make use of a few global symbolic con-
stants. Smaller programs containing a few functions, however, should almost never use global
declarations.

The misuse of globals doesn’t apply to function prototypes, which are typically global. All
the function prototypes you have used have been of global scope, which declares the prototype
to all subsequent functions. Placing a function prototype in a function makes the prototype a
local declaration available only to the function it’s declared within.

EXERCISES 6.4

1. (Practice) a. For the following section of code, determine the data type and scope of all
declared variables and symbolic constants on a separate sheet of paper, using the column head-
ings shown in the following chart. (The entries for the first variable have been filled in.)

Variable or Constant Name | Data Type Scope
PRICE int global tomain(), roi(), and step()

Chapter 6 273
Variable Scope

#include <iostream>
using namespace std;

const int PRICE;
const long YEARS;
const double YIELD;
int main()
{
int bondtype;
double interest, coupon;

return 0;
}
double roi(int matl, int mat2)
{

int count;

double effectiveRate;

return effectiveRate;
}
int step(double first, double last)
{

int numofyrs;

double fracpart;

return(l0*numofyrs);

b. Draw a box around the appropriate section of the preceding code to enclose the scope of
each variable or constant.

c. Determine the data type of the arguments that the roi () and step() functions expect and
the data type of the value these functions return.

. (Practice) a. For the following section of code, determine the data type and scope of all
declared variables on a separate sheet of paper, using the column headings shown in the fol-
lowing chart. (The entries for the first variable have been filled in.)

Variable Name Data Type Scope
key char global tomain(), funcl(), and func2 ()

274 Modularity Using Functions

#include <iostream>
using namespace std;

const char KEY;
const long NUMBER;

int main()

{
int a,b,c;
double x,y;

return 0;

double secnum;

int funcl(int numl, int num2)

{
int o,p;
float q;

return p;

double func2(double first, double last)
{

int a,b,c,o0,p;

double r;

double s, t,x;

return s * t;

b. Draw a box around the appropriate section of the preceding code to enclose the scope of
each variable or constant.

c. Determine the data type of the arguments that the funcl () and func2 () functions expect
and the data type of the value these functions return.

3. (Practice) The term “scope” can also apply to a function’s parameters. What do you think is
the scope of all function parameters?

Chapter 6 275
Variable Scope

4. (Practice) Define the scope of the parameter p2 and the variables a, b, ¢, d, e, £, m, n, p, d, q,
and r in the following program structure:
#include <iostream>
using namespace std;

int a, b;
double One(float);
void Two(void);

int main()

{
int ¢, d;
double e, f£f;

return 0;

double One(double p2)
{

char m, n;

void Two(void)

{
int p, d;
double q, r;

}

S. (Desk check) Determine the values displayed by each cout statement in the following
program:

#include <iostream>
using namespace std;

int firstnum = 10; // declare and initialize a global variable
void display(); // function prototype

int main()

{

int firstnum = 20; // declare and initialize a local variable

(I

276 Modularity Using Functions

cout << "\nThe value of firstnum is " << firstnum << endl;
display();

return 0;
void display(void)
{

cout << "The value of firstnum is now " << firstnum << endl;

return;

6.5 Variable Storage Category

T'he scope of a variable defines the location in a program where that variable can be used. If
you draw a box around the section of program code where each variable is valid, the space
inside the box represents the variable’s scope. From this viewpoint, a variable’s scope can be
thought of as the space in the program where the variable is valid.

In addition to the space dimension represented by scope, variables have a time dimension
that refers to the length of time storage locations are reserved for a variable. This time dimen-
sion is referred to as the variable’s “lifetime.” For example, all variable storage locations are
released back to the operating system when a program is finished running. However, while a
program is still running, interim variable storage locations are reserved and subsequently
released back to the operating system. Where and how long a variable’s storage locations are
kept before they’re released can be determined by the variable’s storage category.

T'he four available storage categories are auto, static, extern, and register. If one of
these category names is used, it must be placed before the variable’s data type in a declaration
statement. The following are examples of declaration statements that include a storage cate-
gory designation:

auto int num; // auto storage category and int data type
static int miles; // static storage category and int data type
register int dist; // register storage category and int data type
extern int volts; // extern storage category and int data type
auto float coupon; // auto storage category and float data type
static double yrs; // static storage category and double data type
extern float yld; // extern storage category and float data type
auto char inKey; // auto storage category and char variable

"To understand what a variable’s storage category means, next you examine local variables
(created inside a function) and global variables (created outside a function).

Chapter 6 277
Variable Storage Category

Local Variable Storage Categories
Local variables can be members only of the auto, static, or register storage categories. If
no category description is included in the declaration statement, the variable is assigned to the
auto category automatically, so auto is the default category C++ uses. All the local variables you
have used have been auto variables because the storage category designation was omitted.
The term auto is short for “automatic.” Storage for auto local variables is reserved or
created automatically each time a function declaring auto variables is called. As long as the
function hasn’t returned control to its calling function, all auto variables local to the function
are “alive”—meaning storage for the variables is available. When the function returns control
to its calling function, its local auto variables “die”—meaning storage for the variables is
released back to the operating system. This process repeats each time a function is called. For
example, in Program 6.13, the testauto() function is called three times from main().

Program 6.13

#include <iostream>
using namespace std;

void testauto(); // function prototype

int main()

{

int count; // count is a local auto variable

for(count = 1; count <= 3; count++)
testauto();

return 0;

void testauto()

{

int num = 0; // num is a local auto variable
// initialized to zero
cout << "The value of the automatic variable num is "
<< num << endl;
num++;

return;

278 Modularity Using Functions

"This is the output produced by Program 6.13:

The value of the automatic variable num is 0
The value of the automatic variable num is 0
The value of the automatic variable num is 0

Each time testauto() is called, the auto variable num is created and initialized to 0.
When the function returns control to main(), the variable num is destroyed along with any
value stored in num. Therefore, the effect of incrementing num in testauto(), before the
function’s return statement, is lost when control is returned to main().

For most applications, the use of auto variables works just fine and is the reason it’s the
default storage category. In some cases, however, you want a function to remember values
between function calls, which is the purpose of the static storage category. A local variable
declared as static causes the program to keep the variable and its latest value even when the
function that declared it has finished executing. The following are examples of static vari-
able declarations:

static int rate;
static double amount;
static char inKey;

A local static variable isn’t created and destroyed each time the function declaring it is
called. After they’re created, local static variables remain in existence for the program’s life-
time. This means the last value stored in the variable when the function finishes executing is
available to the function the next time it’s called.

Because local static variables retain their values, they aren’t initialized in a declaration
statement in the same way as auto variables. To understand why, consider the auto declara-
tion int num = 0;, which causes the auto variable num to be created and set to 0 each time
the declaration is encountered. This procedure is called a runtime initialization because initial-
ization occurs each time the declaration statement is encountered. This type of initialization
would be disastrous for a static variable because resetting the variable’s value to 0 each time
the function is called destroys the very value you’re trying to save.

Initialization of static variables (both local and global) is done only once, when the pro-
gram is first compiled. At compile time, the variable is created and any initialization value is
placed in it.'® Thereafter, the value in the variable is kept without further initialization. To see
how this process works, examine Program 6.14.

16Some compilers initialize local static variables the first time the definition statement is executed rather than when the program
is compiled.

Chapter 6 279
Variable Storage Category

Program 6.14

#include <iostream>
using namespace std;

void teststat(); // function prototype
int main()
{
int count; // count is a local auto variable

for(count = 1; count <= 3; count++)
teststat();
return 0;

void teststat()
{
static int num = 0; // num is a local static variable
cout << "The value of the static variable num is now "
<< num << endl;
num++;
return;

"This is the output produced by Program 6.14:

The value of the static variable num is now 0
The value of the static variable num is now 1
The value of the static variable num is now 2

As this output shows, the static variable num is set to 0 only once. The teststat()
function then increments this variable just before returning control to main (). The value that
num has when leaving the teststat () function is retained and displayed when the function
is next called.

Unlike auto variables that can be initialized by constants or expressions using both con-
stants and previously initialized variables, static variables can be initialized only by using
constants or constant expressions, such as 3.2 + 8.0. Also, unlike auto variables, all static
variables are set to 0 when no explicit initialization is given. Therefore, the initialization of num
to 0 in Program 6.14 isn’t required.

The remaining storage category available to local variables, register, isn’t used as
extensively as auto or static variables. The following are examples of register variable
declarations:

register int time;
register double diffren;
register float coupon;

280

Modularity Using Functions

The register variables have the same time duration as auto variables; that is, a local
register variable is created when the function declaring it is entered and is destroyed when
the function finishes execution. The only difference between register and auto variables
is where storage for the variable is located.

Storage for all variables (local and global), except register variables, is reserved in the
computer’s memory. Most computers also have a few high-speed storage areas, called registers,
located in the CPU that can also be used for variable storage. Because registers are in the CPU,
they can be accessed faster than the normal storage areas in the computer’s memory. Also, com-
puter instructions referencing registers typically require less space than instructions referenc-
ing memory locations because there are fewer registers than memory locations that can be
accessed. When the compiler substitutes a register’s location for a variable during program
compilation, the instruction needs less space than address memory having millions of locations.

Besides decreasing a compiled C++ program’s size, using register variables can increase
the program’s execution speed if your computer supports this data type. Variables declared with
the register storage category are switched to auto automatically if your compiler doesn’t
support register variables or if the declared register variables exceed the computer’s reg-
ister capacity. Application programs intended to run on different types of computers shouldn’t
use register variables, however. The only restriction in using the register storage category
is that a register variable’s address can’t be taken by using the address operator, &. This con-
cept is easier to understand when you realize that registers don’t have standard memory
addresses.

Global Variable Storage Categories

Global variables are created by definition statements external to a function. By their nature,
these externally defined variables don’t come and go with the calling of a function. After a
global variable is created, it exists until the program in which it’s declared has finished running.
T'herefore, global variables can’t be declared as auto or register variables that are created
and destroyed as the program is running. Global variables can be declared with the static or
extern storage category (but not both). The following are examples of declaration statements
including these two category descriptions:

extern int sum;
extern double volts;
static double current;

The static and extern storage categories affect only the scope, not the lifetime, of
global variables. As with static local variables, all global variables are initialized to 0 at com-
pile time. The purpose of the extern storage category is to extend a global variable’s scope
beyond its normal boundaries. To understand this concept, first note that all the programs writ-
ten so far have been contained in one file. Therefore, when you have saved or retrieved pro-
grams, you have needed to give the computer only a single name for your program. C++
doesn’t require doing this, however.

Large programs typically consist of many functions stored in multiple files. For example,
Figure 6.13 shows the three functions main(), funcl(), and func2 () stored in one file and
the two functions func3 () and func4 () stored in a second file.

Chapter 6 281
Variable Storage Category

filel file2

int volts; double factor;

double current; int func3()

static double power; {

int main() }

{ int func4()
funcl(); {
func2(); .
func3(); .
func4d (); .

} }

int funcl()

{

}

int func2()

{

}

Figure 6.13 A program can extend beyond one file

For the files shown in Figure 6.13, the global variables volts, current, and power
declared in £ilel can be used only by the functions main(), funcl(), and func2() in this
file. The single global variable, factor, declared in £ile2 can be used only by the functions
func3 () and func4 () in file2.

Although the variable volts has been created in £ilel, you might want to use it in
file2. To do this, you place the declaration statement extern int volts; in file2, as
shown in Figure 6.14. Putting this statement at the top of £ile2 extends the scope of volts
into £ile2 so that it can be used by both func3() and func4 (). The extern designation
simply declares a global variable that’s defined in another file. So placing the statement
extern double current; in func4 () extends the scope of this global variable, created in
filel, into func4 (). Additionally, the scope of the global variable factor, created in file2,
is extended into funcl() and func2() by the declaration statement extern double
factor; placed before funcl (). Notice that factor is not available to main().

Modularity Using Functions

filel file2
int volts; double factor;
double current; extern int volts;
static double power; int func3()
. {
int main() .
{ }
funcl(); int func4()
func2(); {
func3(); extern double current;
func4 (); .
} .
extern double factor; .
int funcl() }
{
}
int func2()
{
}

Figure 6.14 Extending the scope of global variables

A declaration statement containing the keyword extern is different from other declara-
tion statements, in that it doesn’t cause a new variable to be created by reserving new storage
for the variable. An extern declaration statement simply informs the computer that a global
variable already exists and can now be used. The actual storage for the variable must be cre-
ated somewhere else in the program by using one, and only one, global declaration statement
in which the keyword extern hasn’t been used. The global variable can, of course, be initial-
ized in its original declaration. Initialization in an extern declaration statement is not allowed,
however, and causes a compilation error.

The existence of the extern storage category is the reason for carefully distinguishing
between creation and declaration of a variable. Declaration statements containing the keyword
extern don’t create new storage areas; they just extend the scope of existing global variables.

The last global storage category, static, is used to prevent extending a global variable
into a second file. Global static variables are declared in the same way as local static vari-
ables, except the declaration statement is placed outside any function.

The scope of a global static variable can’t be extended beyond the file in which it’s
declared. This rule provides a degree of privacy for global static variables. Because they are
“known” and can be used only in the file where they’re declared, other files can’t access or

Chapter 6 283
Variable Storage Category

Point of Information

Storage Classes

Variables of type auto and register are always local variables. Only non-static
global variables can be declared by using the extern keyword. Doing so extends the
variable’s scope into another file or function.

Making a global variable static makes the variable private to the file in which it's
declared. Therefore, static variables can't use the extern keyword. Except for
static variables, all variables are initialized each time they come into scope; static
variables are initialized only once, when they're defined.

change their values. Therefore, global static variables can’t subsequently be extended to a
second file by using an extern declaration statement. 'Irying to do so results in a compila-
tion error.

EXERCISES 6.5

1. (Practice) a. List the storage categories available to local variables.
b. List the storage categories available to global variables.

2. (Practice) Describe the difference between a local auto variable and a local static variable.
3. (Practice) What’s the difference between the following functions?
void initl()

{

static int yrs = 1;

cout << "The value of yrs is " << yrs << endl;
yrs = yrs + 2;

return;

void init2()
{

static int yrs;
yrs = 1;
cout << "The value of yrs is " << yrs << endl;

yrs = yrs + 2;

return;

284

Modularity Using Functions

. (Practice) a. Describe the difference between a global static variable and a global extern

variable.
b. If a variable is declared with an extern storage category, what other declaration statement
must be present somewhere in the program?

. (Practice) The declaration statement static double years; can be used to create a local

or global static variable. What determines the scope of the variable years?

. (Practice) For the function and variable declarations shown in Figure 6.15, place an extern

declaration to accomplish each of the following:
a. Extend the scope of the global variable choice into file2.
. Extend the scope of the global variable £lag into the average () function only.
. Extend the scope of the global variable date into average () and variance().
. Extend the scope of the global variable date into roi() only.
. Extend the scope of the global variable coupon into roi() only.
Extend the scope of the global variable bondtype into filel.
. Extend the scope of the global variable maturity into both watts () and thrust().

. S0 oo o

filel file2

char choice;

int flag;

long date, time;
int main()

{

}

double factor;
double watts()

{

}
double thrust()

{

char bondtype;
double resistance;
double roi()

{

}

double average()

{

}

double variance()

{

Figure 6.15

Files for Exercise 6

Chapter 6 285
Chapter Summary

6.6 Common Programming Errors

The following programming errors are common when constructing and using functions:

1.

An extremely common error related to functions is passing incorrect data types. The
values passed to a function must correspond to the data types of parameters declared
for the function. One way to verify that correct values have been received is to display
all passed values in the function body before any calculations are made. After this
verification has taken place, you can dispense with the display.!”

. Another common error can occur when the same variable is declared locally in both the

calling and called functions. Even though the variable name is the same, a change to
one local variable does nor alter the value in the other local variable.

. A related error is one that can occur when a local variable has the same name as a

global variable. Inside the function declaring it, the use of the variable’s name affects
only the local variable’s contents unless the scope resolution operator, : ¢, is used.

. Another common error is omitting the called function’s prototype before or within the

calling function. The called function must be alerted to the type of value to be
returned, and the function prototype provides this information. The prototype can be
omitted if the called function is placed in a program before its calling function.
Although omitting the prototype and return type for functions returning an integer is
permitted, doing so is poor documenting practice. The actual value a function returns
can be verified by displaying it both before and after it’s returned.

. The last two common errors are terminating a function header with a semicolon and

forgetting to include the data type of a function’s parameters in the function header.

6.7 Chapter Summary

1. A function is called by giving its name and passing any data to it in the parentheses follow-
ing the name. If a variable is one of the arguments in a function call, the called function
receives a copy of the variable’s value.

2. The common form of a user-written function is as follows:

returnDataType functionName (parameter 1list)

{

}

Symbolic constants
Variable declarations

C++ statements

return expression;

The first line of the function is called the function header. The opening and closing braces
of the function and all statements between these braces constitute the function body. The
parameter list is a comma-separated list of parameter declarations.

17In practice, a good debugger program should be used.

286

Modularity Using Functions

A function’s return type is the data type of the value the function returns. If no type is
declared, the function is assumed to return an integer value. If the function doesn’t return
a value, it should be declared as a void type.

. Functions can return at most a single data type value to their calling functions. This value

is the value of the expression in the return statement.

. Arguments passed to a function, when it’s called, must conform to the parameters specified

by the function header in terms of order, number of arguments, and specified data type.

. Using reference parameters, a variable’s address is passed to a function. If a called function

is passed an address, it has the capability to access the calling function’s variable. Using
passed addresses permits a called function to return multiple values.

. Functions can be declared to all calling functions by means of a function prototype. The

prototype provides a declaration for a function that specifies the data type the function
returns, the function’s name, and the data types of arguments the function expects. As with
all declarations, a function prototype is terminated with a semicolon and can be included in
local variable declarations or as a global declaration. This is the most common form of a
function prototype:

dataType functionName (parameter data type list);

If the called function is placed above the calling function in the program, no further decla-
ration is required because the function’s definition serves as a global declaration to all sub-
sequent functions.

. Every variable in a program has a scope, which determines where in the program the vari-

able can be used. A variable’s scope is local or global and is determined by where the vari-
able’s definition statement is placed. A local variable is defined in a function and can be
used only in its defining function or block. A global variable is defined outside a function
and can be used in any function following the variable’s definition. All global variables that
aren’t specifically initialized by the user are initialized to 0 by the compiler, and global
variables not declared as static can be shared between files by using the keyword extern.

. Every variable also has a storage category, which determines how long the value in the vari-

able is retained, also known as the variable’s lifetime. auto variables are local variables that
exist only while their defining function is executing; register variables are similar to auto
variables but are stored in a computer’s registers rather than in memory; and static vari-
ables can be global or local and retain their values while the program is running. All static
variables are set to 0 when they’re defined if the user doesn’t initialize them explicitly.

Chapter 6 287
Chapter Supplement: Generating Random
Numbers

6.8 Chapter Supplement: Generating Random Numbers

There are many business and engineering problems in which probability must be considered
or statistical sampling techniques must be used. For example, to simulate automobile traffic
flow or telephone usage patterns, statistical models are required. In addition, applications
such as simple or complex computer games can only be described statistically. All these sta-
tistical models require generating random numbers—a series of numbers whose order can’t be
predicted.

In practice, finding truly random numbers is hard. Dice are never perfect, cards are never
shuffled completely randomly, and digital computers can handle numbers only in a finite
range and with limited precision. The best you can do in most cases is generate pseudorandom
numbers, which are random enough for the type of applications being programmed.

Some programming languages contain a library function that produces random numbers;
others do not. All C++ compilers provide two general-purpose functions for generating random
numbers: rand() and srand(). The rand() function produces a series of random numbers
in the range 0 < rand() < RAND_MAX, with the constant RAND_MAX defined in the cstlib
header file. The srand () function supplies a starting “seed” value for rand (). If srand() or
another seeding technique isn’t used, rand() always produces the same series of random
numbers.18

The following code shows the general procedure for creating a series of N random num-
bers with C++’s library functions:

srand(time(NULL)); // generates the first "seed" value

for (int i = 1; i <= N; i++) // generates N random numbers
{

rvalue = rand();

cout << rvalue << endl;

The argument to the srand() function is a call to the time () function with a NULL argu-
ment. With this argument, the time () function reads the computer’s internal clock time in
seconds. The srand () function then uses this time, converted to an unsigned int, to initialize
the rand () function, which generates random numbers. Program 6.15 uses this code to gener-
ate a series of 10 random numbers.

I8Alternatively, many C++ compilers have a randomize () routine that’s defined by using the srand () function. If this routine is
available, the call randomize () can be used in place of the call srand (time (NULL)). In either case, the initializing “seed” routine
is called only once, after which rand () is used to generate a series of pseudorandom numbers.

288 Modularity Using Functions

Program 6.15

#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
using namespace std;

// this program generates 10 pseudorandom numbers
// by using C++'s rand() function

int main()

{
const int NUMBERS = 10;

double randvalue;
int i;

srand(time (NULL));
for (i = 1; i <= NUMBERS; ++i)
{
randvalue = rand();
cout << setw(20) << randvalue << endl;

return 0;

The following is the output produced by one run of Program 6.15:

20203
21400
15265
26935

8369
10907
31299
15400

5074
20663

Because of the srand () function call in Program 6.15, the series of 10 random numbers dif-
fers each time the program runs. Without this function’s randomizing “seeding” effect, the same
series of random numbers is always produced. Notice, too, the cstdlib and ctime header files
included in this program. The c¢stdlib header file contains the function prototypes for srand ()
and rand (), and the ctime header file contains the function prototype for the time () function.

Chapter 6 289
Chapter Supplement: Generating Random
Numbers

Scaling

In practice, typically you need to make one modification to the random numbers produced by
the rand() function. The reason is that, in most applications, the random numbers must be
double-precision numbers in the range 0.0 to 1.0 or integers in a specified range, such as 1 to
100. The procedure for adjusting the random numbers produced by a random-number genera-
tor to fall in a specified range is called scaling.

Scaling random numbers to lie in the range 0.0 to 1.0 is easily done by dividing the
returned value of rand() by RAND MAX. Therefore, the expression double (rand())/RAND
MAX produces a double-precision random number between 0.0 and 1.0.

Scaling a random number as an integer value between 0 and NV is done with the expression
rand() % (N+1) or int(double(rand())/RAND MAX * N). For example, the expression
int(double(rand())/RAND MAX * 100) produces a random integer between 0 and 100.

"To produce a random integer between 1 and N, you can use the expression 1 + rand() % N.
For example, in simulating the roll of a die, the expression 1 + rand() % 6 produces a ran-
dom integer between 1 and 6. The more general scaling expressiona + rand() % (b + 1 - a)
can be used to produce a random integer between the numbers ¢ and 4.

Chapter

7.1 One-Dimensional Arrays

7.2 Array Initialization

7.3 Arrays as Arguments

7.4 Two-Dimensional Arrays

7.5 Common Programming Errors
7.6 Chapter Summary

7.7 Chapter Supplement: Searching
and Sorting Methods

All the variables you have used so far have a common characteristic: Each variable can be used to store
only a single value at a time. For example, although the variables key, count, and grade declared in
the statements

char key;
int count;
double grade;

are of different data types, each variable can only store one value of the declared data type. These types
of variables are called atomic variables (also referred to as scalar variables), which means their values
can’t be further subdivided or separated into a legitimate data type.

292

Arrays

Often you have a set of values, all the same data type, that form a logical group. For example, the
Jollowing lists show three groups of items: 1) a list of five integer amounts, 2) a list of four character
codes, and 3) a list of six floating-point prices:

Amounts Codes Prices
98 X 10.96

87 a 6.43

92 m 2.58

79 n .86

85 12.27
6.39

A simple list containing items of the same data type is called a one-dimensional array. This chapter
describes how one-dimensional arrays are declared, initialized, stored in a computer, and used. You also
explore the use of one-dimensional arrays with sample programs and see the procedures for declaring and
using multidimensional arrays.

7.1 One-Dimensional Arrays

A one-dimensional array, also referred to as a single-dimensional array or a vector, is a list of
related values with the same data type that’s stored with a single group name.! In C++, as in
other computer languages, the group name is referred to as the array name. For example, take
another look at the list of amounts shown in the introduction:

98
87
92
79
85

All the amounts in the list are integer numbers and must be declared as such. However,
each item in the list doesn’t have to be declared separately. The items in the list can be declared
as a single unit and stored under a common variable name called the array name. For example,
if amts is chosen as the name for this list, the declaration statement int amts[5]; specifies
that amts is to store five integer values. Notice that this declaration statement gives the data
type of items in the array, the array (or list) name, and the number of items in the array. It’s a
specific example of the general syntax of an array declaration statement, as follows:

dataType arrayName[numberOfItems]

ILists can be implemented in a variety of ways. An array is simply one list implementation in which all list elements are of the same
type, and each element is stored consecutively in a set of contiguous memory locations.

Chapter 7 293
One-Dimensional Arrays

Good programming practice requires defining the number of items in the array as a con-
stant before declaring the array. This constant is useful later for processing all items in the
array. So in practice, the previous array declaration for amts would be declared with two state-
ments, as in these examples:

const int NUMELS = 5; // define a constant for the number of items
int amts[NUMELS]; // declare the array

The following are other examples of array declarations using this two-line syntax:

const int ARRAYSIZE = 6;
int values[ARRAYSIZE];

const int NUMELS = 4;
char code[NUMELS];

const int SIZE = 100;
double amount[SIZE];

In these declaration statements, each array is allocated enough memory to hold the
number of data items specified in the declaration statement. For example, the array named
values has storage reserved for six integers, the array named code has storage reserved for
four characters, and the array named amount has storage reserved for 100 double-precision
numbers. The constant identifiers, ARRAYSIZE, NUMELS, and SIZE, are programmer-sclected
names. Figure 7.1 illustrates the storage reserved for the values and code arrays, assuming an
integer is stored with 4 bytes and a character is stored with 1 byte.

Enough storage for

| 1 six integers (24 bytes) S|
values an an an an an an
array integer integer integer integer integer integer

Enough storage for
| : sfour characters (4 bytes) \|

code a a a a
array character | character | character | character

Figure 7.1 The values and code arrays in memory

Each item in an array is called an element or component of the array. The elements in the
arrays shown in Figure 7.1 are stored sequentially, with the first element stored in the first
reserved location, the second element stored in the second reserved location, and so on until

294

Arrays

the last element is stored in the last reserved location. This contiguous storage allocation is a
key feature of arrays because it provides a simple mechanism for locating any element in the
list easily.

Because elements in the array are stored sequentially, any single element can be accessed
by giving the array’s name and the element’s position. This position is called the element’s
index or subscript value. (The two terms are synonymous.) For a one-dimensional array, the first
element has an index of 0, the second element has an index of 1, and so on. In C++, the array
name and element index are combined by listing the index in braces after the array name. For
example, the declaration double grade[5]; creates five elements, with the following cor-
respondences:

grade[0] refers to the first grade stored in the grade array
grade[1] refers to the second grade stored in the grade array
grade[2] refers to the third grade stored in the grade array
grade[3] refers to the fourth grade stored in the grade array
grade[4] refers to the fifth grade stored in the grade array

Figure 7.2 shows the grade array in memory with the correct designation for each array
element. Each element is referred to as an indexed variable or a subscripted variable because
both a variable name (the array name, in this case) and an index or a subscript value must be
used to reference the element. Remember that the index or subscript value gives the ele-
ment’s position in the array.

grade[0] grade[l] grade[2] grade[3] grade[4]

=
array

element0 elementl element2 element3 element4

Figure 7.2 Identifying array elements

The subscripted variable, grade[0], is read as “grade sub zero” or “grade zero.” It’s a
shortened way of saying “the grade array subscripted by zero.” Similarly, grade[1] is read as
“grade sub one” or “grade one,” grade[2] as “grade sub two” or “grade two,” and so on.

Although referencing the first element with an index of 0 might seem unusual, doing so
increases the computer’s speed when it accesses array elements. Internally, unseen by the
programmer, the computer uses the index as an offset from the array’s starting position. As
shown in Figure 7.3, the index tells the computer how many elements to skip, starting from
the beginning of the array, to get to the correct element.

Chapter 7 295
One-Dimensional Arrays

The array name grade
identifies the starting
location of the array

grade[0] grade[l] grade[2] grade[3] grade[4]

T

: ~ \element 3

Skip over three elements to
get to the starting location
of element 3

Start
here

Figure 7.3 Accessing an array element—element 3

Subscripted variables can be used anywhere that scalar (atomic) variables are valid. Here
are examples of using the elements of the grade array:

grade[0]
grade[1]
grade[2]
grade[3]
grade[4]

95.75;
grade[0] - 11.0;
5.0 * grade[0];

= 79.0;

(grade[l] + grade[2] - 3.1) / 2.2;

sum = grade[0] + grade[l] + grade[2] + grade[3] + grade[4];

The subscript in brackets need not be an integer constant; any expression that evaluates
to an integer can be used as a subscript.2 In each case, of course, the value of the expression
must be within the valid subscript range defined when the array is declared. For example,
assuming i and j are int variables, the following subscripted variables are valid:

grade[i]

grade[2*i]
grade[j-i]

An important advantage of using integer expressions as subscripts is that it allows
sequencing through an array by using a loop. This makes statements such as the following
unnecessary:

sum = grade[0] + grade[l] + grade[2] + grade[3] + grade[4];

2Some compilers permit floating-point variables as subscripts; in these cases, the floating-point value is truncated to an integer value.

296

Arrays

T'he subscript values in this statement can be replaced by a for loop counter to access
each element in the array sequentially. For example, the code

sum = 0; // initialize sum to 0
for (i = 0; i < NUMELS; i++)
sum = sum + grade[i]; // add in a value

retrieves each array element sequentially and adds the element to sum. The variable i is used
as both the counter in the for loop and a subscript. As i increases by one each time through
the loop, the next element in the array is referenced. The procedure for adding array elements
in the for loop is similar to the accumulation procedure you have used before.

T'he advantage of using a for loop to sequence through an array becomes apparent when
working with larger arrays. For example, if the grade array contains 100 values rather than just
5, simply setting the symbolic constant NUMELS to 100 is enough to create the larger array and
have the for statement sequence through the 100 elements and add each grade to the sum.

As another example of using a for loop to sequence through an array, say you want to
locate the maximum value in an array of 1000 elements named prices. The procedure to
locate the maximum value is to assume initially that the first element in the array is the largest
number. Then, as you sequence through the array, the maximum is compared with each ele-
ment. When an element with a higher value is located, it becomes the new maximum. The
following code does the job:

const int NUMELS = 1000;

maximum = prices[0]; // set maximum to element 0
for (int i = 1; i < NUMELS; i++) // cycle through the rest of the array
if (prices[i] > maximum) // compare each element with the maximum
maximum = prices[i]; // capture the new high value

In this code, the for loop consists of one if statement. The search for a new maximum
value starts with element 1 of the array and continues through the last element (which is 999
in a 1000-element array). Each element is compared with the current maximum, and when a
higher value is encountered, it becomes the new maximum.

Input and Output of Array Values
An array element can be assigned a value interactively by using a cin statement, as shown in
these examples of data entry statements:

cin >> grade[0];
cin >> grade[l] >> grade[2] >> grade[3];
cin >> grade[4] >> prices[6];

In the first statement, a single value is read and stored in the variable grade[0]. The
second statement causes three values to be read and stored in the variables grade[1],
grade[2], and grade[3]. Finally, the last cin statement is used to read values into the vari-
ables grade[4] and prices[6].

Chapter 7 297
One-Dimensional Arrays

Point of Information

Aggregate Data Types

In contrast to atomic types, such as integer and floating-point data, there are aggregate
types. An aggregate type, also referred to as a “structured type” and a “data struc-
ture,” is any type with values that can be separated into simpler data types related by
some defined structure. Additionally, operations must be available for retrieving and
updating values in the data structure.

One-dimensional arrays are examples of a structured type. In a one-dimensional
array, such as an array of integers, the array is composed of integer values, with the inte-
gers related by their position in the list. Indexed variables provide the means of accessing
and modifying values in the array.

Alternatively, a for loop can be used to cycle through the array for interactive data input.
For example, the following code prompts the user for five grades:

const int NUMELS = 5;

for (int i = 0; i < NUMELS; i++)
{
cout << "Enter a grade: ";
cin >> grade[i];

The first grade entered is stored in grade[0], the second grade entered is stored in
grade[1], and so on until five grades have been entered.

One caution about storing data in an array: Most implementations of C++ don’t check the
value of the index being used (called a bounds check). If an array has been declared as consist-
ing of 10 elements, for example, and you use an index of 12, which is outside the bounds of
the array, C++ doesn’t notify you of the error when the program is compiled. The program
attempts to access element 12 by skipping over the appropriate number of bytes from the start
of the array. Usually, this attempt results in a program crash, but not always. If the referenced
location contains a value, the program simply accesses the value in the referenced memory
location. This leads to more errors, which are troublesome to locate when the variable legiti-
mately assigned to the storage location is retrieved and processed. Using symbolic constants,
as done in these examples, helps eliminate this problem.

During output, an array element can be displayed by using a cout statement, or complete
sections of the array can be displayed by including a cout statement in a for loop. Examples
of both methods of using cout to display subscripted variables are shown:

cout << prices[5];
and

cout << "The value of element " << i << " is " << grade[i];

298 Arrays

and

const int NUMELS = 20;

for (int k = 5; k < NUMELS; k++)
cout << k << " " << amount[k];

"The first statement displays the value of the subscripted variable prices[5]. The second
statement displays the values of subscript i and grade[i]. Before this statement can be
executed, i must have an assigned value. Finally, the last example includes a cout statement
in a for loop that displays both the value of the index and the value of elements 5 to 19.

Program 7.1 shows these input and output techniques, using an array named grade that’s
defined to store five integer numbers. The program includes two for loops. The first for loop
is used to cycle through each array element and allows the user to input array values. After five
values have been entered, the second for loop is used to display the stored values.

Program 7.1

#include <iostream>
using namespace std;

int main()

{
const int NUMELS = 5;

int i, grade[NUMELS];
for (i = 0; i < NUMELS; i++) // Enter the grades

{

cout << "Enter a grade: ";
cin >> grade[i];

cout << endl;

for (i = 0; i < NUMELS; i++) // Print the grades
cout << "grade [" << 1 << "] is " << grade[i] << endl;
return 0;

A sample run of Program 7.1 follows:

Enter a grade: 85
Enter a grade: 90
Enter a grade: 78 ﬂg:

Chapter 7 299
One-Dimensional Arrays

Enter a grade: 75
Enter a grade: 92

grade[0] is 85
grade[1l] is 90
grade[2] is 78
grade[3] is 75
grade[4] is 92

In reviewing the output of Program 7.1, pay attention to the difference between the sub-
script value displayed and the numerical value stored in the corresponding array element. The
subscript value refers to the element’s /ocation in the array, and the subscripted variable refers
to the value stored in the designated location.

In addition to simply displaying the values stored in each array element, elements can also
be processed by referencing the desired element. For example, in Program 7.2, the value of
each element is accumulated in a total, which is displayed after all array elements have been
displayed.

Program 7.2

#include <iostream>
using namespace std;
int main()
{
const int NUMELS = 5;
int i, grade[NUMELS], total = 0;

for (i = 0; i < NUMELS; i++) // Enter the grades
{

cout << "Enter a grade: ";
cin >> grade[i];
cout << "\nThe total of the grades";
for (i = 0; i < NUMELS; i++) // Display and total the grades

{

cout << " " << grade[i];
total = total + grade[i];

cout << " is " << total << endl;

return 0;

300 Arrays

Following is a sample run of Program 7.2:

Enter a grade: 85
Enter a grade: 90
Enter a grade: 78
Enter a grade: 75
Enter a grade: 92

The total of the grades 85 90 78 75 92 is 420

Note that in Program 7.2, unlike Program 7.1, only the values stored in each array element
are displayed. Although the second for loop is used to accumulate the total of each element,
the accumulation could also have been accomplished in the first for loop by placing the state-
ment total = total + grade[i]; after the cin statement used to enter a value. Also, the
cout statement used to display the total is placed outside the second for loop so that the total
is displayed only once, after all values have been added to the total. If this cout statement
were placed inside the for loop, five totals would be displayed, with only the last displayed
total containing the sum of all array values.

EXERCISES 7.1

1. (Practice) Write array declarations for the following:
a. A list of 100 integer grades
. A list of 50 double-precision temperatures
. A list of 30 characters, each representing a code
. A list of 100 integer years
. A list of 32 double-precision velocities
A list of 1000 double-precision distances
8. A list of 6 integer code numbers

o o6 T

2. (Practice) Write correct notation for the first, third, and seventh elements of the following
arrays:
a. int grades[20]
b. double prices[10]

. double amounts[16]

. int dist[15]

. double velocity[25]

f. double time[100]

o o0

3. (Practice) a. Write input statements using cin that can be used to enter values in the first,
third, and seventh elements of each array declared in Exercise 2.
b. Write a for loop that can be used to enter values for each array declared in Exercise 2.

Chapter 7 301
One-Dimensional Arrays

4. (Practice) a. Write output statements using cout that can be used to display values from the
first, third, and seventh elements of each array declared in Exercise 2.
b. Write a for loop that can be used to display values for each array declared in Exercise 2.

S. (Desk check) List the elements displayed by the following sections of code:
a. for (m = 1; m <= 5; mt++)

cout << a[m] << " ";

b. for (k = 1; k <= 5; k = k + 2)
cout << al[k] << " ";

Cc. for (j = 3; j <= 10; j++)
cout << b[j] << " ";

d. for (k = 3; k <= 12; k = k + 3)
cout << b[k] << " ";

e. for (i = 2; i < 11; i =1 + 2)
cout << c[i] << " ";

6. (Program) a. Write, compile, and run a C++ program to input the following values into an
array named prices: 10.95, 16.32, 12.15, 8.22, 15.98, 26.22, 13.54, 6.45, and 17.59. After the
data has been entered, have your program display the values.

b. Repeat Exercise 6a, but after the data has been entered, have your program display it in the
following form:

10.95 16.32 12.15
8.22 15.98 26.22
13.54 6.45 17.59

7. (Program) Write, compile, and run a C++ program to input eight integer numbers into an
array named grade. As each number is input, add the numbers to a total. After all numbers are
input, display the numbers and their average.

8. (Program) a. Write, compile, and run a C++ program to input 10 integer numbers into an
array named fmax and determine the maximum value entered. Your program should contain
only one loop, and the maximum should be determined as array element values are being
input. (Hint: Set the maximum equal to the first array element, which should be input before
the loop used to input the remaining array values.)

b. Repeat Exercise 8a, keeping track of both the maximum element in the array and the index
number for the maximum. After displaying the numbers, display these two messages
(replacing the underlines with the correct values):

The maximum value is:
This is element number in the list of numbers

c. Repeat Exercise 8b, but have your program locate the minimum value of the data entered.

9. (Program) Write, compile, and run a C++ program that creates an array of five integer num-
bers and displays these numbers in reverse order.

302

10.

11.

12.

13.

14.

Arrays

(Program) a. Write, compile, and run a C++ program to input the following integer numbers
into an array named grades: 89, 95, 72, 83, 99, 54, 86, 75, 92, 73, 79, 75, 82, and 73. As each
number is input, add the numbers to a total. After all numbers are input and the total is
obtained, calculate the average of the numbers, and use the average to determine the devia-
tion of each value from the average. Store each deviation in an array named deviation. Each
deviation is obtained as the element value less the average of all the data. Have your program
display each deviation with its corresponding element from the grades array.
b. Calculate the variance of the data used in Exercise 10a. T'he variance is obtained by squaring
each deviation and dividing the sum of the squared deviations by the number of deviations.

(Program) Write, compile, and run a C++ program that specifies three one-dimensional arrays
named price, amount, and total. Each array should be capable of holding 10 eclements.
Using a for loop, input values for the price and amount arrays. The entries in the total
array should be the product of the corresponding values in the price and amount arrays (so
total[i] = price[i] * amount[i]). After all the data has been entered, display the fol-
lowing output, with the corresponding value under each column heading:

total price amount

(Program) Define an array named peopleTypes that can store a maximum of 50 integer
values entered at the keyboard. Enter a series of 1s, 2s, 3s, and 4s in the array to represent
people at a local school function; 1 represents an infant, 2 represents a child, 3 represents a
teenager, and 4 represents an adult. No other integer value should be accepted as valid input,
and data entry should stop when a negative value is entered. Your program should count the
number of each 1, 2, 3, and 4 in the array and display a list of how many infants, children,
teenagers, and adults were at the school function.

(Program) a. Write, compile, and run a C++ program that reads a list of double-precision
grades from the keyboard into an array named grade. The grades are to be counted as they’re
read, and entry is to be terminated when a negative value has been entered. After all grades
have been input, your program should find and display the sum and average of the grades. The
grades should then be listed with an asterisk (*) placed in front of each grade that’s below the
average.

b. Extend the program written for Exercise 13a to display each grade and its letter equivalent,

using the following scale:

Greater than or equal to 90 = A

Greater than or equal to 80 and less than 90 = B
Greater than or equal to 70 and less than 80 = C
Greater than or equal to 60 and less than 70 = D
Less than 60 = F

(Program) Using the srand() and rand() C++ library functions (discussed in Section 6.8),
fill an array of 1000 floating-point numbers with random numbers that have been scaled to the
range 1 to 100. Then determine and display the number of random numbers having values
between 1 and 50 and the number having values greater than 50. What do you expect the
output counts to be?

Chapter 7 303
Array Initialization

1S (Program) a. Write, compile, and run a C++ program that inputs 10 double-precision numbers
in an array named raw. After these numbers are entered in the array, your program should cycle
through raw 10 times. During each pass through the array, your program should select the low-
est value in raw and place it in the next available slot in an array named sorted. When your
program is finished, the sorted array should contain the numbers in raw in sorted order from
lowest to highest. (Hinz: Be sure to reset the lowest value selected during each pass to a very
high number so that it’s not selected again. You need a second for loop in the first for loop to
locate the minimum value for each pass.)
b. The method used in Exercise 15a to sort the values in the array is inefficient. Can you

determine why? What might be a better method of sorting the numbers in an array?

7.2 Array Initialization

Array elements can be initialized in their declaration statements in the same manner as scalar
variables, except the initializing elements must be included in braces, as shown in these
examples:

int grade[5] {98, 87, 92, 79, 85};
char code[6] = {'s', 'a', 'm', 'p', '1l', 'e'};
double width[7] = {10.96, 6.43, 2.58, 0.86, 5.89, 7.56, 8.22};

Initializers are applied in the order they’re written, with the first value used to initialize
element 0, the second value used to initialize element 1, and so on, until all values have been
used. For example, in the declaration

const NUMELS = 5;
int grade[NUMELS] = {98, 87, 92, 79, 85};

grade[0] is initialized to 98, grade[1] is initialized to 87, grade[2] is initialized to 92,
grade[3] is initialized to 79, and grade[4] is initialized to 85.

Because white space is ignored in C++, initializations can be continued across multiple
lines. For example, the following declaration for gallons[] uses four lines to initialize all the
array elements:

const int NUMGALS = 20;

int gallons[NUMGALS] = {19, 16, 14, 19, 20, 18, // initializing values
12, 10, 22, 15, 18, 17, // can extend across
16, 14, 23, 19, 15, 18, // multiple lines
21, 5};

If the number of initializers is less than the declared number of elements listed in square
brackets, the initializers are applied starting with array element 0. Therefore, in the declaration

const int ARRAYSIZE = 7;
double length[ARRAYSIZE] = {7.8, 6.4, 4.9, 11.2};

only length[0], length[1], length[2], and length[3] are initialized with the listed val-
ues. The other array elements are initialized to 0.

304

Arrays

Unfortunately, there’s no method of indicating repetition of an initialization value or of
initializing later array elements without first specifying values for earlier elements.

A unique feature of initializers is that the array size can be omitted when initializing values
are included in the declaration statement. For example, the following declaration reserves
enough storage room for five elements:

int gallons[] = {16, 12, 10, 14, 11}%};
Similarly, the following declarations are equivalent:

const int NUMCODES = 6;

char codes[6] = {'s', 'a', 'm', 'p', 'l', 'e'};
and
char codes[] = {'s', 'a', 'm', 'p', 'l', 'e'};

Both these declarations set aside six character locations for an array named codes. An
interesting and useful simplification can also be used when initializing character arrays. For
example, the following declaration uses the string "sample" to initialize the codes array:

char codes[] = "sample"; // no braces or commas

Recall that a string is any sequence of characters enclosed in double quotation marks.
The preceding declaration creates an array named codes with seven elements and fills the
array with the seven characters shown in Figure 7.4. The first six characters, as expected,
consist of the letters s, a, m, p, 1, and e. The last character, the escape sequence \0, is called
the null character. The null character is appended automatically to all strings used to initialize
a character array. This character has an internal storage code numerically equal to zero. (The
storage code for the 0 character has a numerical value of decimal 48, so the computer can’t
confuse the two.) The null character is used as a sentinel to mark the end of a string. Strings
stored in this manner, as an array of characters terminated with the null character, are known as
C-strings. All the strings you’ve encountered so far have been C-strings. In Section 14.1, you see
that C++ has another method of storing strings with the string data type.

codes[0] codes[l] codes[2] codes[3] codes[4] codes[5] codes[6]

S f a [m r P f 1 f e [\0 ’
Figure 7.4 Terminating a string with the \0 character

After values have been assigned to array elements, through initialization in the declara-
tion statement or with interactive input, array elements can be processed as described in the
previous section. For example, Program 7.3 shows the initialization of array elements in the
array declaration statement, and then uses a for loop to locate the maximum value stored in
the array.

Chapter 7 305
Array Initialization

& Program 7.3

#include <iostream>
using namespace std;

int main()
{
const int MAXELS = 5;
int i, max, nums[MAXELS] = {2, 18, 1, 27, 16};
max = nums[0];
for (i = 1; i < MAXELS; i++)
if (max < nums[i])
max = nums[i];

cout << "The maximum value is " << max << endl;

return 0;

The following output is produced by Program 7.3:

The maximum value is 27

EXERCISES 7.2

1. (Practice) Write array declarations, including initializers, for the following:

a. A list of 10 integer grades: 89, 75, 82, 93, 78, 95, 81, 88, 77, and 82

b. A list of five double-precision amounts: 10.62, 13.98, 18.45, 12.68, and 14.76

c. A list of 100 double-precision interest rates, with the first six rates being 6.29, 6.95, 7.25,
7.35,7.40, and 7.42

d. A list of 64 double-precision temperatures, with the first 10 temperatures being 78.2, 69.6,
68.5, 83.9, 55.4, 67.0, 49.8, 58.3, 62.5, and 71.6

e. A list of 15 character codes, with the first seven codes being f, j, m, q, t, w, and z

2. (Practice) Write an array declaration statement that stores the following values in an array
named prices: 16.24, 18.98, 23.75, 16.29, 19.54, 14.22, 11.13, and 15.39. Include these state-
ments in a program that displays the values in the array.

306

Arrays

. (Program) Write, compile, and run a C++ program that uses an array declaration statement to

initialize the following numbers in an array named slopes: 17.24, 25.63, 5.94, 33.92, 3.71,
32.84, 35.93, 18.24, and 6.92. Your program should locate and display the maximum and mini-
mum values in the array.

. (Program) Write, compile, and run a C++ program that stores the following numbers in an

array named prices: 9.92, 6.32, 12.63, 5.95, and 10.29. Your program should also create two
arrays named units and amounts, each capable of storing five double-precision numbers.
Using a for loop and a cin statement, have your program accept five user-input numbers in
the units array when the program is run. Your program should store the product of the cor-
responding values in the prices and units array in the amounts array. For example, use
amounts[l] = prices[1l] * units[1]. Your program should then display the following
output (fill in the chart):

Price Units Amount
9.92
6.32
12.63
5.95
10.29

Total:

. (Program) Define an array with a maximum of 20 integer values and fill the array with

numbers of your own choosing as intializers. Then write, compile, and run a C++ program
that reads the numbers in the array and places all zero and positive numbers in an array
named positive and all negative numbers in an array named negative. Finally, have your
program display the values in both the positive and negative arrays.

. (Practice) The string of characters "Good Morning" is to be stored in a character array

named goodstrl. Write the declaration for this array in three different ways.

. (Practice) a. Write declaration statements to store the string of characters "Input

the Following Data" in a character array named messagel, the string "———————————- " in

an array named message2, the string "Enter the Date:" in an array named message3, and

the string "Enter the Account Number:" in an array named messaged4.

b. Include the array declarations written in Exercise 7a in a program that uses a cout state-
ment to display the messages. For example, the statement cout << messagel; causes the
string stored in the messagel array to be displayed. Your program requires four of these
statements to display the four messages. Using a cout statement to display a string requires
placing the end-of-string marker \0 in the character array used to store the string.

Chapter 7 307
Arrays as Arguments

8. (Program) a. Write a declaration to store the string "This is a test" in an array named
strtest. Include the declaration in a program to display the message using the following loop:

for (i = 0; i < NUMDISPLAY; i++)
cout << strtest[i];

NUMDISPLAY is a named constant for the number 14.

b. Modify the for statement in Exercise 8a to display only the array characters t, e, s, and t.

c. Include the array declaration written in Exercise 8a in a program that uses a cout statement
to display characters in the array. For example, the statement cout << strtest; causes
the string stored in the strtest array to be displayed. Using this statement requires having
the end-of-string marker, \0, as the last character in the array.

d. Repeat Exercise 8a, using a while loop. (Hint: Stop the loop when the \0 escape sequence
is detected. The expression while (strtest[i] != '\0') can be used.)

7.3 Arrays as Arguments

Array elements are passed to a called function in the same manner as scalar variables: They’re
simply included as subscripted variables when the function call is made. For example, the fol-
lowing function call passes the values of the elements grades[2] and grades[6] to the func-
tion findMax():

findMax(grades[2], grades[6]);

Passing a complete array of values to a function is, in many respects, easier than passing
each element. The called function receives access to the actual array rather than a copy of
values in the array. For example, if grades is an array, the function call findMax (grades);
makes the complete grades array available to the findMax () function. This function call is
different from passing a single variable to a function.

Recall that when a single scalar argument is passed to a function (see Section 6.1), the
called function receives only a copy of the passed value, which is stored in one of the function’s
parameters. If arrays were passed in this manner, a copy of the complete array would have to
be created. For large arrays, making copies for each function call would waste computer storage
and frustrate the effort to return multiple-element changes made by the called program.
(Remember that a function returns, at most, one value.)

"To avoid these problems, the called function is given direct access to the original array.’ In
this way, any changes the called function makes are made directly to the array. For the following
examples of function calls, the arrays nums, keys, units, and grades are declared as shown:

int nums([5]; // an array of 5 integers
char keys[256]; // an array of 256 characters
double units[500], grades[500]; // two arrays of 500 doubles

3The called function has access to the original array because the array’s starting address is actually passed as an argument. The formal
parameter receiving this address argument is a pointer. Section 8.2 explains the close relationship between array names and pointers.

308

Arrays

For these arrays, the following function calls can be made; note that in each case, the
called function receives direct access to the named array:

findMax (nums) ;
findCharacter (keys);
calcTotal (nums, units, grades);

On the receiving side, the called function must be alerted that an array is being made
available. For example, the following are suitable function headers for the previous functions:

int findMax(int vals[5])
char findCharacter(char inKeys[256])
void calcTotal(int arrl[5], double arr2[500], double arr3[500])

In each function header, the programmer chooses the names in the parameter list.
However, the parameter names used by the functions still refer to the original array created
outside the function, as Program 7.4 makes clear.

Program 7.4

#include <iostream>

using namespace std;

const int MAXELS = 5;
int findMax(int [MAXELS]); // function prototype

int main()

{

int nums[MAXELS] = {2, 18, 1, 27, 1l6};

cout << "The maximum value is " << findMax(nums) << endl;

return 0;

// find the maximum value
int findMax(int vals[MAXELS])

{

int i, max = vals[0];

for (i = 1; i < MAXELS; i++)

if (max < wvals[i])
max = vals[i];

return max;

Chapter 7 309
Arrays as Arguments

First, note that the symbolic constant MAXELS has been declared globally, not in the
main() function. The placement of this declaration means that this symbolic constant can be
used in any subsequent declaration or function. Next, notice that the function prototype for
findMax () uses this symbolic constant and declares that findMax returns an integer and
expects an array of five integers as an argument. It’s also important to know that only one array
is created in Program 7.4. In main (), this array is known as nums, and in £indMax (), the array
is known as vals. As illustrated in Figure 7.5, both names refer to the same array, so vals[3]
is the same element as nums[3].

int main()

{ . This creates the array
int nums[5];

findMax (nums) ;
returns 0;

}
int findMax(int vals[5])

<«——— These reference
<« the same array

}
s { { { { J
\¥ — — N — e _—
INmain(): numg[0] numg[1] numg[2] numg[3] numg[4]
In findMax(): vals[O0] vals[1l] vals[2] vals[3] vals[4]

Figure 7.5 Only one array is created

T'he parameter declaration in the £indMax () prototype and function header actually con-
tains extra information not required by the function. All that £indMax () must know is that the
parameter vals references an array of integers. Because the array has been created in main()
and no additional storage space is needed in findMax(), the declaration for vals can omit
the array size. Therefore, the following is an alternative function header:

int findMax(int wvals[])

This form of the function header makes more sense when you realize that only one item
is actually passed to findMax () when the function is called: the starting address of the nums
array, as shown in Figure 7.6.

310 Arrays

nums[0] nums[1] nums|[2] nums|[3] nums|[4]

IAFATAVAFAI

Starting address

of nums array is &nums[0].
This is passed to

the function

findMax (nums) ;
Figure 7.6 The array’s starting address is passed

Because only the starting address of vals is passed to £indMax(), the number of ele-
ments in the array need not be included in the declaration for vals.4 In fact, generally it’s
advisable to omit the array size from the function header. For example, this more general form
of findMax () can be used to find the maximum value of an integer array of arbitrary size:

int findMax(int vals[], int NUMELS) // find the maximum value
{

int i, max = vals[0];

for (i = 1; i < NUMELS; i++)
if (max < vals[i])
max = vals[i];

return max;

The more general form of £indMax () declares that the function returns an integer value.
The function expects the starting address of an integer array and the number of elements in
the array as arguments. Then, using the number of elements as the boundary for its search, the
function’s for loop causes each array element to be examined in sequential order to locate the

maximum value. Program 7.5 shows using the more general form of £indMax () in a complete
program.

4An important consequence of passing the starting address is that findMax () has direct access to the passed array. This access means
any change to an element of the vals array is a change to the nums array. This result is much different from the situation with scalar
variables, in which the called function doesn’t receive direct access to the passed variable.

Chapter 7 311
Arrays as Arguments

Program 7.5

#include <iostream>
using namespace std;

int findMax(int [], int); // function prototype

int main()

{
const int MAXELS = 5;
int nums[MAXELS] = {2, 18, 1, 27, 16};
cout << "The maximum value is " << findMax(nums, MAXELS) << endl;
return 0;
}

// find the maximum value
int findMax(int vals[], int numels)

{
int i, max = vals[0];
for (i = 1; i < numels; i++)
if (max < vals[i]) max = vals[i];
return max;
}

The output displayed by Programs 7.4 and 7.5 is as follows:

The maximum value is 27

EXERCISES 7.3

1. (Practice) The following declarations were used to create the grades array:
const int NUMGRADES = 500;
double grades[NUMGRADES];

Write two different function headers for a function named sortArray() that accepts the
grades array as a parameter named inArray and returns no value.
2. (Practice) The following declarations were used to create the keys array:

const int NUMKEYS = 256;
char keys[NUMKEYS];

312

Arrays

Write two different function headers for a function named £indKey () that accepts the keys
array as a parameter named select and returns a character.

. (Practice) The following declarations were used to create the rates array:

const int NUMRATES = 256;
double rates[NUMRATES];

Write two different function headers for a function named prime() that accepts the rates
array as an argument named rates and returns a double-precision number.

. (Modify) a. Modify the £indMax () function in Program 7.4 to locate the minimum value of

the passed array.
b. Include the function written in Exercise 4a in a complete program and run the program.

. (Program) Write, compile, and run a C++ program that has a declaration in main() to store

the following numbers in an array named rates: 6.5, 7.2, 7.5, 8.3, 8.6, 9.4, 9.6, 9.8, and 10.0.
There should be a function call to show () that accepts the rates array as a parameter named
rates and then displays the numbers in the array.

. (Program) a. Write, compile, and run a C++ program that has a declaration in main () to store

the string "Vacation is near" in an array named message. There should be a function call to

display () that accepts message in a parameter named strng and then displays the message.

b. Modify the display() function written in Exercise 6a to display the first eight elements
of the message array.

. (Program) Write, compile, and run a C++ program that declares three one-dimensional arrays

named price, quantity, and amount. Each array should be declared in main() and be
capable of holding 10 double-precision numbers. The numbers to store in price are 10.62,
14.89, 13.21, 16.55, 18.62,9.47, 6.58, 18.32, 12.15, and 3.98. The numbers to store in quantity
are 4, 8.5, 6, 7.35, 9, 15.3, 3, 5.4, 2.9, and 4.8. Your program should pass these three arrays to
a function named extend(), which should calculate elements in the amount array as the
product of the corresponding elements in the price and quantity arrays (for example,
amount[l] =price[l] * quantity[l]).After extend() has passed values to the amount
array, the values in the array should be displayed from within main().

. (Program) Write, compile, and run a C++ program that includes two functions named

calcavg() and variance(). T'he calcavg() function should calculate and return the aver-
age of values stored in an array named testvals. The array should be declared in main () and
include the values 89, 95, 72, 83, 99, 54, 86, 75, 92, 73, 79, 75, 82, and 73. The variance()
function should calculate and return the variance of the data. The variance is obtained by
subtracting the average from each value in testvals, squaring the values obtained, adding
them, and dividing by the number of elements in testvals. The values returned from
calcavg() and variance() should be displayed by using cout statements in main().

Chapter 7 313
Two-Dimensional Arrays

7.4 Two-Dimensional Arrays

A two-dimensional array, sometimes referred to as a table, consists of both rows and columns of
elements. For example, the following array of numbers is called a two-dimensional array of

integers:

8 16 9 52
3 15 27 6
14 25 2 10

"T'his array consists of three rows and four columns and is called a 3-by-4 array. To reserve
storage for this array, both the number of rows and the number of columns must be included
in the array’s declaration. Calling the array val, the following is the correct specification for
this two-dimensional array:

int val[3][4];
Similarly, the declarations

double prices[10][5];
char code[6][26];

specify that the prices array consists of 10 rows and 5 columns of double-precision numbers,
and the code array consists of 6 rows and 26 columns, with each element capable of holding
one character.

"To locate each element in a two-dimensional array, you use its position in the array. As
shown in Figure 7.7, the term val[1][3] uniquely identifies the element in row 1, column 3.
As with one-dimensional array variables, two-dimensional array variables can be used anywhere
that scalar variables are valid, as shown in these examples using elements of the val array:

price = val[2][3];

val[0][0] = 62;

newnum = 4 * (val[l][0] - 5);

sumRow = val[0][0] + val[O][1l] + val[0][2] + val[0][3];

The last statement causes the values of the four elements in row 0 to be added and the
sum to be stored in the scalar variable sumRow.

Col.0 Col.1 Col.2 Col.3

I |

Row 0 > 38 16

Row 1 S>3 15 27 6l vas
N A R

Row 2 14 25 2 10 / \

Row Column
position position

Figure 7.7 Each array element is identified by its row and column position

314

Arrays

As with one-dimensional arrays, two-dimensional arrays can be initialized in their declara-
tion statements by listing the initial values inside braces and separating them with commas.
Additionally, braces can be used to separate rows. For example, the declaration

int val[3][4] = { {8,16,9,52},
{3,15,27,6},
{14,25,2,10} };

declares val as an array of integers with three rows and four columns, with the initial values
given in the declaration. The first set of braces contains values for row 0 of the array, the second
set of braces contains values for row 1, and the third set of braces contains values for row 2.

Although the commas in initialization braces are always required, the inner braces can be
omitted. Without them, the initialization for val can be written as follows:

int val[3][4] = {8,16,9,52,
3,15,27,6,
14,25,2,10%;

Separating initial values into rows in the declaration statement isn’t necessary because the
compiler assigns values beginning with the [0][0] element and proceeds row by row to fill in
the remaining values. Therefore, the following initialization is equally valid but doesn’t clearly
indicate to another programmer where one row ends and another begins.

int val[3][4] = {8,16,9,52,3,15,27,6,14,25,2,10};

As shown in Figure 7.8, a two-dimensional array is initialized in row order. First, the cle-
ments of row 0 are initialized, then the elements of row 1 are initialized, and so on, until the
initializations are completed. This row ordering is also the same ordering used to store two-
dimensional arrays. That is, array element [0][0] is stored first, followed by element [0][1],
followed by element [0][2], and so on. Following the first row’s elements are the second
row’s elements, and so on for all rows in the array.

Initialization
starts with this
element

1

val[0][0]=8=™ val[0][1]=16 #=™S val[0][2]=9 #=™ val[0][3]=52

A

val[1][0]1=3 =S val[1][1]=15e=Dval[1][2]=27 == val[1][3]=6

A

val[2][0]=14=S val[2][1]=252=" val[2][2]=2 ==Sval[2][3]=10

Figure 7.8 Storage and initialization of the val array

Chapter 7 315
Two-Dimensional Arrays

As with one-dimensional arrays, two-dimensional arrays can be displayed by element nota-
tion or by using loops (while or for). Program 7.6, which displays all elements of a 3-by-4
two-dimensional array, shows using these two techniques. Notice that symbolic constants are
used to define the array’s rows and columns.

Program 7.6

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

const int NUMROWS = 3;

const int NUMCOLS = 4;

int i, j;

int val[NUMROWS][NUMCOLS] = {8,16,9,52,3,15,27,6,14,25,2,10};

cout << "\nDisplay of val array by explicit element"
<< endl << setw(4) << val[0][0] << setw(4) << val[0][1]
<< setw(4) << val[0][2] << setw(4) << val[0][3]
<< endl << setw(4) << val[l][0] << setw(4) << val[l][1]
<< setw(4) << val[l][2] << setw(4) << val[l][3]
<< endl << setw(4) << val[2][0] << setw(4) << val[2][1]
<< setw(4) << val[2][2] << setw(4) << val[2][3];

cout << "\n\nDisplay of val array using a nested for loop";

for (i = 0; i < NUMROWS; i++)

{
cout << endl; // print a new line for each row
for (j = 0; j < NUMCOLS; j++)
cout << setw(4) << val[il[]];
}

cout << endl;

return 0;

316 Arrays

"This is the display produced by Program 7.6:

Display of val array by explicit element
8 16 9 52
3 15 27 6
14 25 2 10

Display of val array using a nested for loop
8 16 9 52
3 15 27 6
14 25 2 10

T'he first display of the val array is constructed by designating each array element. The
second display of array element values, which is identical to the first, is produced by using a
nested for loop. Nested loops are especially useful when dealing with two-dimensional arrays
because they allow the programmer to designate and cycle through each element easily. In
Program 7.6, the variable i controls the outer loop, and the variable j controls the inner loop.
Each pass through the outer loop corresponds to a single row, with the inner loop supplying
the column elements. After a complete row is printed, a new line is started for the next row.
T'he result is a display of the array in a row-by-row fashion.

After two-dimensional array elements have been assigned, array processing can begin.
"Typically, for loops are used to process two-dimensional arrays because, as noted, they allow
the programmer to designate and cycle through each array element easily. For example, the
nested for loop in Program 7.7 is used to multiply each element in the val array by the scalar
number 10 and display the resulting value.

Program 7.7

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

const int NUMROWS = 3;
const int NUMCOLS = 4;

int i, j;

int val[NUMROWS][NUMCOLS] = {8,16,9,52,
3,15,27,6,

14,25,2,10%};

// multiply each element by 10 and display it
cout << "\nDisplay of multiplied elements";
for (i = 0; i < NUMROWS; i++) @

Chapter 7 317
Two-Dimensional Arrays

cout << endl; // start each row on a new line
for (j = 0; j < NUMCOLS; j++)
{
val[i][]j] = val[i][]j] * 10;
cout << setw(5) << val[i]l[]];
} // end of inner loop
} // end of outer loop
cout << endl;

return 0;

Following is the output produced by Program 7.7:

Display of multiplied elements
80 160 90 520
30 150 270 60
140 250 20 100

Passing two-dimensional arrays to a function is identical to passing one-dimensional
arrays. The called function receives access to the entire array. For example, if val is a two-
dimensional array, the function call display(val); makes the complete val array available
to the function named display (). Consequently, any changes display () makes are made
directly to the val array. As further examples, the following two-dimensional arrays named
test, code, and stocks are declared as follows:

int test[7]1[9];
char code[26][10];
double stocks[256][52];

Then the following function calls are valid:

findMax(test);
obtain(code);
price(stocks);

On the receiving side, the called function must be alerted that a two-dimensional array is
being made available. For example, assuming each of the previous functions returns an integer,
the following are suitable function headers:

int findMax(int nums[7][9])
int obtain(char key[26][10])
int price(double names[256]1[52])

In these function headers, the parameter names chosen are local to the function (used
inside the function body). However, the parameter names still refer to the original array cre-
ated outside the function. Program 7.8 shows passing a two-dimensional array to a function
that displays the array’s values.

318 Arrays

Program 7.8

#include <iostream>
#include <iomanip>
using namespace std;

const int ROWS
const int COLS

3;
4;

void display(int [ROWS][COLS]); // function prototype
int main()
{
int val[ROWS][COLS] = {8,16,9,52,
3,15,27,6,
14,25,2,10};

display(val);

return 0;

void display(int nums[ROWS][COLS])
{
int rowNum, colNum;
for (rowNum = 0; rowNum < ROWS; rowNum++)
{
for(colNum = 0; colNum < COLS; colNum++)
cout << setw(4) << nums[rowNum][colNum];
cout << endl;

return;

Only one array is created in Program 7.8. This array is known as val in main() and as
nums in display (). Therefore, val[0][2] refers to the same element as nums[0][2]

Notice the use of the nested for loop in Program 7.8 for cycling through each array ele-
ment. The variable rowNum controls the outer loop, and the variable colNum controls the inner
loop. For each pass through the outer loop, which corresponds to a single row, the inner loop
makes one pass through the column elements. After a complete row is printed, a new line is
started for the next row. The result is a display of the array in a row-by-row fashion:

8 16 9 52
3 15 27 6
14 25 2 10

Chapter 7 319
Two-Dimensional Arrays

T'he parameter declaration for nums in display () contains extra information not required
by the function. The declaration for nums can omit the row size of the array, so the following
is an alternative function prototype:

display(int nums[][4]);

The reason the column size must be included but the row size is optional becomes obvi-
ous when you see how array elements are stored in memory. Starting with elementval[0][0],
each succeeding element is stored consecutively, row by row, as val[0][0], val[0][1],
val[0][2],val[0][3],val[1l][0],val[1l][1],and so on (see Figure 7.9).

Column 0 Column 1 Column 2 Column3

e
Row 1 [[e val[1][3]
N B B e

Figure 7.9 Storage of the val array

As with all array accesses, a single element of the val array is obtained by adding an offset
to the array’s starting location. For example, element val[1][3] of the val array in Figure 7.9
is located at an offset of 28 bytes from the start of the array. Internally, the compiler uses the
row index, column index, and column size to determine this offset, using the following calcula-
tion (assuming 4 bytes for an int):

No. of bytes in a complete row

—_—
Offset = [(3x4)+[1x (4 x4)] = 28 bytes
t Bytes per integer
Column size
Row index
Column index

The column size is necessary in the offset calculation so that the compiler can determine
the number of positions to skip over to get to the correct row.

Larger Dimensional Arrays

Although arrays with more than two dimensions aren’t commonly used, C++ does allow declar-
ing any number of dimensions by listing the maximum size of all dimensions for the array. For
example, the declaration int response [4][10]1[6]; declares a three-dimensional array.
The first element in the array is designated as response[0][0][0] and the last element as
response[3][9]1[5].

As shown in Figure 7.10, you can think of a three-dimensional array as a book of data
tables. Using this analogy, think of the third subscript value, often called the “rank,” as the
page number of the selected table, the first subscript value as the row, and the second subscript
value as the column.

320 Arrays

Row Column
index index

24 _Page number
index (rank)

Figure 7.10 Representation of a three-dimensional array

Similarly, arrays of any dimension can be declared. Conceptually, a four-dimensional array
can be represented as a shelf of books, with the fourth dimension used to declare a selected
book on the shelf, and a five-dimensional array can be viewed as a bookcase filled with books,
with the fifth dimension referring to a selected shelf in the bookcase. Using the same analogy,
a six-dimensional array can be thought of as a single row of bookcases, with the sixth dimen-
sion referring to the selected bookcase in the row; a seven-dimensional array can be thought
of as multiple rows of bookcases, with the seventh dimension referring to the selected row, and
so on. Alternatively, arrays of three, four, five, six, and so on dimensional arrays can be viewed
as mathematical z-tuples of order three, four, five, six, and so forth.

EXERCISES 7.4

1. (Practice) Write specification statements for the following:
a. An array of integers with 6 rows and 10 columns
b. An array of integers with 2 rows and 5 columns
c. An array of characters with 7 rows and 12 columns
d. An array of characters with 15 rows and 7 columns
e. An array of double-precision numbers with 10 rows and 25 columns
f. An array of double-precision numbers with 16 rows and 8 columns

2. (Desk check) Determine the output produced by the following program:

#include <iostream>
using namespace std;
int main()

{
int i, j, val[3][4] = {8,16,9,52,3,15,27,6,14,25,2,10};

for (i = 0; i < 3; i++)
for (j = 0; J < 4; Jj++)

cout << val[i][j] << " ";

return 0;

Chapter 7 321
Two-Dimensional Arrays

. (Program) a. Write, compile, and run a C++ program that adds the values of all elements in
the val array used in Exercise 2 and displays the total.
b. Modify the program written for Exercise 3a to display the total of each row separately.

. (Program) Write, compile, and run a C++ program that adds equivalent elements of the two-
dimensional arrays named first and second. Both arrays should have two rows and three col-
umns. For example, element [1][2] of the resulting array should be the sum of first[1][2]
and second[1][2]. The first and second arrays should be initialized as follows:

first second
16 18 23 24 52 77
54 91 11 16 19 59

. (Program) a. Write, compile, and run a C++ program that finds and displays the maximum value

in a two-dimensional array of integers. The array should be declared as a 4-by-5 array of integers

and initialized with the data 16, 22,99, 4, 18, -258, 4, 101, 5, 98, 105, 6, 15, 2,45, 33, 88, 72, 16, and 3.

b. Modify the program written in Exercise 5a so that it also displays the maximum value’s row
and column subscript values.

. (Program) Write, compile, and run a C++ program that selects the values in a 4-by-5 array of
positive integers in increasing order and stores the selected values in a one-dimensional array
named sort. Use the data given in Exercise 5a to initialize the two-dimensional array.

. (Program) a. A professor has constructed a 3-by-5 two-dimensional array of grades. This array

contains the test grades of students in the professor’s advanced compiler design class. Write,

compile, and run a C++ program that reads 15 array values and then determines the total num-

ber of grades in these ranges: less than 60, greater than or equal to 60 and less than 70, greater

than or equal to 70 and less than 80, greater than or equal to 80 and less than 90, and greater

than or equal to 90.

b. Entering 15 grades each time you run the program written for Exercise 7a is cumbersome.
What method can be used for initializing the array during the testing phase?

c. How might the program you wrote for Exercise 7a be modified to include the case of no
grade being input? That is, what grade could be used to indicate an invalid grade, and how
would your program have to be modified to exclude counting an invalid grade?

. (Program) a. Create a two-dimensional list of integer part numbers and quantities of each
part in stock, and write a function that displays data in the array in decreasing quantity order.
No more than 100 different parts are being tracked. Test your program with the following data:

Part No. Quantity
1001 62

949 85

1050 33

867 125

346 59

1025 105

b. Modify the function written in Exercise 8a to display the data in part number order.

322

10.

Arrays

. (Program) a. Your professor has asked you to write a C++ program that determines grades for

five students at the end of the semester. For each student, identified by an integer number, four
exam grades must be kept, and two final grade averages must be computed. The first grade
average is simply the average of all four grades. The second grade average is computed by
weighting the four grades as follows: The first grade gets a weight of 0.2, the second grade gets
a weight of 0.3, the third grade gets a weight of 0.3, and the fourth grade gets a weight of 0.2.
That is, the final grade is computed as follows:

0.2 * gradel 0.3 * grade2 0.3 * grade3 0.2 * grade4

Using this information, construct a 5-by-6 two-dimensional array, in which the first column is
used for the student number, the next four columns for the grades, and the last two columns
for the computed final grades. The program’s output should be a display of the data in the
completed array. For testing purposes, the professor has provided the following data:

Student Grade 1 Grade2 Grade 3 Grade 4
1 100 100 100 100
2 100 0 100 0
3 82 94 73 86
4 64 74 84 94
5 94 84 74 64

b. What modifications would you need to make to your program so that it can handle 60 stu-
dents rather than 5?

¢. Modify the program written for Exercise 9a by adding an eighth column to the array. The
grade in the eighth column should be calculated by computing the average of the top three
grades only.

(Program) The answers to a true-false test are as follows: T''T' F F T Given a two-dimensional
answer array, in which each row corresponds to the answers provided on one test, write a func-
tion that accepts the two-dimensional array and number of tests as parameters and returns a
one-dimensional array containing the grades for each test. (Each question is worth 5 points so
that the maximum possible grade is 25.) Test your function with the following data:

Test 1: T F T T T
Test 2: T T T T T
Test 3: T T F F T
Test 4: F T F F F
Test 5: F F F F F
Test 6: T T F T F

Chapter 7 323
Common Programming Errors

11. (Modify) Modify the function you wrote for Exercise 10 so that each test is stored in column
order rather than row order.

12. (Program) A three-dimensional weather array for the months July and August 2011 has col-
umns labeled by the month numbers 7 and 8. In each column, there are rows numbered 1
through 31, representing the days, and for each day, there are two ranks labeled H and L,
representing the day’s high and low temperatures. Use this information to write a C++ pro-
gram that assigns the high and low temperatures for each element of the arrays. Then allow
the user to request the following:

Any day’s high and low temperatures

Average high and low temperatures for a given month
Month and day with the highest temperature

Month and day with the lowest temperature

7.5 Common Programming Errors

Four common errors are associated with using arrays:

1.

2.

Forgetting to declare the array. This error results in a compiler error message such as
“invalid indirection” each time a subscripted variable is encountered in a program.
Using a subscript that references a nonexistent array element, such as declaring the
array as size 20 and using a subscript value of 25. Most C++ compilers don’t detect this
error. However, it usually results in a runtime error that causes a program crash or
results in a value with no relation to the intended element being accessed from mem-
ory. In either case, this error is usually troublesome to locate. The only solution is to
make sure, by specific programming statements or by careful coding, that each sub-
script references a valid array element. Using symbolic constants for an array’s size and
the maximum subscript value helps eliminate this problem.

. Not using a large enough counter value in a for loop to cycle through all the array

elements. This error usually occurs when an array is initially specified as size # and
there’s a for loop in the program of the form for(i = 0; i < n; i++). The array
size 1s then expanded, but the programmer forgets to change the interior for loop
parameters. In practice, this error is eliminated by using the same symbolic constant
for the array size declaration and loop parameter.

. Forgetting to initialize the array. Although many compilers set all elements of integer

and real value arrays to 0 automatically and all elements of character arrays to blanks,
it’s up to the programmer to make sure each array is initialized correctly before pro-
cessing of array elements begins.

324 Arrays

7.6 Chapter Summary

1. A one-dimensional array is a data structure that can be used to store a list of values of the
same data type. These arrays must be declared by giving the data type of values stored in
the array and the array size. For example, the declaration

int num[100];

creates an array of 100 integers. A preferable approach is first using a symbolic constant to
set the array size, and then using this constant in the array definition, as shown in these
examples:

const int MAXSIZE = 100;
and
int num[MAXSIZE];

2. Array elements are stored in contiguous locations in memory and referenced by using the
array name and a subscript (or index), such as num[22]. Any non-negative integer value
expression can be used as a subscript, and the subscript 0 always refers to the first element
in an array.

3. A two-dimensional array is declared by listing a row and a column size with the data type
and array name. For example, the following declarations create a two-dimensional array
consisting of five rows and seven columns of integer values:

const int ROWS 5;
const int COLS 7;
int mat[ROWS][COLS];

4. Arrays can be initialized when they’re declared. For two-dimensional arrays, you can list the
initial values, row by row, inside braces and separate them with commas. For example, the
declaration

int vals[3][2] = { {1, 2},
{3, 4},
{5, 6} }:

produces the following three-row-by-two-column array:

1 2
3 4
5 6

As C++ uses the convention that initialization proceeds in row order, the inner braces can
be omitted. Therefore, the following statement is an equivalent initialization:

int vals[3][2] = {1, 2, 3, 4, 5, 6};

5. Arrays are passed to a function by passing the array name as an argument. The value actu-
ally passed is the address of the first array storage location. Therefore, the called function

Chapter 7 325
Chapter Supplement: Searching and Sorting
Methods

receives direct access to the original array, not a copy of the array elements. A parameter
must be declared in the called function to receive the passed array name. The declaration
of the parameter can omit the array’s row size for both one- and two-dimensional arrays.

7.7 Chapter Supplement: Searching and Sorting Methods

Most programmers encounter the need to both sort and search a list of data items at some time
in their programming careers. For example, you might have to arrange experiment results in
increasing (ascending) or decreasing (descending) order for statistical analysis or sort a list of
names in alphabetical order and search this list to find a particular name. Similarly, you might
have to arrange a list of dates in ascending or descending order and search this list to locate a
certain date. This section introduces the fundamentals of sorting and searching lists. Note that
sorting a list before searching it isn’t necessary, although much faster searches are possible if
the list is in sorted order, as you’ll see.

Search Algorithms

A common requirement of many programs is searching a list for a given element. For example,
in a list of names and phone numbers, you might search for a specific name so that the corre-
sponding phone number can be printed, or you might need to search the list simply to deter-
mine whether a name is there. The two most common methods of performing these searches
are the linear and binary search algorithms.

Linear Search In a linear search, also known as a sequential search, each item in the list is
examined in the order in which it occurs until the desired item is found or the end of the list
is reached. This search method is analogous to looking at every name in the phone directory,
beginning with Aardvark, Aaron, until you find the one you want or until you reach Zzxgy,
Zora. Obviously, it’s not the most efficient way to search a long alphabetized list. However, a
linear search has these advantages:

e 'The algorithm is simple.

e 'The list need not be in any particular order.

In a linear search, the search begins at the first item in the list and continues sequentially,
item by item, through the list. The pseudocode for a function performing a linear search is as
follows:

For all items in the list
Compare the item with the desired item
If the item is found
Return the index value of the current item
EndIf
EndFor
Return -1 if the item is not found

326 Arrays

Notice that the function’s return value indicates whether the item was found. If the return
value is -1, the item isn’t in the list; otherwise, the return value in the for loop provides the
index of where the item is located in the list. The linearSearch() function illustrates this
procedure as a C++ function:

// this function returns the location of key in the list
// a -1 is returned if the value is not found
int linearSearch(int list[], int size, int key)

{
int i;
for (i = 0; i < size; i++)
{
if (list[i] == key)
return ij;
}

return -1;

In reviewing linearSearch(), notice that the for loop is simply used to access each
element in the list, from first to last, until a match with the desired item is found. If the item
is located, the index value of the current item is returned, which causes the loop to terminate;
otherwise, the search continues until the end of the list is encountered.

"To test this function, a main () driver function has been written to call 1inearSearch()
and display the results it returns. Program 7.9 shows the complete test program.

Program 7.9

#include <iostream>
using namespace std;

int linearSearch(int [], int, int); // function prototype

int main()

{

const int NUMEL 10;
int nums[NUMEL] {5,10,22,32,45,67,73,98,99,101};
int item, location;

cout << "Enter the item you are searching for: ";
cin >> item;

location = linearSearch(nums, NUMEL, item);

Chapter 7 327
Chapter Supplement: Searching and Sorting
Methods

if (location > -1)

cout << "The item was found at index location "
<< location << endl;

else

cout << "The item was not found in the list\n";

return 0;
// this function returns the location of key in the list

// a -1 is returned if the value is not found
int linearSearch(int list[], int size, int key)

{
int i;
for (i = 0; i < size; i++)
{
if (list[i] == key)
return ij;
}
return -1;
}

The following are sample runs of Program 7.9:

Enter the item you are searching for: 101
The item was found at index location 9

and

Enter the item you are searching for: 65
The item was not found in the list

As noted previously, an advantage of linear searches is that the list doesn’t have to be in
sorted order to perform the search. Another advantage is that if the search item is toward the
front of the list, only a small number of comparisons are made. The worst case, of course, occurs
when the search item is at the end of the list. On average, however, and assuming the item is
equally likely to be anywhere in the list, the number of required comparisons is #/2, where #
is the list’s size. Therefore, for a 10-element list, the average number of comparisons needed
for a linear search is 5, and for a 10,000-clement list, the average number of comparisons
needed is 5000. As you see next, this number can be reduced substantially by using a binary
search algorithm.

328

Arrays

Binary Search In a binary search, the list must be in sorted order. Starting with an ordered
list, the desired item is first compared with the element in the middle of the list. (For lists
with an even number of elements, either of the two middle elements can be used.) There are
three possibilities after the comparison is made: The desired item might be equal to the
middle element, it might be greater than the middle element, or it might be less than the
middle element.

In the first case, the search has been successful, and no further searches are required. In
the second case, because the desired item is greater than the middle element, it must be in
the second half of the list, if it’s found at all. This means the first part of the list, consisting of
all elements from the first to the midpoint, can be discarded from any further search. In the
third case, because the desired item is less than the middle element, it must be in the first part
of the list, if it’s found at all. For this case, the second half of the list, containing all elements
from the midpoint to the last element, can be discarded from any further search.

The algorithm for this search strategy is shown in Figure 7.11 and defined by the follow-
ing pseudocode:

Set the left index to 0
Set the right index to 1 less than the size of the list
Begin with the first item in the list

While the left index is less than or equal to the right index
Set the midpoint index to the integer average of the left and right index values
Compare the desired item with the midpoint element
If the desired element equals the midpoint element
Return the index value of the current item
Else If the desired element is greater than the midpoint element
Set the left index value to the midpoint value plus 1
Else If the desired element is less than the midpoint element
Set the right index value to the midpoint value less 1
Endif
EndWhile
Return -1 if the item is not found

Chapter 7 329

Chapter Supplement: Searching and Sorting
Methods

Startﬂﬁ
JL

Input
item

JL

Set left
indexto 0
JL

Set right
index to list
size -1

JL

While No
leftindex <= 7 N Return-1 ’
right index /
<L ves

—N\

Calculate
midpoint
index value

L

ltem Yes .
= midpoint 4, Return index
element? value
~L No

IteN
> midpoint
element?

Set right
index to
midpoint -1

<L Yes

Set left
index to
midpoint +1

L

Figure 7.11 The binary search algorithm

In both the pseudocode and Figure 7.11’s flowchart, a while loop is used to control the
search. The initial list is defined by setting the left index value to 0 and the right index value

to 1 less than the number of elements in the list. The midpoint element is then taken as the
integerized average of the left and right values.

330 Arrays

After the comparison with the midpoint element is made, the search is subsequently
restricted by moving the left index to one integer value above the midpoint or by moving the
right index one integer value below the midpoint. This process continues until the element is
found or the left and right index values become equal. The binarySearch() function pres-
ents the C++ version of this algorithm:

// this function returns the location of key in the list
// a -1 is returned if the value is not found
int binarySearch(int list[], int size, int key)
{
int left, right, midpt;
left = 0;
right = size - 1;

while (left <= right)

{
midpt = (int) ((left + right) / 2);
if (key == list[midpt])
{
return midpt;
}

else if (key > list[midpt])
left = midpt + 1;

else
right = midpt - 1;

return -1;

For purposes of testing this function, Program 7.10 is used. A sample run of Program 7.10
yielded the following:

Enter the item you are searching for: 101
The item was found at index location 9

Chapter 7

Chapter Supplement: Searching and Sorting

Methods

Program 7.10

#include <iostream>

using namespace std;

int binarySearch(int [], int, int);

int main()

{

const int NUMEL 10;
int nums[NUMEL] = {5,10,22,32,45,67,73,98,99,101};
int item, location;

cout << "Enter the item you are searching for: ";
cin >> item;
location = binarySearch(nums, NUMEL, item);
if (location > -1)

cout << "The item was found at index location "

<< location << endl;

else

cout << "The item was not found in the list\n";
return 0;

// this function returns the location of key in the
// a -1 is returned if the value is not found
int binarySearch(int list[], int size, int key)

{

int left, right, midpt;
left = 0;
right = size - 1;
while (left <= right)
{
midpt = (int) ((left + right) / 2);
if (key == list[midpt])
{
return midpt;
}
else if (key > list[midpt])
left = midpt + 1;
else
right = midpt - 1;

return -1;

// function prototype

list

331

332

Arrays

T'he value of using a binary search algorithm is that the number of elements that must be
searched is cut in half each time through the while loop. So the first time through the loop, #
elements must be searched; the second time through the loop, 7 / 2 of the elements has been
eliminated and only 7 / 2 remain. The third time through the loop, another half of the remain-
ing clements has been eliminated, and so on.

In general, after p passes through the loop, the number of values remaining to be searched
is 7 [(27). In the worst case, the search can continue until less than or equal to one element
remains to be searched. Mathematically, this procedure can be expressed as » [(2°) < 1.
Alternatively, it can be rephrased as p is the smallest integer so that 22 > z. For example, for a
1000-clement array, 7 is 1000 and the maximum number of passes, p, required for a binary
search is 10. Table 7.1 compares the number of loop passes needed for a linear and binary
search for different list sizes.

Table 7.1

A Comparison of while Loop Passes for Linear and Binary Searches

Array size

10

50

500

5000

50,000

500,000

5,000,000

50,000,000

Average
linear
search
passes

5

25

250

2500

25,000

250,000

2,500,000

25,000,000

Maximum
linear
search
passes

10

50

500

5000

50,000

500,000

5,000,000

50,000,000

Maximum
binary
search
passes

13

16

19

23

26

As shown, the maximum number of loop passes for a 50-item list is almost 10 times more
for a linear search than for a binary search, and the difference is even more pronounced for
larger lists. As a rule of thumb, 50 elements are usually taken as the switch-over point: For lists
smaller than 50 elements, linear searches are acceptable; for larger lists, a binary search algo-
rithm should be used.

Big O Notation On average, over a large number of linear searches with # items in a list,
you would expect to examine half (# / 2) the items before locating the desired item. In a
binary search, the maximum number of passes, p, occurs when # / (2)? = 1. This relationship
can be manipulated algebraically to 22 = #, which yields p = log,#, which approximately
equals 3.33 x log (.

For example, finding a particular name in an alphabetical directory with » = 1000 names
requires an average of 500 (= 7 / 2) comparisons with a linear search. With a binary search, only
about 10 (= 3.33 x log;;1000) comparisons are required.

A common way to express the number of comparisons required in any search algorithm
using a list of 7 items is to give the order of magnitude of the number of comparisons required,
on average, to locate a desired item. Therefore, the linear search is said to be of order # and

Chapter 7 333
Chapter Supplement: Searching and Sorting
Methods

the binary search of order log,#. Notationally, they’re expressed as O(z) and O(log,#); the O is
read as “the order of.”

Sort Algorithms

"Iwo major categories of sorting techniques, called internal and external sorts, are available for
sorting data. Internal sorts arec used when the data list isn’t too large and the complete list can
be stored in the computer’s memory, usually in an array. External sorts are used for much larger
data sets stored on external storage media and can’t be accommodated in the computer’s
memory as a complete unit. Next, you learn about two internal sort algorithms that can be used
when sorting lists with fewer than approximately 50 elements. For larger lists, more sophisti-
cated sorting algorithms are typically used.

Selection Sort One of the simplest sorting techniques is the selection sort, in which the
smallest value is selected from the complete list of data and exchanged with the first element
in the list. After this first selection and exchange, the next smallest element in the revised list
is selected and exchanged with the second element in the list. Because the smallest element
is already in the first position in the list, this second pass needs to consider only the second
through last elements. For a list consisting of # elements, this process is repeated # - 1 times,
with each pass through the list requiring one less comparison than the previous pass.

For example, take a look at the list of numbers shown in Figure 7.12. The first pass
through the initial list results in the number 32 being selected and exchanged with the first
element in the list. The second pass, made on the reordered list, results in the number 155
being selected from the second through fifth elements. This value is then exchanged with the
second element in the list. The third pass selects the number 307 from the third through fifth
elements in the list and exchanges this value with the third element. Finally, the fourth and
last pass through the list selects the remaining minimum value and exchanges it with the
fourth list element. Although each pass in this example resulted in an exchange, no exchange
would have been made in a pass if the smallest value were already in the correct location.

Initial list | Pass 1 Pass 2 Pass 3 Pass 4
690 32 32 32 32
307 307 L1155 144 144

32 690 690 /,7307 307
155 155 307 690 4426
426 426 426 426/ 690

Figure 7.12 A sample selection sort
In pseudocode, the selection sort is described as follows:

Set exchange count to 0 (not required, but done to keep track of the exchanges)
For each element in the list from first to next to last

334 Arrays

Find the smallest element from the current element being referenced to the last
element by:
Setting the minimum value equal to the current element
Saving (storing) the index of the current element
For each element in the list, from the current element + 1 to the last element in the list
If element[inner loop index] < minimum value
Set the minimum value = element[inner loop index]
Save the index of the newfound minimum value
EndIf
EndFor
Swap the current value with the new minimum value
Increment the exchange count
EndFor
Return the exchange count

The selectionSort () function incorporates this procedure into a C++ function

int selectionSort(int num[], int numel)
{

int i, j, min, minidx, temp, moves = 0;

for (i =0; i < (numel - 1); i++)

{
min = num[i]; // assume minimum is the first array element
minidx = i; // index of minimum element
for(j =i + 1; j < numel; j++)
{
if (num[j] < min) // if you've located a lower value
{ // capture it
min = num[]j];
minidx = j;
}
}
if (min < num[i]) // check whether you have a new minimum
{ // and if you do, swap values
temp = num[i];
num[i] = min;
num[minidx] = temp;
moves++;
}
}

return moves;

Chapter 7 335
Chapter Supplement: Searching and Sorting
Methods

The selectionSort() function expects two arguments: the list to be sorted and the
number of elements in the list. As the pseudocode specifies, a nested set of for loops performs
the sort. The outer for loop causes one less pass through the list than the total number of
items in the list. For each pass, the variable min is initially assigned the value num[i], where i
is the outer for loop’s counter variable. Because i begins at 0 and ends at 1 less than numel,
each element in the list, except the last, is successively designated as the current element.

The inner loop cycles through the elements below the current element and is used to
select the next smallest value. Therefore, this loop begins at the index value i + 1 and con-
tinues through the end of the list. When a new minimum is found, its value and position in the
list are stored in the variables min and minidx. At completion of the inner loop, an exchange
is made only if a value less than that in the current position is found.

Program 7.11 was constructed to test selectionSort (). This program implements a
selection sort for the same list of 10 numbers used previously to test search algorithms. For
later comparison to other sorting algorithms, the number of actual moves the program makes
to get data into sorted order is counted and displayed.

Program 7.11

#include <iostream>
using namespace std;

int selectionSort(int [], int);

int main()

{
const int NUMEL
int nums[NUMEL]
int i, moves;

10;
{22,5,67,98,45,32,101,99,73,10};

moves = selectionSort(nums, NUMEL);

cout << "The sorted list, in ascending order, is:\n";
for (i = 0; i < NUMEL; i++)
cout << " " << nums[i];

cout << '\n' << moves << " moves were made to sort this list\n";

return 0;

}

int selectionSort(int num[], int numel)

{

int i, j, min, minidx, temp, moves = 0;

for (i =0; i < (numel - 1); i++)

336

Arrays

min = num[i]; // assume minimum is the first array element

minidx = 1i; // index of minimum element
for(j = i + 1; j < numel; j++)
{
if (num[j] < min) // if you've located a lower value
{ // capture it
min = num[j];
minidx = j;
}
}
if (min < num[i]) // check whether you have a new minimum
{ // and if you do, swap values
temp = num[i];
num[i] = min;
num[minidx] = temp;
moves++;

return moves;

The output Program 7.11 produces is as follows:

The sorted list, in ascending order, is:
5 10 22 32 45 67 73 98 99 101
8 moves were made to sort this list

Clearly, the number of moves displayed depends on the initial order of values in the list.
An advantage of the selection sort is that the maximum number of moves that must be made
is 7 - 1, where 7 is the number of items in the list. Further, each move is a final move that
results in an element residing in its final location in the sorted list.

A disadvantage of the selection sort is that 7#(z - 1) / 2 comparisons are always required,
regardless of the initial arrangement of data. This number of comparisons is obtained as fol-
lows: The last pass always requires one comparison, the next-to-last pass requires two com-
parisons, and so on up to the first pass, which requires 7 - 1 comparisons. Therefore, the total
number of comparisons is the following:

1+2+34+...+n-1=nn-1)/2=n2/2-n/2

For large values of #, the #2 dominates, and the order of the selection sort is O(#2).

Exchange (Bubble) Sort In an exchange sort, adjacent elements of the list are exchanged
with one another so that the list becomes sorted. One example of this sequence of exchanges
is the bubble sort, in which successive values in the list are compared, beginning with the first
two elements. If the list is to be sorted in ascending (from smallest to largest) order, the

Chapter 7 337
Chapter Supplement: Searching and Sorting
Methods

smaller value of the two being compared is always placed before the larger value. For lists
sorted in descending (from largest to smallest) order, the smaller of the two values being com-
pared is always placed after the larger value.

For example, a list of values is to be sorted in ascending order. If the first element in the
list is larger than the second, the two elements are exchanged. Then the second and third ele-
ments are compared. Again, if the second element is larger than the third, these two elements
are exchanged. This process continues until the last two elements have been compared and
exchanged, if necessary. If no exchanges were made during this initial pass through the data,
the data is in the correct order and the process is finished; otherwise, a second pass is made
through the data, starting from the first element and stopping at the next-to-last element. The
reason for stopping at the next-to-last element on the second pass is that the first pass always
results in the most positive value “sinking” to the bottom of the list.

"To see a specific example, examine the list of numbers in Figure 7.13. The first compari-
son results in exchanging the first two element values, 690 and 307. The next comparison,
between elements two and three in the revised list, results in exchanging values between the
second and third elements, 690 and 32. This comparison and possible switching of adjacent
values continues until the last two elements have been compared and possibly exchanged.
"This process completes the first pass through the data and results in the largest number mov-
ing to the bottom of the list. As the largest value sinks to the bottom of the list, the smaller
elements slowly rise, or “bubble,” to the top of the list. This bubbling effect of the smaller
elements is what gave rise to the name “bubble sort” for this sorting algorithm.

690<—| 307 307 307 307

307 < 690=<— 32 32 32

32 324—I 690<—| 155 155

155 155 1554—I 690<—| 426

426 426 426 4264—I 690

Figure 7.13 The first pass of an exchange sort

Because the first pass through the list ensures that the largest value always moves to the
bottom of the list, the second pass stops at the next-to-last element. This process continues
with each pass stopping at one higher element than the previous pass, until 7 - 1 passes
through the list have been completed or no exchanges are necessary in any single pass. In both
cases, the resulting list is in sorted order. The pseudocode describing this sort is as follows:

Set exchange count to 0 (not required, but done to keep track of the exchanges)
For the first element in the list to 1 less than the last element (i index)
For the second element in the list to the last element (j index)
If num[j] < numlj - 1]
{
Swap num[j] with numl[j - 1]
increment exchange count

}

338 Arrays

EndFor
EndFor
Return exchange count

"This sort algorithm is coded in C++ as the bubbleSort () function, which is included in
Program 7.12 for testing purposes. This program tests bubbleSort () with the same list of
10 numbers used in Program 7.11 to test selectionSort (). For comparison with the earlier
selection sort, the number of adjacent moves (exchanges) bubbleSort () makes is also counted
and displayed.

Program 7.12

#include <iostream>
using namespace std;

int bubbleSort(int [], int); // function prototype

int main()

{
const int NUMEL = 10;
int nums[NUMEL] = {22,5,67,98,45,32,101,99,73,10};
int i, moves;

moves = bubbleSort(nums, NUMEL);
cout << "The sorted list, in ascending order, is:\n";

for (i = 0; i < NUMEL; i++)
cout << " " << nums[i];

cout << '\n' << moves << " moves were made to sort this list\n"

return 0;

int bubbleSort(int num[], int numel)

{

int i, j, temp, moves = 0;

for (i =0; i < (numel - 1); i++)
{

for(j = 1; j < numel; j++)

{

if (num[j] < num[j-11])

Chapter 7 339
Chapter Supplement: Searching and Sorting
Methods

temp = num[j];
num[j] = num[j-1];
num[j-1] = temp;
moves++;

return moves;

Here’s the output produced by Program 7.12:

The sorted list, in ascending order, is:
5 10 22 32 45 67 73 98 99 101
18 moves were made to sort this list

As with the selection sort, the number of comparisons in a bubble sort is O(#2), and the
number of required moves depends on the initial order of values in the list. In the worst case,
when the data is in reverse sorted order, the selection sort performs better than the bubble sort.
Both sorts require #(# - 1)/2 comparisons, but the selection sort needs only # - 1 moves, and
the bubble sort needs #(7 - 1)/2 moves. The additional moves the bubble sort requires result
from the intermediate exchanges between adjacent elements to “settle” each element into its
final position. In this regard, the selection sort is superior because no intermediate moves are
necessary. For random data, such as that used in Programs 7.11 and 7.12, the selection sort
generally performs equal to or better than the bubble sort.

Chapter

8.1 Introduction to Pointers
8.2 Array Names as Pointers
8.3 Pointer Arithmetic Arrays and Pointers
8.4 Passing Addresses
8.5 Common Programming Errors
8.6 Chapter Summary

Programmers often don’t consider that memory addresses of variables are used extensively throughout the
executable versions of their programs. The computer uses these addresses to keep track of where variables
and instructions are physically located in the computer. One of C++'s advantages is that it allows pro-
grammers to access these addresses. This access gives programmers a view into a computer’s basic storage
structure, resulting in capabilities and programming power that aren’t available in other high-level
languages. This is accomplished by using a feature called pointers. Although other languages provide
pointers, C++ extends this feature by providing pointer arithmetic; that is, pointer values can be added,
subtracted, and compared.

Fundamentally, pointers are simply variables used to store memory addresses. This chapter dis-
cusses the basics of declaring pointers, explains the close relationship of pointers and arrays, and then
describes techniques of applying pointer variables in other meaningful ways.

8.1 Introduction to Pointers

In an executable program, every variable has three major items associated with it: the value
stored in the variable, the number of bytes reserved for the variable, and where in memory
these bytes are located. The memory location of the first byte reserved for a variable is known

342 Arrays and Pointers

as the variable’s address. Knowing the location of this first byte and how many bytes have been
allocated to the variable (which is based on its data type) allows the executable program to
access the variable’s contents. Figure 8.1 illustrates the relationship between these three items
(address, number of bytes, and contents).

One or more bytes in memory
e

Variable

contents
Variable address

Figure 8.1 A typical variable

For most applications, a variable’s internal storage is of little or no concern because the
variable name is a simple and sufficient means of locating its contents. Therefore, after a vari-
able is declared, programmers are usually concerned only with the name and value assigned to
it (its contents) and pay little attention to where this value is stored. For example, take a look
at Program 8.1.

Program 8.1

#include <iostream>
using namespace std;

int main()

{
int num;
num = 22;
cout << "The value stored in num is " << num << endl;
cout << sizeof(num) << " bytes are used to store this value" << endl;
return 0;
}

"This is the output displayed when Program 8.1 is run:

The value stored in num is 22
4 bytes are used to store this wvalue

Program 8.1 displays both the number 22, which is the value stored in the integer variable
num, and the amount of storage used for this integer variable.! Figure 8.2 shows the informa-
tion that Program 8.1 provides.

"The amount of storage allocated for each data type is compiler dependent. Refer to Section 2.1.

Chapter 8 343
Introduction to Pointers

4 bytes of memory

I
~ ™

22
X X X X \
Address of first I

byte used by num Contents of num

Figure 8.2 The variable num stored somewhere in memory

C++ permits you to go further, however, and display the address corresponding to any
variable. The address that’s displayed corresponds to the address of the first byte set aside in
the computer’s memory for the variable.

To determine a variable’s address, the address operator, & must be used. You have seen
this symbol before in declaring reference variables. When used to display an address, it means
“the address of,” and when placed in front of a variable name, it’s translated as the address of
the variable.2 For example, &num means “the address of num,” &total means “the address of

total,” and &price means “the address of price.” Program 8.2 uses the address operator to
display the address of the variable num.

' Program 8.2

#include <iostream>
using namespace std;

int main()

{
int num;
num = 22;
cout << "The value stored in num is " << num << endl;
cout << "The address of num = " << &num << endl;
return 0;

}

"This is the output of Program 8.2:

The value stored in num is 22
The address of num = 0012FED4

2When used in the declaration of a reference variable (see Section 6.3), the & symbol refers to the data type preceding it. For example,
the declaration int &num is read as “num is the address of an int” or, more commonly, “num is a reference to an int.”

344 Arrays and Pointers

Figure 8.3 shows the additional address information provided by Program 8.2’s output.

4 bytes of memory

I
I >

22
0012FED4 A
N ———’

Address of first Content I f
byte used by num ontents of num

Figure 8.3 A more complete picture of the variable num

Clearly, the address output by Program 8.2 depends on both the computer used to run the
program and what other programs or data files are in memory when the program runs. Every
time Program 8.2 runs, however, it displays the address of the first memory location used to
store num. As Program 8.2’s output shows, the address is displayed in hexadecimal notation (see
Section 2.6). This display has no effect on how the program uses addresses internally; it
merely provides a means of displaying addresses in a more compact representation than the
internal binary system used by the computer. As you see in the following sections, however,
using addresses (as opposed to just displaying them) gives C++ programmers a powerful program-
ming tool.

Storing Addresses
Besides displaying the address of a variable, as in Program 8.2, you can store addresses in suit-
ably declared variables. For example, the statement

numAddr = #

stores the address corresponding to the variable num in the variable numAddr, as illustrated in
Figure 8.4.

Variable’'s name: Variable's contents:
numAddr

Address of num

Figure 8.4 Storing num's address in numAddr
Similarly, the statements

d = &m;
tabPoint = &list;
chrPoint = &ch;

store addresses of the variables m, 1ist, and ch in the variables d, tabPoint, and chrPoint,
as shown in Figure 8.5.

Chapter 8 345
Introduction to Pointers

Variable: Contents:

d Address of m ’
tabPoint Address of 1ist ’

chrPoint Address of ch ’

Figure 8.5 Storing more addresses

T'he variables numAddr, d, tabPoint, and chrPoint are formally called pointer variables
or pointers. Pointers are simply variables used to store the addresses of other variables.

Using Addresses

"To use a stored address, C++ provides an indirection operator, *. T'he * symbol, when followed
by a pointer (with a space permitted both before and after the *), means “the variable whose
address is stored in.” Therefore, if numAddr is a pointer (a variable that stores an address),
*numAddr means e variable whose address is stored in numAddr. Similarly, *tabPoint means #e
variable whose address is stored in tabPoint, and *chrPoint means #e variable whose address is
stored in chrPoint. Figure 8.6 shows the relationship between the address contained in a
pointer variable and the variable.

. { The contents of y are

A pointer variable y =™ mmmm < an address
The contents at {
address mmmm are ™ qaqq
9999

Figure 8.6 Using a pointer variable

Although *d means “the variable whose address is stored in d,” it’s commonly shortened
to the statement “the variable pointed to by d.” Similarly, referring to Figure 8.6, *y can be
read as “the variable pointed to by y.” The value that’s finally obtained, as shown in this figure,
is ggqq.

When using a pointer variable, the value that’s finally obtained is always found by first
going to the pointer for an address. The address contained in the pointer is then used to get
the variable’s contents. Certainly, this procedure is a rather indirect way of getting to the final
value, so the term indirect addressing is used to describe it.

Because using a pointer requires the computer to do a double lookup (retrieving the
address first, and then using the address to retrieve the actual data), you might wonder why
you’d want to store an address in the first place. The answer lies in the shared relationship
between pointers and arrays and the capability of pointers to create and delete variable storage
locations dynamically, as a program is running. Both topics are discussed in the next section.
For now, however, given that each variable has a memory address associated with it, the idea
of storing an address shouldn’t seem unusual.

346

Arrays and Pointers

Declaring Pointers

Like all variables, pointers must be declared before they can be used to store an address. When
you declare a pointer variable, C++ requires also specifying the type of variable that’s pointed
to. For example, if the address in the pointer numAddr is the address of an integer, this is the
correct declaration for the pointer:

int *numAddr;

"This declaration is read as “the variable pointed to by numAddr (from *numAddr in the
declaration) is an integer.”?

Notice that the declaration int *numAddr; specifies two things: First, the variable
pointed to by numAddr is an integer, and second, numAddr must be a pointer (because it’s
declared with an asterisk, *). Similarly, if the pointer tabPoint points to (contains the address
of) a double-precision number and chrPoint points to a character variable, the required dec-
larations for these pointers are as follows:

double *tabPoint;
char *chrPoint;

These two declarations can be read as “the variable pointed to by tabPoint is a double”
and “the variable pointed to by chrPoint is a char.” Because all addresses appear the same,
the compiler needs this additional information to know how many storage locations to access
when it uses the address stored in the pointer.

Here are other examples of pointer declarations:

char *inkey;
int *numPt;
double *nmlPtr

"To understand pointer declarations, reading them backward is helpful, starting with the
asterisk, *, and translating it as “the variable whose address is stored in” or “the variable
pointed to by.” Applying this method to pointer declarations, the declaration char *inkey;,
for example, can be read as “the variable whose address is stored in inkey is a char” or “the
variable pointed to by inkey is a char.” Both these statements are often shortened to the sim-
pler “inkey points to a char.” All three interpretations of the declaration statement are correct,
so you can select and use the description that makes the most sense to you. Program 8.3 puts
this information together to construct a program using pointers.

3Pointer declarations can also be written in the form dataType* pointerName, with a space between the indirection operator and
the pointer name. This form, however, is error prone when multiple pointers are declared in the same declaration statement and the
asterisk is inadvertently omitted after declaring the first pointer name. For example, the declaration int* numl, num2; declares
numl as a pointer variable and num2 as an integer variable. To accommodate multiple pointers in the same declaration and clearly mark
a variable as a pointer, the examples in this book adhere to the convention of placing an asterisk in front of each pointer name. This
potential error rarely occurs with reference declarations because references are used almost exclusively as formal parameters, and single
declarations of parameters are mandatory.

Chapter 8
Introduction to Pointers

Program 8.3

#include <iostream>

using namespace std;

int main()

{
int *numAddr; // declare a pointer to an int
int miles, dist; // declare two integer variables
dist = 158; // store the number 158 in dist
miles = 22; // store the number 22 in miles
numAddr = &miles; // store the "address of miles" in numAddr
cout << "The address stored in numAddr is " << numAddr << endl;
cout << "The value pointed to by numAddr is " << *numAddr << "\n\n";
numAddr = &dist; // now store the address of dist in numAddr
cout << "The address now stored in numAddr is " << numAddr << endl;
cout << "The value now pointed to by numAddr is " << *numAddr << endl;

return 0;

347

The output of Program 8.3 is as follows:

The address stored in numAddr is 0012FECS8
The value pointed to by numAddr is 22

The address now stored in numAddr is 0012FEBC
The value now pointed to by numAddr is 158

The only use for Program 8.3 is to help you understand what gets stored where, so review

the program to see how the output was produced. The declaration statement int *numAddr;
declares numAddr to be a pointer used to store the address of an integer variable. The state-
ment numAddr = &miles; stores the address of the variable miles in the pointer numAddr.
The first cout statement causes this address to be displayed. The second cout statement uses
the indirection operator (*) to retrieve and display the value pointed to by numaddr, which is,
of course, the value stored in miles.

Because numAddr has been declared as a pointer to an integer variable, you can use this
pointer to store the address of any integer variable. The statement numAddr = &dist illus-
trates this use by storing the address of the variable dist in numAddr. The last two cout state-
ments verify the change in numaAddr’s value and confirm that the new stored address points to
the variable dist. As shown in Program 8.3, only addresses should be stored in pointers.

348

Arrays and Pointers
It certainly would have been much simpler if the pointer used in Program 8.3 could have

been declared as pointer numAddr;. This declaration, however, conveys no information
about the storage used by the variable whose address is stored in numAddr. This information
is essential when the pointer is used with the indirection operator, as in the second cout state-
ment in Program 8.3. For example, if an integer’s address is stored in numAddr, typically only
4 bytes of storage are retrieved when the address is used. If a character’s address is stored in
numAddr, only 1 byte of storage is retrieved, and a double typically requires retrieving 8 bytes
of storage. T'he declaration of a pointer must, therefore, include the data type of the variable
being pointed to, as shown in Figure 8.7.

A pointer to N 1 byte is

acharacter ~Anaddress retrieved

A pointer to N 4 bytes are

an integer An address retrieved

A pointer to ' 8 bytes are

a double An address retrieved

Figure 8.7 Addressing different data types by using pointers

References and Pointers

At this point, you might be asking what the difference is between a pointer and a reference.
Essentially, a reference is a named constant for an address; therefore, the address named as a
reference can’t be altered after the address has been assigned. Clearly, for a reference param-
eter (see Section 6.3), a new reference is created and assigned an address each time the func-
tion is called. The address in a pointer, used as a variable or function parameter (discussed in
Section 8.4), can be changed after its initial assignment.

In passing an address to a function, beginning programmers tend to prefer using refer-
ences, as described in Section 6.3. The reason is the simpler notation for reference parameters,
which eliminates the address operator (&) and indirection operator (*) required for pointers.
Technically, references are said to be automatically dereferenced or implicitly dereferenced (the
two terms are used synonymously). In contrast, pointers must be explicitly dereferenced by
using the indirection operator. In other situations, such as dynamically allocating new sections
of memory for additional variables as a program is running and as an alternative to accessing
array elements (both discussed in Section 8.2), pointers are required.

Chapter 8 349
Introduction to Pointers

Reference Variables* Although references are used almost exclusively as function parameters
and return types, they can also be declared as variables. For completeness, this use of references
is explained in this section.

After a variable has been declared, it can be given an additional name by using a reference
declaration, which has this form:

dataType& newName = existingName;
For example, the reference declaration
double& sum = total;

equates the name sum to the name total. Both now refer to the same variable, as shown in
Figure 8.8.

Two names for the
same memory area

4 5

totalor sum

Figure 8.8 sum is an alternative name for total

After establishing another name for a variable by using a reference declaration, the new
name, referred to as an alias, can be used in place of the original name. For example, take a
look at Program 8.4.

Program 8.4

#include <iostream>
using namespace std;

int main()

{
double total = 20.5; // declare and initialize total
double& sum = total; // declare another name for total
cout << "sum = " << sum << endl;
sum = 18.6; // this changes the value in total
cout << "total = " << total << endl;

return 0;

#This section can be omitted with no loss of subject continuity.

350 Arrays and Pointers

The following output is produced by Program 8.4:

sum = 20.5
total = 18.6

Because the variable sum is simply another reference to the variable total, the first cout
statement in Program 8.4 displays the value stored in total. Changing the value in sum then
changes the value in total, which the second cout statement in this program displays.

When constructing reference variables, keep two points in mind. First, the reference vari-
able should be of the same data type as the variable it refers to. For example, this sequence of
declarations

int num = 5;
double& numref = num; // INVALID - CAUSES A COMPILER ERROR

doesn’t equate numref to num; rather, it causes a compiler error because the two variables are
of different data types.

Second, a compiler error is produced when an attempt is made to equate a reference vari-
able to a constant. For example, the following declaration is invalid:

int& val = 5; // INVALID - CAUSES A COMPILER ERROR

After a reference name has been equated to one variable name correctly, the reference
can’t be changed to refer to another variable.

As with all declaration statements, multiple references can be declared in a single state-
ment, as long as each reference name is preceded by an ampersand. Therefore, the following
declaration creates two reference variables named sum and average:’

double& sum = total, & average;

Another way of looking at references is to consider them pointers with restricted capabili-
ties that hide a lot of the dereferencing required with pointers. For example, take a look at
these statements:

int b; // b is an integer variable
int& a = b; // a is a reference variable that stores b's address
a = 10; // this changes b's value to 10

Here, a is declared as a reference variable that’s effectively a named constant for the
address of the b variable. Because the compiler knows from the declaration that a is a reference
variable, it automatically assigns b’s address (rather than b’s contents) to a in the declaration
statement. Finally, in the statement a = 10;, the compiler uses the address stored in a to
change the value stored in b to 10. The advantage of using the reference is that it accesses b’s
value automatically without having to use the indirection operator, *. As noted previously, this
type of access is referred to as an “automatic dereference.”

SReference declarations can also be written in the form dataType &newName = existingName,with a space between the amper-
sand and the data type. This form isn’t used much, however, because it can be confused easily with the notation used to assign
addresses to pointer variables.

Chapter 8 351
Introduction to Pointers

The following sequence of instructions makes use of this same correspondence between
a and b by using pointers:

int b; // b is an integer variable

int *a = &b; // a is a pointer - store b's address in a

*a = 10; // this changes b's value to 10 by explicit
// dereference of the address in a

Here, a is defined as a pointer initialized to store the address of b. Therefore, *a (which
can be read as “the variable whose address is in a” or “the variable pointed to by a”) is b, and
the expression *a = 10 changes b’s value to 10. Notice that with pointers, the stored address
can be altered to point to another variable; with references, the reference variable can’t be
altered to refer to any variable except the one it’s initialized to. Also, notice that to derefer-
ence a, you must use the indirection operator, *. As you might expect, the * is also called the
dereferencing operator.

EXERCISES 8.1

1. (Review) What are the three items associated with the variable named total?

. (Review) If average is a variable, what does saverage mean?

. (Practice) For the variables and addresses in Figure 8.9, determine the addresses correspond-
ing to the expressions &temp, &dist, &date, and &miles.

Addresses: 16892 16893 16894 16895 16896 16897 16898 16899

B S S

- o -
Vv g

temp dist

Addresses: 16900 16901 16902 16903 16904 16905 16906 16907

rrrrrr

g

date

Addresses: 16908 16909 16910 16911 16912 16913 16914 16915

rrrrrr

. J
Vv~

miles

Figure 8.9 Memory bytes for Exercise 3

352

Arrays and Pointers

. (Practice) a. Write a C++ program that includes the following declaration statements. Have

the program use the address operator and a cout statement to display the addresses corre-
sponding to each variable.

int num, count;

long date;

float slope;

double yield;

b. After running the program written for Exercise 4a, draw a diagram of how your computer
has set aside storage for the variables in the program. On your diagram, fill in the addresses
the program displays.

c. Modify the program written in Exercise 4a (using the sizeof () operator discussed in
Section 2.1) to display the amount of storage your computer reserves for each data type.
With this information and the address information provided in Exercise 4b, determine
whether your computer set aside storage for the variables in the order in which they were
declared.

S. (Review) If a variable is declared as a pointer, what must be stored in the variable?

. (Practice) Using the indirection operator, write expressions for the following:

. The variable pointed to by xAddr
. The variable whose address is in yAddr
. The variable pointed to by ptyld
. The variable pointed to by ptMiles
. 'The variable pointed to by mptr
The variable whose address is in pdate
. The variable pointed to by distPtr
. The variable pointed to by tabPt
The variable whose address is in hoursPt

oo Mmoo o0 o e

o
.

. (Practice) Write declaration statements for the following:

. The variable pointed to by yAddr is an integer.
. The variable pointed to by chAddr is a character.
. The variable pointed to by ptYr is a long integer.
. The variable pointed to by amt is a double-precision variable.
. The variable pointed to by z is an integer.
"T'he variable pointed to by gp is a single-precision variable.
. datePt is a pointer to an integer.

o S0 o0 TR

. y1dAddr is a pointer to a double-precision variable.
amtPt is a pointer to a single-precision variable.

o e
.

J- ptcChr is a pointer to a character variable.

. (Review) a. What are the variables yAddr, chAddr, ptYr, amt, z, gp, datePt, yldAddr,

amtPt, and ptChr used in Exercise 7 called?
b. Why are the variable names amt, z, and gp used in Exercise 7 not good choices for
pointer names?

9.

10.

11.

12.

Chapter 8 353
Introduction to Pointers

(Practice) Write English sentences that describe what’s contained in the following declared
variables:

. char *keyAddr;

int *m;

. double *yldAddr;

. long *yPtr;

. double *pCou;

ol T

int *ptDate;

(Practice) Which of the following is a declaration for a pointer?
. long a;
. char b;
char *c;
int x;
. int *p;
double w;
. float *k;
. float 1;
double *z;

S0 e a6 TP

.
.

(Practice) For the following declarations,
int *xPt, *yAddr;

long *dtAddr, *ptAddr;

double *ptZ;

int a;

long b;

double c;

determine which of the following statements is valid:

a. yAddr = s&a; b. yAddr = &b; c. yAddr = &c;

d. yaddr = a; €. yAddr = b; f. yAddr = c;

g. dtAddr = s&a; h. dtaddr = &b; 1. dtAddr = s&c;

j- dtAddr = a; k. dtAddr = b; I. dtAddr = c;
m.ptZz = &a; n. ptAddr = &b; 0. ptAddr = &c;

p- ptAddr = a; q. ptAddr = b; . ptAddr = c;

S. yAddr = xPt; t. yAddr = dtAddr; u. yAddr = ptAddr;

(Practice) For the variables and addresses in Figure 8.10, fill in the data determined by the
following statements:

. ptNum = &m;

. amtAddr = &amt;

. *zAddr = 25;

k = *numAddr;

. ptDay = zAddr;

*pt¥r = 2011;

. *amtAddr = *numAddr;

™0 0 TP

354 Arrays and Pointers

Variable: ptNum Variable: amtAddr
Address: 500 Address: 564
Variable: zaddr Variable: numAddr
Address: 8024 Address: 10132
20492 ’ 18938 ’

Variable: ptDay Variable: ptYr
Address: 14862 Address: 15010

’ 694 ’
Variable: years Variable: m
Address: 694 Address: 8096
Variable: amt Variable: firstnum
Address: 16256 Address: 18938

’ 154 ’
Variable: slope Variable: k
Address: 20492 Address: 24608

Figure 8.10 Memory locations for Exercise 12

8.2 Array Names as Pointers

Although pointers are simply, by definition, variables used to store addresses, there’s also a
direct and close relationship between array names and pointers. This section describes this
relationship in detail. Figure 8.11 illustrates the storage of a one-dimensional array named
grade, which contains five integers. Each integer requires 4 bytes of storage.

grade[0] grade[1l] grade[2] grade[3] grade[4]
(4 bytes) (4 bytes) (4 bytes) (4 bytes) (4 bytes)

-~ N/ 7~ Y 7 ~

[B

Figure 8.11 The grade array in storage

Using subscripts, the fourth element in the grade array is referred to as grade[3]. The
use of a subscript, however, conceals the computer’s extensive use of addresses. Internally, the
computer immediately uses the subscript to calculate the array element’s address, based on

Chapter 8 355
Array Names as Pointers

both the array’s starting address and the amount of storage each element uses. Calling the
fourth element grade[3] forces the compiler to make this address computation:

&grade[3] = &grade[0] + (3 * sizeof(int))

Remembering that the address operator (&) means “the address of,” this statement is read
as “the address of grade[3] equals the address of grade[0] plus 3 times the size of an integer
(which is 12 bytes).” Figure 8.12 shows the address computation used to locate grade[3].

grade[0] grade[1l] grade[2] grade[3] grade[4]
(4 bytes) (4 bytes) (4 bytes) (4 bytes) (4 bytes)

~ 7~ 7~ 7~ ™~ ~

1T

\

]
I offsetto grade[3] =3 x4 =12 bytes

starting address
of the array

_ starting address
+ offset = of grade[3]
Figure 8.12 Using a subscript to obtain an address

Because a pointer is a variable used to store an address, you can create a pointer to store
the address of the first element of an array. Doing so allows you to mimic the computer’s
operation in accessing array elements. Before you do this, take a look at Program 8.5.

Program 8.5

#include <iostream>

using namespace std;

int main()

{

const int ARRAYSIZE = 5;

int i, grade[ARRAYSIZE] = {98, 87, 92, 79, 85};

for (i = 0; i < ARRAYSIZE; i++)
cout << "\nElement " << i << " is " << grade[i];

cout << endl;

return 0;

356

Arrays and Pointers

When Program 8.5 runs, it produces the following display:

o

is 98
is 87
is 92
Element 3 is 79
Element 4 is 85

Element

=

Element

N

Element

Program 8.5 displays the values of the grade array by using standard subscript notation.
By storing the address of array element 0 in a pointer first, you can use the address in the
pointer to access each array element. For example, if you store the address of grade[0] in a
pointer named gPtr by using the assignment statement gPtr = &grade[0];, the expression
*gPtr (which means “the variable pointed to by gPtr”) can be used to access grade[0], as
shown in Figure 8.13.

gPtr i .
The variable pointed to by the address
Address of in gPtr is
grade[0]

4
*g?tr

]
grade[0] * grade[l] grade[2] grade[3] grade[4]

I N/ 7 \ 7 7 n

T T)

Figure 8.13 The variable pointed to by *gPtr is grade[0]

One unique feature of pointers is that offsets can be included in expressions using point-
ers. For example, the 1 in the expression * (gPtr + 1) is an offset. The complete expression
references the integer that’s one beyond the variable pointed to by gPtr. Similarly, as illus-
trated in Figure 8.14, the expression * (gPtr + 3) references the variable that’s three integers
beyond the variable pointed to by gPtr: the variable grade[3].

gPtr . . .
The variable pointed to that's three integer
Address of locations beyond the address in gPtr is
grade[0]
4)
Q’(z
#\©

LY

*
grade[0] grade[1] grade[2] grade[3] grade[4]

~ ™~ 7~ nle ™~

S R N B

Figure 8.14 An offset of 3 from the address in gPtr

Chapter 8 357
Array Names as Pointers

Table 8.1 shows the correspondence between elements referenced by subscripts and by
pointers and offsets. Figure 8.15 illustrates the relationships listed in this table.

Table 8.1 Array Elements Can Be Referenced in Two Ways

Array Element Subscript Notation Pointer Notation
Element O grade([0] *gPtr or (gPtr + 0)
Element 1 grade[1] *(gPtr + 1)
Element 2 grade[2] *(gPtr + 2)
Element 3 grade[3] *(gPtr + 3)
Element 4 grade[4] *(gPtr + 4)

gPtr

(enough storage
for an address)

e n

Address of
grade[0]

grade[0] grade[1] grade[2] grade[3] grade[4]

- 7~ 7 7~ aYae ~

T

- o - - - -)

*gPtr *(gPtr+l) *(gPtr+2) =*(gPtr+3) *(gPtr+4)

Figure 8.15 The relationship between array elements and pointers

Using the correspondence between pointers and subscripts shown in Figure 8.15, the array
elements accessed in Program 8.5 with subscripts can now be accessed with pointers, which is
done in Program 8.6.

The following display is produced when Program 8.6 runs:

Element 0 is 98

Element 1 is 87
Element 2 is 92
Element 3 is 79
Element 4 is 85

358 Arrays and Pointers

Program 8.6

#include <iostream>
using namespace std;

int main()

{

const int ARRAYSIZE = 5;

int *gPtr; // declare a pointer to an int
int i, grade[ARRAYSIZE] = {98, 87, 92, 79, 85};

gbPtr = &grade[0]; // store the starting array address
for (i = 0; i < ARRAYSIZE; i++)
cout << "\nElement " << i << " is " << *(gPtr + 1i);

cout << endl;

return 0;

Notice that this display is the same as Program 8.5’s display. The method used in
Program 8.6 to access array elements simulates how the compiler references array elements
internally. The compiler automatically converts any subscript a programmer uses to an
equivalent pointer expression. In this case, because the declaration of gPtr includes the
information that integers are pointed to, any offset added to the address in gPtr is scaled
automatically by the size of an integer. Therefore, * (gPtr + 3), for example, refers to the
address of grade[0] plus an offset of 12 bytes (3 * 4), assuming sizeof (int) = 4. This
result is the address of grade[3] shown in Figure 8.15.

The parentheses in the expression * (gPtr + 3) are necessary to reference an array ele-
ment correctly. Omitting the parentheses results in the expression *gPtr + 3. Because of
operator precedence, this expression adds 3 to “the variable pointed to by gptr.” Because
gPtr points to grade[0], this expression adds the value of grade[0] and 3 together. Note
also that the expression * (gPtr + 3) doesn’t change the address stored in gPtr. After the
computer uses the offset to locate the correct variable from the starting address in gPtr, the
offset is discarded and the address in gPtr remains unchanged.

Although the pointer gbtr used in Program 8.6 was created specifically to store the grade
array’s starting address, doing so is unnecessary. When an array is created, the compiler creates
an internal pointer constant for it automatically and stores the array’s starting address in this
pointer. In almost all respects, a pointer constant is identical to a programmer-created pointer
variable, but as you’ll see, there are some differences.

For each array created, the array name becomes the name of the pointer constant the
compiler creates for the array, and the starting address of the first location reserved for the array

Chapter 8 359
Array Names as Pointers

is stored in this pointer. Therefore, declaring the grade array in Programs 8.4 and 8.5 actually
reserves enough storage for five integers, creates an internal pointer named grade, and stores
the address of grade[0] in the pointer, as shown in Figure 8.16.

grade

&grade[0]

e

grade[0] grade[1l] grade[2] grade[3] grade[4]
or or or or or
*grade *(grade+l) *(grade+2) *(grade+3) *(grade+4)

Figure 8.16 Creating an array also creates a pointer

The implication is that every access to grade made with a subscript can be replaced by
an access using the array name, grade, as a pointer. Therefore, wherever the expression
grade[i] is used, the expression * (grade + i) can also be used. This equivalence is shown
in Program 8.7, where grade is used as a pointer to access all its elements. It produces the
same output as Programs 8.5 and 8.6. However, using grade as a pointer makes it unnecessary
to declare and initialize the pointer gPtr used in Program 8.6.

Program 8.7

#include <iostream>
using namespace std;

int main()
{
const int ARRAYSIZE = 5;
int i, grade[ARRAYSIZE] = {98, 87, 92, 79, 85};
for (i = 0; i < ARRAYSIZE; i++)
cout << "\nElement " << i << " is " << *(grade + 1);

cout << endl;

return 0;

360

Arrays and Pointers

In most respects, an array name and a pointer can be used interchangeably. A true pointer,
however, is a variable, and the address stored in it can be changed. An array name is a pointer
constant, and the address stored in the pointer can’t be changed by an assignment statement.
Therefore, a statement such as grade = sgrade[2]; is invalid. This should come as no
surprise. Because the purpose of an array name is to locate the beginning of the array cor-
rectly, allowing a programmer to change the address stored in the array name defeats this
purpose and leads to havoc when array elements are accessed. Also, expressions taking the
address of an array name are invalid because the pointer the compiler creates is internal to the
computer, not stored in memory, as pointer variables are. Therefore, trying to store the address
of grade by using the expression &grade results in a compiler error.

An interesting sidelight of accessing array elements with pointers is that any pointer access
can always be replaced with a subscript reference, even if the pointer “points to” a scalar vari-
able. For example, if numPtr is declared as a pointer variable, the expression * (numPtr + i)
can also be written as numPtr[i], even though numPtr isn’t created as an array. As before,
when the compiler encounters the subscript notation, it replaces it internally with the equiva-
lent pointer notation.

Dynamic Array Allocation®

As each variable is defined in a program, it’s assigned sufficient storage from a pool of com-
puter memory locations made available to the compiler. After memory locations have been
reserved for a variable, these locations are fixed for the life of that variable, whether they’re
used or not. For example, if a function requests storage for an array of 500 integers, the storage
is allocated and fixed from the point of the array’s definition. If the application requires fewer
than 500 integers, the unused allocated storage isn’t released back to the system until the
array goes out of existence. If, on the other hand, the application requires more than 500 inte-
gers, the integer array’s size must be increased and the function defining the array must be
recompiled.

An alternative to this fixed or static allocation of memory storage locations is dynamic
allocation of memory. Under a dynamic allocation scheme, the amount of storage to be allo-
cated is determined and adjusted at runtime rather than compile time. Dynamic allocation of
memory is useful when dealing with lists because it allows expanding the list as new items
are added and contracting the list as items are deleted. For example, in constructing a list of
grades, you don’t need to know the exact number of grades. Instead of creating a fixed array
to store grades, having a mechanism for enlarging and shrinking the array as needed is useful.
Table 8.2 describes two C++ operators, new and delete, that provide this capability. (These
operators require the new header file.)

6This topic can be omitted on first reading with no loss of subject continuity.

Chapter 8 361
Array Names as Pointers

Table 8.2 The new and delete Operators (Require the new Header File)

Operator Name Description

new Reserves the number of bytes requested by the declaration.
Returns the address of the first reserved location or NULL if not
enough memory is available.

delete Releases a block of bytes reserved previously. The address of the
first reserved location must be passed as an argument to the
operator.

Dynamic storage requests for scalar variables or arrays are made as part of a declaration or
an assignment statement.” For example, the declaration statement int *num = new int;
reserves an area large enough to hold one integer and places this storage area’s address in the
pointer num. This same dynamic allocation can be made by first declaring the pointer with the
declaration statement int *num; and then assigning the pointer an address with the assign-
ment statement num = new int;. In either case, the allocated storage comes from the com-
puter’s free storage area.’

Dynamic allocation of arrays is similar but more useful. For example, the declaration

int *grades = new int[200];

reserves an area large enough to store 200 integers and places the first integer’s address in the
pointer grades. Although the constant 200 has been used in this declaration, a variable dimen-
sion can be used. For example, take a look at this sequence of instructions:

cout << "Enter the number of grades to be processed: ";
cin >> numgrades;
int *grades = new int[numgrades];

In this sequence, the actual size of the array that’s created depends on the number the
user inputs. Because pointer and array names are related, each value in the newly created stor-
age area can be accessed by using standard array notation, such as grades[1i], instead of the
pointer notation * (grades + i).Program 8.8 shows this sequence of code in the context of
a complete program.

7Note that the compiler provides dynamic allocation and deallocation from the stack for all auto variables automatically.
8A computer’s free storage area is formally called the heap. It consists of unallocated memory that can be allocated to a program, as
requested, while the program is running.

362 Arrays and Pointers

Program 8.8

#include <iostream>
#include <new>
using namespace std;

int main()

{

int numgrades, 1i;

cout << "Enter the number of grades to be processed: ";
cin >> numgrades;

int *grades = new int[numgrades]; // create the array

for(i = 0; i < numgrades; i++)
{
cout << " Enter a grade: ";
cin >> grades[i];
¥
cout << "\nAn array was created for " << numgrades << " integers\n";
cout << " The values stored in the array are:";
for (i = 0; i < numgrades; i++)
cout << "\n " << grades[i];
cout << endl;

delete[] grades; // return the storage to the heap
// the [] is required for array deletions
return 0;

Notice in Program 8.8 that the delete operator is used with braces where the new opera-
tor was used previously to create an array. The delete[] statement restores the allocated
block of storage back to the free storage area (the heap) while the program is running.” The
only address delete requires is the starting address of the dynamically allocated storage block.
Therefore, any address returned by new can be used subsequently by delete to restore
reserved memory back to the computer. The delete operator doesn’t alter the address passed

9The operating system should return allocated storage to the heap automatically when the program has finished running. Because this
return doesn’t always happen, however, it’s crucial to restore dynamically allocated memory explicitly to the heap when the storage is
no longer needed. The term memory leak is used to describe the condition that occurs when dynamically allocated memory isn’t
returned explicitly by using the delete operator and the operating system doesn’t reclaim previously allocated memory.

Chapter 8 363
Array Names as Pointers

to it, but simply removes the storage the address references. Following is a sample run of
Program 8.8:

Enter the number of grades to be processed: 4
Enter a grade: 85

Enter a grade: 96
Enter a grade: 77
Enter a grade: 92

An array was created for 4 integers
The values stored in the array are:
85
96
77
92

EXERCISES 8.2

1. (Practice) Replace each of the following references to a subscripted variable with a pointer
reference:

a. prices[5] b. grades[2] c. yield[10]
d. dist[9] e. mile[0] f. temp[20]
g. celsius[16] h. num[50] 1. time[12]
. (Practice) Replace each of the following pointer references with a subscript reference:
a. * (message + 6) b. *amount C. *(yrs + 10)
d. *(stocks + 2) e. *(rates + 15) f. *(codes + 19)

. (Practice) a. List three things the declaration statement double prices[5]; causes the
compiler to do.
b. If each double-precision number uses 8 bytes of storage, how much storage is set aside for
the prices array?
c. Draw a diagram similar to Figure 8.16 for the prices array.
d. Determine the byte offset in relation to the start of the prices array, corresponding to the
offset in the expression * (prices + 3).

. (Practice) a. Write a declaration to store the string "This is a sample" in an array named

samtest. Include the declaration in a program that displays the values in samtest by using a

for loop that uses a pointer access to each element in the array.

b. Modify the program written in Exercise 4a to display only array elements 10 through 15 (the
letters s, a, m, p, I, and e).

364

Arrays and Pointers

. (Practice) Write a declaration to store the following values in an array named rates: 12.9,

18.6,11.4,13.7,9.5,15.2, and 17.6. Include the declaration in a program that displays the values
in the array by using pointer notation.

. (Modify) a. Repeat Exercise 6a in Section 7.1, but use pointer references to access all array

elements.
b. Repeat Exercise 6b in Section 7.1, but use pointer references to access all array elements.

. (Modify) Repeat Exercise 7 in Section 7.1, but use pointer references to access all array

elements.

. (Modify) As described in Table 8.2, the new operator returns the address of the first new stor-

age area allocated or returns NULL if there’s insufficient storage. Modify Program 8.8 to check
that a valid address has been returned before attempting to place values in the grades array.
Display an appropriate message if not enough storage is available.

8.3 Pointer Arithmetic

Pointer variables, like all variables, contain values. The value stored in a pointer is, of course,
an address. Therefore, by adding and subtracting numbers to pointers, you can obtain different
addresses. Additionally, the addresses in pointers can be compared by using any of the rela-
tional operators (==, !=, <, >, and so forth) that are valid for comparing other variables. When
performing arithmetic on pointers, you must be careful to produce addresses that point to
something meaningful. In comparing pointers, you must also make comparisons that make
sense. Take a look at these declarations:

int nums[100];
int *nPt;

To set the address of nums[0] in nPt, either of these assignment statements can be used:

nPt = &nums[0];
nPt = nums;

Both assignment statements produce the same result because nums is a pointer constant
containing the address of the first location in the array: the address of nums[0]. Figure 8.17
illustrates the memory allocation resulting from the previous declaration and assignment state-
ments, assuming each integer requires 4 bytes of memory, and the location of the beginning of
the nums array is address 18934.

Chapter 8 365
Pointer Arithmetic

nPt
18934 : ! y The address of nums[0]
> Nl \Z ©)
) > > D \2)
Addresses: r\ibq K & & &
(4
numg[0] numg[1] numg[2] numg[3] numg[4]

lThe starting address of the nums array is 18934
Figure 8.17 The nums array in memory

After nPt contains a valid address, values can be added and subtracted from the address
to produce new addresses. When adding or subtracting numbers to pointers, the computer
adjusts the number automatically to ensure that the result still “points to” a value of the cor-
rect type. For example, the statement nPt = nPt + 4; forces the computer to scale the 4 by
the correct number to make sure the resulting address is the address of an integer. Assuming
each integer requires 4 bytes of storage, as shown in Figure 8.17, the computer multiplies the
4 by 4 and adds 16 to the address in nPt. The resulting address is 18950, which is the correct
address of nums[4].

The computer’s automatic scaling ensures that the expression nPt + i, where i is any
positive integer, points to the ith element beyond the one currently pointed to by nPt.
T'herefore, if nPt initially contains the address of nums[0],nPt + 4 isthe address of nums[4],
nPt + 50 is the address of nums[50], and nPt + i is the address of nums[i]. Although
actual addresses are used in Figure 8.17 to illustrate the scaling process, programmers don’t
need to be concerned with the actual addresses the computer uses. Manipulating addresses
with pointers generally doesn’t require knowledge of the actual addresses.

Addresses can also be incremented or decremented with the prefix and postfix increment
and decrement operators. Adding 1 to a pointer causes the pointer to point to the next element
of the type being pointed to. Decrementing a pointer causes the pointer to point to the previ-
ous element. For example, if the pointer variable p is a pointer to an integer, the expression
p++ increments the address in the pointer to point to the next integer, as shown in Figure 8.18.

The pointer
P P Adding 1 to the

pointer increases the
Address of address to point here

an integer ' _1

An integer An integer l

N e’
4 bytes

Figure 8.18 Increments are scaled when used with pointers

366 Arrays and Pointers

In reviewing Figure 8.18, notice that the increment added to the pointer is scaled to
account for the fact that the pointer is used to point to integers. It is, of course, up to the pro-
grammer to make sure the correct type of data is stored in the new address contained in the
pointer.

The increment and decrement operators can be applied as both prefix and postfix pointer
operators. All the following combinations using pointers are valid:

*ptNum++ // use the pointer and then increment it
*++ptNum // increment the pointer before using it
*ptNum—- // use the pointer and then decrement it
*——ptNum // decrement the pointer before using it

Of these four possible forms, the most commonly used is *ptNum++ because it allows
accessing each array element as the address is “marched along” from the array’s starting
address to the address of the last array element. Program 8.9 shows this use of the increment
operator. In this program, each element in the nums array is retrieved by successively incre-
menting the address in nPt.

Program 8.9

#include <iostream>
using namespace std;

int main()

{
const int VALUES

5;

int nums[VALUES] {16, 54, 7, 43, -5};
int i, total = 0, *nPt;

nPt = nums; // store address of nums[0] in nPt
for (i = 0; i < VALUES; i++)
total = total + *nPt++;

cout << "The total of the array elements is " << total << endl;

return 0;

Program 8.9 produces the following output:
The total of the array elements is 115

The expression total = total + *nPt++ in Program 8.9 accumulates the values
pointed to by the nPt pointer. In this expression, the *nPt part causes the computer to retrieve
the integer pointed to by nPt. Next, the postfix increment, ++, adds 1 to the address in nPt so

Chapter 8 367
Pointer Arithmetic

that nPt then contains the address of the next array element. The computer, of course, scales
the increment so that the actual address in nPt is the correct address of the next element.

Pointers can also be compared, which is particularly useful when dealing with pointers
that point to elements in the same array. For example, instead of using a counter in a for loop
to access cach array element, the address in a pointer can be compared to the array’s starting
and ending addresses. The expression

nPt <= &nums[4]

is true (non-zero) as long as the address in nPt is less than or equal to the address of nums[4].
Because nums is a pointer constant containing the address of nums [0], the term &nums[4] can
be replaced by the equivalent term nums + 4. Using either form, Program 8.9 can be rewritten
in Program 8.10 to continue adding array elements while the address in nPt is less than or
equal to the address of the last array element.

Program 8.10

#include <iostream>
using namespace std;

int main()

{
const int VALUES

5;

int nums[VALUES] {16, 54, 7, 43, -5};
int total = 0, *nPt;

nPt = nums; // store address of nums[0] in nPt
while (nPt < nums + VALUES)
total += *nPt++;

cout << "The total of the array elements is " << total << endl;

return 0;

In Program 8.10, the compact form of the accumulating expression total += *nPt++
was used in place of the longer form, total = total + *nPt++. Also, the expression
nums + 4 doesn’t change the address in nums. Because nums is an array name, not a pointer
variable, its value can’t be changed. The expression nums + 4 first retrieves the address in
nums, adds 4 to this address (scaled appropriately), and uses the result for comparison pur-
poses. Expressions such as *nums++, which attempt to change the address, are invalid.
Expressions such as *nums or * (nums + i), which use the address without attempting to alter
it, are valid.

368 Arrays and Pointers

Pointer Initialization

Like all variables, pointers can be initialized when they’re declared. When initializing pointers,
however, you must be careful to set an address in the pointer. For example, an initialization
such as

int *ptNum = &miles;

is valid only if miles is declared as an integer variable before ptNum is. This statement creates
a pointer to an integer and sets the address in the pointer to the address of an integer variable.
If the variable miles is declared after ptNum is declared, as follows, an error occurs:

int *ptNum = &miles;
int miles;

The error occurs because the address of miles is used before miles has even been
defined. Because the storage area reserved for miles hasn’t been allocated when ptNum is
declared, the address of miles doesn’t exist yet.

Pointers to arrays can also be initialized in their declaration statements. For example, if
prices has been declared as an array of double-precision numbers, either of the following
declarations can be used to initialize the pointer zing to the address of the first element
in prices:

double *zing = &prices[0];
double *zing = prices;

The last initialization is correct because prices is a pointer constant containing an
address of the correct type. (The variable name zing was selected in this example to reinforce
the idea that any variable name can be selected for a pointer.)

EXERCISES 8.3

1. (Modify) Replace the while statement in Program 8.10 with a for statement.

2. (Program) a. Write a program that stores the following numbers in an array named rates:
6.25, 6.50, 6.8, 7.2,7.35, 7.5, 7.65, 7.8, 8.2, 8.4, 8.6, 8.8, and 9.0. Display the values in the array
by changing the address in a pointer called dispPt. Use a for statement in your program.

b. Modify the program written in Exercise 2a to use a while statement.

3. (Program) a. Write a program that stores the string Hooray for All of Us in an array
named strng. Use the declaration strng[] = "Hooray for All of Us";, which ensures
that the end-of-string escape sequence \0 is included in the array. Display the characters in
the array by changing the address in a pointer called messPt. Use a for statement in your
program.

b. Modify the program written in Exercise 3a to use the while statement while
(*messPt++ 1= '\0"').
c. Modify the program written in Exercise 3a to start the display with the word A11.

Chapter 8 369
Passing Addresses

4. (Program) Write a program that stores the following numbers in the array named miles: 15,
22,16, 18, 27, 23, and 20. Have your program copy the data stored in miles to another array
named dist, and then display the values in the dist array. Your program should use pointer
notation when copying and displaying array elements.

S. (Program) Write a C++ program that stores the following letters in the array named message:
This is a test. Have your program copy the data stored in message to another array
named mess2 and then display the letters in the mess2 array.

6. (Program) Write a program that declares three one-dimensional arrays named miles,
gallons, and mpg. Each array should be capable of holding 10 elements. In the miles array,
store the numbers 240.5, 300.0, 189.6, 310.6, 280.7, 216.9, 199.4, 160.3, 177.4, and 192.3. In the
gallons array, store the numbers 10.3, 15.6, 8.7, 14, 16.3, 15.7, 14.9, 10.7, 8.3, and 8.4. Each
element of the mpg array should be calculated as the corresponding element of the miles array
divided by the equivalent element of the gallons array: for example, mpg[0] = miles[0]
/ gallons[0]. Use pointers when calculating and displaying the elements of the mpg array.

8.4 Passing Addresses

In Section 6.3, you saw one method of passing addresses to a function: using reference param-
eters. Passing a reference to a function is an implied use of an address because the reference
does provides the function with an address. Unfortunately, the actual call statement doesn’t
reveal what’s being passed—it could be an address or a value. For example, the function call
swap (numl,num2); doesn’t reveal whether numl or num2 is a reference (an address) or a
value. Only by looking at the declarations for the variables numl and num2, or by examining
the function header for swap (), can you determine the data types of numl and num2. If they
have been defined as reference variables, an address is passed; otherwise, the value stored in
the variables is passed.

In contrast to passing addresses implicitly with references, addresses can be passed explic-
itly with pointers. To pass an address to a function explicitly, all you need to do is place the
address operator, &, in front of the variable being passed. For example, this function call

swap (&firstnum, &secnum);

passes the addresses of the variables firstnum and secnum to swap(), as shown in
Figure 8.19. This function call also clearly indicates that addresses are being passed to the
function.

370 Arrays and Pointers

Variable name: firstnum
Variable address: an address

A value

Variable name: secnum
Variable address: an address I.

A value \ 4
swap(&firstnum, &secnum)

Figure 8.19 Explicitly passing addresses to swap ()

Passing an address with a reference parameter or the address operator is referred to as a
pass by reference because the called function can reference, or access, variables in the calling
function by using the passed addresses. As you saw in Section 6.3, pass by references can be
made with reference parameters. In this section, you sece how addresses passed with the address
operator are used. Specifically, you use the addresses of the variables firstnum and secnum
passed to swap () to exchange their values—a procedure done previously in Program 6.8 with
reference parameters.

One of the first requirements in writing swap() is to construct a function header that
receives and stores the passed values, which in this case are two addresses. As you saw in
Section 8.1, addresses are stored in pointers, which means the parameters of swap () must be
declared as pointers.

Assuming firstnum and secnum are double-precision variables and swap() returns no
value, a suitable function header for swap () is as follows:

void swap(double *nmlAddr, double *nm2Addr);

The choice of the parameter names nm1Addr and nm2Addr is, as with all parameter names,
up to the programmer. The declaration double *nmlAddr, however, states that the parameter
named nmlAddr is used to store the address of a double-precision value. Similarly, the
declaration double *nm2Addr specifies that nm2Addr also stores the address of a double-
precision value.

Before writing the body of swap () to exchange the values in firstnum and secnum, it’s
useful to verify that the values accessed by using the addresses in nm1Addr and nm2Addr are
correct. Program 8.11 performs this check.

The output displayed when Program 8.11 runs is as follows:

The number whose address is in nmlAddr is 20.5
The number whose address is in nm2Addr is 6.25

Chapter 8

Passing Addresses

Program 8.11

#include <iostream>
using namespace std;

void swap(double *, double *); // function prototype
int main()
{

double firstnum = 20.5, secnum = 6.25;

swap (&firstnum, &secnum); // call swap
return 0;

// this function illustrates passing pointer arguments
void swap(double *nmlAddr, double *nm2Addr)

{

cout << "The number whose address is in nmlAddr is "
<< *nmlAddr << endl;

cout << "The number whose address is in nm2Addr is "
<< *nm2Addr << endl;

return;

371

In reviewing Program 8.11, note two things. First, the function prototype for swap ()

void swap(double *, double *)

declares that swap () returns no value directly, and its parameters are two pointers that “point
to” double-precision values. When the function is called, it requires that two addresses be

passed, and each address is the address of a double-precision value.

Second, the indirection operator is used in swap () to access the values stored in £irstnum
and secnum. The swap() function has no knowledge of these variable names, but it
does have the address of £irstnum stored in nm1Addr and the address of secnum stored in
nm2Addr. The expression *nmlAddr in the first cout statement means “the variable whose
address is in nm1Addr.” It is, of course, the £irstnum variable. Similarly, the second cout state-
ment obtains the value stored in secnum as “the variable whose address is in nm2Addr.” As the
output shows, pointers have been used successfully to allow swap() to access variables in

main(). Figure 8.20 illustrates storing addresses in parameters.

372 Arrays and Pointers

Parameter name: nm1Addr swap (&firstnum, &secnum)

I ('
&firstnum ':

Parameter name: nm2Addr

1
&secnum 'I

Figure 8.20 Storing addresses in parameters

Having verified that swap() can access main()’s local variables firstnum and secnum,
you can now expand swap () to exchange the values in these variables. The values inmain()’s
variables firstnum and secnum can be interchanged from within swap () by using the three-
step interchange algorithm described in Section 6.3:

1. Store firstnum’s value in a temporary location.
2. Store secnum’s value in firstnum.
3. Store the temporary value in secnum.

Using pointers in swap (), this algorithm takes the following form:

1. Store the value of the variable that nm1Addr points to in a temporary location by using
the statement temp = *nmlAddr; (see Figure 8.21).

nmlAddr firstnum
(a) Go to the address

Address of & for a value N
firstnum '

(b) Store the
value found

A value

temp

firstnum's |
value P
Figure 8.21 Indirectly storing firstnum’s value

2. Store the value of the variable whose address is in nm2Addr in the variable whose
address is in nm1Addr with the statement *nml1Addr = *nm2Addr; (see Figure 8.22).

Chapter 8 373
Passing Addresses

nmlAddr firstnum
' This address
Address of points here l *nm1Addr=+nm2Addr
. Goes here ¢
firstnum ' p
nm2Addr secnum
| This address
Addr f oints here)
ddress o N P A, Thisvalue »
secnum ' '

Figure 8.22 Indirectly changing firstnum’s value

3. Move the value in the temporary location into the variable whose address is in
nm2Addr by using the statement *nm2Addr = temp; (sce Figure 8.23).

nm2Addr secnum
Locate the .)
firstnum's
Address of I address value
N
secnum
4
temp
firstnum’s I St th |
value & ore the value

4
Figure 8.23 Indirectly changing secnum’s value

Program 8.12 contains the final form of swap (), written according to this description. A
sample run of Program 8.12 produced this output:

The value stored in firstnum is: 20.5

The value stored in secnum is: 6.25

The value stored in firstnum is now: 6.25
The value stored in secnum is now: 20.5

374 Arrays and Pointers

Program 8.12

#include <iostream>
using namespace std;

void swap(double *, double *); // function prototype
int main()

{

double firstnum = 20.5,

cout << "The value stored
cout << "The value stored

swap(&firstnum, &secnum);

cout << "The value stored

secnum = 6.25;

in firstnum is: " << firstnum << endl;
in secnum is: " << secnum << "\n\n";

// call swap

in firstnum is now: "

<< firstnum << endl;
cout << "The value stored in secnum is now: "

<< secnum << endl;
return 0;

// this function swaps the
void swap(double *nmlAddr,

{

double temp;

temp = *nmlAddr; //
*nmlAddr = *nm2Addr; //
*nm2Addr = temp; //

return;

values in its two arguments
double *nm2Addr)

save firstnum's value
move secnum's value into firstnum
change secnum's value

As the program output shows, the values stored in main()’s variables have been modified
in swap (), which was made possible by using pointers. To make sure you understand, you
could compare this version of swap () with the version using references in Program 6.10. The
advantage of using pointers rather than references is that the function call specifies that
addresses are being used, which is an alert that the function will most likely alter variables of
the calling function. The advantage of using references is that the notation is much simpler.
Generally, for functions such as swap(), ease of notation wins out, and references are used. In
passing arrays to functions, however, which is the next topic, the compiler passes an address

automatically, which dictates using pointers to store the address.

Chapter 8 375
Passing Addresses

Passing Arrays

When an array is passed to a function, its address is the only item actually passed. “Address”
means the address of the first location used to store the array, as shown in Figure 8.24. Because
the first location reserved for an array corresponds to element 0 of the array, the “address of the
array” is also the address of element 0.

An array is a series of memory locations

] The address of the first location is passed as an argument

Figure 8.24 An array’s address is the address of the first location reserved for the array

For a specific example of passing an array to a function, examine Program 8.13. In this
program, the nums array is passed to the £indMax () function, using conventional array notation.

_" Program 8.13

#include <iostream>
using namespace std;

int findMax(int [], int); // function prototype
int main()

{
const int NUMPTS

5;

int nums[NUMPTS] {2, 18, 1, 27, 1l6};
cout << "\nThe maximum value is "

<< findMax(nums,NUMPTS) << endl;
return 0;

// this function returns the maximum value in an array of ints
int findMax(int vals[], int numels)

{

int i, max = vals[0];

for (i = 1; i < numels; i++)
if (max < vals[i])

max = vals[i];
return max;

376

Arrays and Pointers

The following output is displayed when Program 8.13 runs:
The maximum value is 27

The parameter named vals in the function header declaration for findMax () actually
receives the address of the nums array. Therefore, vals is really a pointer because pointers are
variables (or parameters) used to store addresses. Because the address passed to findMax () is
the address of an integer, the following function header for findMax () is also suitable:

int findMax(int *vals, int numels) // vals is declared as
// a pointer to an integer

The declaration int *vals in the function header declares that vals is used to store an
address of an integer. The address stored is, of course, the location of the beginning of an array.
The following is a rewritten version of the findMax () function that uses the new pointer
declaration for vals but retains the use of subscripts to refer to array elements:

int findMax(int *vals, int numels) // find the maximum value

{

int i, max = vals[0];

for (i = 1; i < numels; i++)
if (max < vals[i])

max = vals[i];
return max;

Regardless of how vals is declared in the function header or how it’s used in the function
body, it’s truly a pointer variable. Therefore, the address in vals can be modified. This isn’t
true for the name nums, however. Because nums is the name of the originally created array, it’s
a pointer constant. As described in Section 8.2, this means the address in nums can’t be
changed, and the address of nums can’t be taken. No such restrictions, however, apply to the
pointer variable vals. Therefore, all the pointer arithmetic you learned in Section 8.3 can be
applied to vals.

Following are two more versions of £indMax (), both using pointers instead of subscripts.
In the first version, you simply substitute pointer notation for subscript notation. In the second
version, you use pointer arithmetic to change the address in the pointer. As stated, access to an
array element with the subscript notation arrayName[i] can always be replaced by the
pointer notation * (arrayName + 1i).

Chapter 8 377
Passing Addresses

In the first modification to £indMax (), you make use of this correspondence by simply
replacing all references to vals[i] with the expression * (vals + i):

int findMax(int *vals, int numels) // find the maximum value

{

int i, max = *vals;

for (i = 1; i < numels; i++)
if (max < *(vals + i))

max = *(vals + 1i);
return max;

The second modification of f£indMax () makes use of being able to change the address
stored in vals. After each array element is retrieved by using the address in vals, the address
is incremented by 1 in the altering list of the for statement. The expression max = *vals
previously used to set max to the value of vals[0] is replaced by the expression
max = *vals++, which adjusts the address in vals to point to the second array element. The
element this expression assigns to max is the array element vals points to before it’s incre-
mented. The postfix increment, ++, doesn’t change the address in vals until after the address
has been used to retrieve the first array element.

int findMax(int *vals, int numels) // find the maximum value
{
int i, max = *vals++; // get the first element and increment it
for (i = 1; i < numels; i++, vals++)
{
if (max < *vals)
max = *vals;
}
return max;

Review this version of findMax (). Initally, the maximum value is set to “the thing
pointed to by vals.” Because vals initially contains the address of the first array element
passed to f£indMax (), the value of this first element is stored in max. The address in vals is
then incremented by 1. The 1 added to vals is scaled automatically by the number of bytes
used to store integers. Therefore, after the increment, the address stored in vals is the address
of the next array element, as shown in Figure 8.25. The value of this next element is compared
with the maximum, and the address is again incremented, this time in the altering list of the
for statement. This process continues until all array elements have been examined.

378 Arrays and Pointers

Before incrementing: After incrementing:
vals vals
Address of Address of
vals[0] vals[1]
9 A

v~ Vv~ Vv~ Vv~ N~

vals([0] vals[1l] vals[2] vals[3] vals[4]
Figure 8.25 Pointing to different elements

The version of £indMax () you choose is a matter of personal style. Generally, beginning
programmers feel more at ease using subscripts rather than pointers. Also, if the program uses
an array as the natural storage structure for the application and data, an array access using sub-
scripts is more appropriate to indicate the program’s intent clearly. However, as you learn more
about data structures, pointers become an increasingly useful and powerful tool. In more com-
plex data structures, there’s no simple or easy equivalence for subscripts.

There’s one more neat trick you can glean from this discussion. Because passing an array
to a function actually involves passing an address, you can pass any valid address. For example,
the function call findMax(&nums[2],3) passes the address of nums[2] to findMax(). In
findMax (), the pointer vals stores the address, and the function starts the search for a maxi-
mum at the element corresponding to this address. Therefore, from £indMax()’s perspective,
it has received an address and proceeds appropriately.

Advanced Pointer Notation'®

You can also access multidimensional arrays by using pointer notation, although the notation
becomes more cryptic as the array dimensions increase. Pointer notation is especially useful
with two-dimensional character arrays, and this section discusses pointer notation for two-
dimensional numeric arrays. For example, examine this declaration:

int nums[2][3] = { {16,18,20},
{25,26,27} };

"This declaration creates an array of elements and a set of pointer constants named nums,
nums[0], and nums[1]. Figure 8.26 shows the relationship between these pointer constants
and the elements of the nums array.

10T his topic can be omitted without loss of subject continuity.

Chapter 8 379
Passing Addresses

nums nums[0][0] nums[0][1] nums[0][2]

Address of d ™ nums[0] Address of | N
nums[0][0]

nums |1 Address of ‘ AN
ums[1] nums[1](0]) 25 26 27

16 18 20 ‘
nums[0]

nums[1][0] nums[1][1] nums[1][2]
Figure 8.26 Storage of the nums array and associated pointer constants

"The availability of the pointer constants associated with a two-dimensional array enables
you to access array elements in a variety of ways. One way is to view a two-dimensional array
as an array of rows, with each row as an array of three elements. From this viewpoint, the
address of the first element in the first row is provided by nums [0], and the address of the first
element in the second row is provided by nums[1]. Therefore, the variable pointed to by
nums[0] is nums[0][0], and the variable pointed to by nums[1] is nums[1][0]. Each cle-
ment in the array can be accessed by applying an offset to the correct pointer. Therefore, the
following notations are equivalent:

Pointer Notation Subscript Notation Value
*nums [0] nums[0][0] 16
*(nums[0] + 1) nums[0][1] 18
*(nums[0] + 2) nums[0][2] 20
*nums[1] nums[1][0] 25
*(nums[1] + 1) nums[1][1] 26
*(nums[1] + 2) nums[1][2] 27

You can now go further and replace nums[0] and nums[1] with their pointer notations,
using the address of nums. As shown in Figure 8.26, the variable pointed to by nums is
nums[0]. That is, *nums is nums[0]. Similarly, * (nums + 1) is nums[1]. Using these rela-
tionships leads to the following equivalences:

Pointer Notation Subscript Notation Value
* (*nums) nums[0][0] 16
*(*nums + 1) nums[0][1] 18
*(*nums + 2) nums[0][2] 20
((nums + 1)) nums[1][0] 25
((nums + 1) + 1) nums[1][1] 26
((nums + 1) + 2) nums[1][2] 27

The same notation applies when a two-dimensional array is passed to a function. For
example, the two-dimensional array nums is passed to the calc () function by using the call

380

Arrays and Pointers

calc(nums) ;.As with all array passes, an address is passed. A suitable function header for the
calc() function is as follows:

void calc(int pt[2][3])

As you have seen, the parameter declaration for pt can also be the following:
void calc(int pt[][31])

Using pointer notation, the following is another suitable declaration:
void calc(int (*pt)[3])

In this declaration, the inner parentheses are required to create a single pointer to arrays
of three integers. Each array is, of course, equivalent to a single row of the nums array. By off-
setting the pointer, each element in the array can be accessed. Notice that without the paren-
theses, the declaration becomes

int *pt[3]

which creates an array of three pointers, each one pointing to a single integer. After the correct
declaration for pt is made (any of the three valid declarations can be used), all the following
notations in the calc () function are equivalent:

Pointer Notation Subscript Notation Value
*(*pt) pt[0][0] 16
*(*pt+l) pt[0]1[1] 18
*(*pt+2) pt[0][2] 20
((ptt+l)) pt[1][0] 25
((pt+l)+1) ptl11[1] 26
((pt+1)+2) ptr11[2] 27

"The last two notations using pointers are seen in more advanced C++ programs. The first
occurs because functions can return any valid C++ scalar data type, including pointers to any
of these data types. If a function returns a pointer, the data type being pointed to must be
declared in the function’s declaration. For example, the declaration

int *calc()

declares that calc() returns a pointer to an integer value, which means the address of an
integer variable is returned. Similarly, the declaration

double *taxes()

declares that taxes () returns a pointer to a double-precision value, which means the address
of a double-precision variable is returned.

In addition to declaring pointers to integers, double-precision numbers, and C++’s other
data types, you can declare pointers that point to (contain the address of) a function. Pointers

Chapter 8 381
Passing Addresses

to functions are possible because function names, like array names, are pointer constants. For
example, the declaration

int (*calc) ()

declares cale to be a pointer to a function that returns an integer. This means calc contains
the address of a function, and the function whose address is in the variable calc returns an
integer value. If, for example, the function sum() returns an integer, the assignment
calc = sum; is valid.

EXERCISES 8.4

1. (Practice) The following declaration was used to create the prices array:
double prices[500];

Write three different headers for a function named sortArray() that accepts the prices
array as a parameter named inArray and returns no value.

2. (Practice) The following declaration was used to create the keys array:
char keys[256];

Write three different headers for a function named findKey () that accepts the keys array as
a parameter named select and returns no value.

3. (Practice) The following declaration was used to create the rates array:
double rates[256];

Write three different headers for a function named maximum() that accepts the rates array as
a parameter named speed and returns a double-precision value.

4. (Modify) Modify the findMax () function to locate the minimum value of the passed array.
Write the function using only pointers.

5. (Debug) In the second version of findMax (), vals was incremented in the altering list of the
for statement. Instead, you do the incrementing in the condition expression of the if state-
ment, as follows:

int findMax(int *vals, int numels) // incorrect version
{
int i, max = *vals++; // get the first element and increment
for (i = 1; i < numels; i++)
if (max < *vals++)
max = *vals;

return (max);

}

Determine why this version produces an incorrect result.

382

10.

11.

12.

Arrays and Pointers

. (Program) a. Write a program that has a declaration in main () to store the following numbers

in an array named rates: 6.5,7.2, 7.5, 8.3, 8.6, 9.4, 9.6, 9.8, and 10.0. Include a function call to

show () that accepts rates in a parameter named rates and then displays the numbers by

using the pointer notation * (rates + 1i).

b. Modify the show() function written in Exercise 6a to alter the address in rates. Always
use the expression *rates rather than * (rates + 1) to retrieve the correct element.

. (Program) a. Write a program that has a declaration in main() to store the string

Vacation is near in an array named message. Include a function call to display() that

accepts message in an argument named strng and then displays the contents of message by

using the pointer notation * (strng + 1i).

b. Modify the display() function written in Exercise 7a to use the expression *strng
rather than * (strng + i) to retrieve the correct element.

. (Program) Write a program that declares three one-dimensional arrays named price,

quantity, and amount. Each array should be declared in main() and be capable of holding
10 double-precision numbers. The numbers to be stored in price are 10.62, 14.89, 13.21,
16.55, 18.62, 9.47, 6.58, 18.32, 12.15, and 3.98. The numbers to be stored in quantity are 4,
8.5,6,7.35,9,15.3,3,5.4, 2.9, and 4.8. Have your program pass these three arrays to a function
called extend (), which calculates the elements in the amount array as the product of the
equivalent elements in the price and quantity arrays: for example, amount[1] = price[l]
* quantity[1l].

After extend () has put values in the amount array, display the values in the array from with-
in main (). Write the extend () function by using pointers.

. (Program) Write a function named trimfrnt () that deletes all leading blanks from a string.

Write the function using pointers with the return type void.

(Program) Write a function named trimrear () that deletes all trailing blanks from a string.
Write the function using pointers with the return type void.

(Program) Write a C++ program that asks for two lowercase characters. Pass the two entered
characters, using pointers, to a function named capit (). The capit () function should capi-
talize the two letters and return the capitalized values to the calling function through its
pointer arguments. The calling function should then display all four letters.

(Desk check) a. Determine the output of the following program:

#include <iostream>
using namespace std;
void arr(int [] [3]1); // equivalent to void arr(int (*) [3]);

int main()

{

const int ROWS = 2;
const int COLS = 3;

Chapter 8 383
Common Programming Errors

int nums[ROWS][COLS] = { {33,16,29},
{54,67,99}};

arr(nums) ;

return 0;

void arr(int (*val) [3])

{
cout << endl << *(*val);
cout << endl << *(*val + 1);
cout << endl << *(*(val + 1) + 2);
cout << endl << *(*val) + 1;
return;

T

. Given the declaration for val in the arr () function, is the notation val[1][2] valid in the
function?

8.5 Common Programming Errors

In using the material in this chapter, be aware of the following possible errors:

1. Attempting to store an address in a variable that hasn’t been declared as a pointer.

2. Using a pointer to access nonexistent array elements. For example, if nums is an array
of 10 integers, the expression * (nums + 15) points to a location six integer locations
beyond the last array element. Because C++ doesn’t do bounds checking on array
accesses, the compiler doesn’t catch this type of error. It’s the same error, disguised in
pointer notation form, that occurs when using a subscript to access an out-of-bounds
array element.

3. Forgetting to use the brackets, [], after the delete operator when dynamically deal-
locating memory that was allocated dynamically as a array.

4. Incorrectly applying address and indirection operators. For example, if pt is a pointer
variable, both expressions

pt = &45
pt = &(miles + 10)

are invalid because they attempt to take the address of a value. Notice that the expres-
sion pt = &miles + 10, however, is valid. This expression adds 10 to the address of
miles. It’s the programmer’s responsibility to ensure that the final address points to a
valid data element.

384 Arrays and Pointers

5. Taking addresses of pointer constants. For example, given the declarations

int nums[25];
int *pt;

the assignment
pt = &nums;

is invalid. The constant nums is a pointer constant that’s equivalent to an address. The
correct assignment is pt = nums.

6. Taking addresses of a reference argument, reference variable, or register variable. The
reason is that reference arguments and variables are essentially the same as pointer
constants, in that they’re named address values. Similarly, the address of a register vari-
able can’t be taken. Therefore, for the declarations

register int total;
int *ptTot;

the assignment
ptTot = &total; // INVALID

is invalid. The reason is that register variables are stored in a computer’s internal reg-
isters, and these storage areas don’t have standard memory addresses.

7. Initializing pointer variables incorrectly. For example, the following initialization is
invalid:

int *pt = 5;

Because pt is a pointer to an integer, it must be initialized with a valid address.

8. Becoming confused about whether a variable contains an address or zs an address.
Pointer variables and pointer arguments contain addresses. Although a pointer con-
stant is synonymous with an address, it’s useful to treat pointer constants as pointer
variables with two restrictions:

e The address of a pointer constant can’t be taken.
® The address “contained in” the pointer constant can’t be altered.

Except for these two restrictions, pointer constants and pointer variables can be used
almost interchangeably. Therefore, when an address is required, any of the following
can be used:

e A pointer variable name

® A pointer argument name

® A pointer constant name

e A non-pointer variable name preceded by the address operator (for example,
&variable)

® A non-pointer argument name preceded by the address operator (for example,
&argument)

Chapter 8 385
Chapter Summary

Some confusion surrounding pointers is caused by careless use of the word ponter. For

example, the phrase “a function requires a pointer argument” is more clearly understood when
you realize it actually means “a function requires an address as an argument.” Similarly, the
phrase “a function returns a pointer” actually means “a function returns an address.”

If you’re ever in doubt as to what’s contained in a variable or how it should be treated, use

a cout statement to display the variable’s contents, the “thing pointed to,” or “the address of
the variable.” Seeing what’s actually displayed often helps sort out what the variable contains.

8.6 Chapter Summary

1.

Every variable has an address. In C++, you can obtain the address of a variable by using the
address operator, &.

. A pointer is a variable used to store the address of another variable. Pointers, like all C++

variables, must be declared. An asterisk, *, is used both to declare a pointer variable and to
access the variable whose address is stored in a pointer.

. An array name is a pointer constant. The value of the pointer constant is the address of the

first element in the array. Therefore, if val is the name of an array, val and &val[0] can
be used interchangeably.

. Any access to an array element with subscript notation can always be replaced with pointer

notation. That is, the notation a[i] can always be replaced by the notation * (a + i).This
is true whether a was initially declared as an array or a pointer.

. Arrays can be created dynamically as a program is running. For example, the following

sequence of statements creates an array named grades of size num:

cout << "Enter the array size: ";
cin >> num;
int *grades = new int[num];

The area allocated for the array can be destroyed dynamically by using the delete[]
operator. For example, the statement delete[] grades; returns the allocated area for the
grades array back to the computer.

. Arrays are passed to functions as addresses. The called function always receives direct

access to the originally declared array elements.

. When a one-dimensional array is passed to a function, the function’s parameter declaration

can be an array declaration or a pointer declaration. Therefore, the following parameter
declarations are equivalent:

double a[];
double *a;

. Pointers can be incremented, decremented, compared, and assigned. Numbers added to or

subtracted from a pointer are scaled automatically. The scale factor used is the number of
bytes required to store the data type originally pointed to.

Chapter

9.1 1/O File Stream Objects and

Methods
9.2 Reading and Writing Text Files I/0 Streams and
9.3 Random File Access Data Files
9.4 File Streams as Function

Arguments

9.5 Common Programming Errors
9.6 Chapter Summary

9.7 Chapter Supplement: The
iostream Class Library

The data for the programs you have used so far has been assigned internally in the programs or entered
by the user during program execution. Therefore, the data used in these programs is stored in the com-
puter’s main memory and ceases o exist after the program using it has finished executing. This type of
data entry is fine for small amounts of data. However, imagine a company having to pay someone to type
in the names and addresses of hundreds or thousands of customers every month when bills are prepared
and sent.

As you learn in this chapter, storing large amounts of data outside a program on a convenient stor-
age medium is more sensible. Data stored together under a common name on a storage medium other than
the computer’s main memory is called a data file. Typically, data files are stored on disks, USB drives,
or CDIDVDs. Besides providing permanent storage for data, data files can be shared berween programs,
so the data one program outputs can be input in another program. In this chapter, you learn how data
files are created and maintained in C++.

388

I/0 Streams and Data Files

9.1 1/0 File Stream Objects and Methods

"To store and retrieve data outside a C++ program, you need two things:

e Afile
e A file stream object

Files
A file is a collection of data stored together under a common name, usually on a disk, USB
drive, or CD/DVD. For example, the C++ programs you store on disk are examples of files.
The stored data in a program file is the code that becomes input data to the C++ compiler. In
the context of data processing, however, stored programs aren’t usually considered data files;
the term “data file” typically refers only to files containing the data used in a C++ program.
Each stored data file has a unique filename, referred to as the file’s external name. The
external name is how the operating system (OS) knows the file. When you review the contents
of a directory or folder (for example, in Windows Explorer), you see files listed by their exter-
nal names. Each computer OS has its own specification for the maximum number of characters
permitted for an external filename. Table 9.1 lists these specifications for common current and
past OSs.

Table 9.1 Maximum Allowable Filename Characters
0S Maximum Filename Length
DOS 8 characters plus an optional period and

3-character extension

Windows 98, 2000, XP, Vista

255 characters

Windows 7

255 characters

UNIX
Early versions
Current versions

14 characters
255 characters

For current OSs, you should take advantage of the increased length specification to create
descriptive filenames, but avoid using extremely long filenames because they take more time
to type and can result in typing errors. A manageable length for a filename is 12 to 14 charac-
ters, with a maximum of 25 characters.

For all the OSs listed in Table 9.1, the following are valid data filenames:

prices.dat records info.txt

experl.dat mvRecord math.mem

Choose filenames that indicate the type of data in the file and the application for which it’s
used. Typically, the first 8 to 10 characters describe the data, and an optional extension (a period
and three or four characters) describes the application used to create the file. For example,

Chapter 9 389
I/0 File Stream Objects and Methods

Point of Information

Functions and Methods

C++ programmers can make full use of the many functions C++ classes provide without
knowing the internal details of how the function is constructed or even how to construct
a class. Functions provided as part of a class are formally referred to as class methods (or
methods, for short). Although a method is often referred to as a function, the term
“method” tells you it's not just a stand-alone function, as discussed in Chapter 6, but is
available as part of a class. Typically, a class contains other methods of a similar type.
More important, almost all class methods are invoked in a different manner from func-
tions. Chapters 10 and 11 in Part Il explain classes and their construction in detail. As
you'll see, a class is constructed from C++ code that includes both data and methods.

Excel adds the .x1s or .x1sx extension automatically to all spreadsheet files (x refers to the
version number), Microsoft Word stores files with the extension .doc or .docx, and C++
compilers require a program file with the extension .cpp. When creating your own filenames,
you should adhere to this practice of using descriptive filenames. For example, the name
experl.dat is suitable for describing a file of data corresponding to experiment number 1.

"Two basic types of files exist: text files, also known as character-based files, and binary-based
files. Both file types store data by using a binary code; the difference is in what the codes rep-
resent. Briefly, text files store each character, such as a letter, digit, dollar sign, decimal point,
and so on, by using a character code (typically ASCII or Unicode). With a character code, a word-
processing program or text editor can read and display these files. Additionally, because text
files are easy to create, most programmers use them more often. Text files are the default file
type in C++ and the file type discussed in this chapter.

Binary-based files use the same code the C++ compiler uses for primitive data types. This
means numbers appear in their true binary form and can’t be read by word-processing pro-
grams and text editors. The advantage of binary-based files is compactness; storing numbers
with their binary code usually takes less space than with character values.

File Stream Objects

A file stream is a one-way transmission path used to connect a file to a program. Each file
stream has its own mode that determines the direction of data on the transmission path—that
is, whether the path moves data from a file to a program o7 from a program to a file. A file
stream used to transfer data from a file to a program is an input file stream. A file stream that
sends data from a program to a file is an output file stream. The direction, or mode, is defined
in relation to the program, not the file; data going into a program is considered input data, and
data sent out from a program is considered output data. Figure 9.1 illustrates the data flow from
and to a file, using input and output file streams.

390 |1/0 Streams and Data Files

Program Disk

#include <fstream>
int main() {
{ 4

Input file stream

File
return 0; .
} Output file stream

Figure 9.1 Input and output file streams

For each file your program uses, regardless of the file’s type (text or binary), a distinct file
stream object must be created. If you want your program to read from and write to a file, both
input and output file stream objects are required. Input file stream objects are declared to be
of type ifstream, and output file stream objects are declared to be of type ofstream. For
example, the following declaration statement declares an input file stream object named
inFile to be an object of the ifstream class:

ifstream inFile;

Similarly, the following declaration statement declares an output file stream object named
outFile to be an object of the ofstream class:

ofstream outFile;

In a C++ program, a file stream is accessed by its stream object name: one name for read-
ing the file and one name for writing to the file. Object names, such as inFile and outFile,
can be any programmer-selected name that conforms to C++’s identifier rules.

File Stream Methods

Each file stream object has access to the methods defined for its ifstream or of stream class.
These methods include connecting a stream object name to an external filename (called
opening a file), determining whether a successful connection has been made, closing a connec-
tion (called closing a file), getting the next data item into the program from an input stream,
putting a new data item from the program onto an output stream, and detecting when the end
of a file has been reached.

Opening a file connects a file stream object to a specific external filename by using a file
stream’s open () method, which accomplishes two purposes. First, opening a file establishes
the physical connecting link between a program and a file. Because details of this link are
handled by the computer’s OS, not by the program, normally the programmer doesn’t need to
consider them.

From a coding perspective, the second purpose of opening a file is more relevant. Besides
establishing the actual physical connection between a program and a data file, opening a file
connects the file’s external OS name to the file stream object name the program uses inter-
nally. The method that performs this task, open(), is provided by the ifstreamand ofstream
classes.

Chapter 9 391
I/0 File Stream Objects and Methods

Point of Information

Input and Output Streams

A stream is a one-way transmission path between a source and a destination. In data
transmission, a stream of bytes is sent down this transmission path, similar to a stream of
water providing a one-way path for water to travel from a source to a destination.

Stream objects are created from stream classes. You have already used two stream
objects extensively: the input stream object named cin and the output stream object
named cout. The cin object, created from the istream class, provides a transmission
path from keyboard to program, and the cout object, created from the ostream class,
provides a transmission path from program to screen. The istream and ostream
classes are used to construct a class named iostream. When the iostream header
file is included in a program with the #include <iostream> directive, the cin and
cout stream objects are declared automatically and opened by the C++ compiler.

File stream objects provide the same capabilities as the cin and cout objects, except
they connect a program to a file rather than the keyboard or screen. File stream objects
must be created and declared in a similar manner as variables. Instead of being declared
as int or char, however, file stream objects are declared as being of the ifstream
class (for input) or of the ofstream class (for output). These two classes are made avail-
able by including the £stream header file with the #include <fstream> directive.

In using the open() method to connect the file’s external name to its internal object
stream name, only one argument is required: the external filename. For example, the following
statement connects the external text file named prices.dat to the internal file stream object
named inFile:

inFile.open("prices.dat");

This statement assumes, of course, that inFile has been declared as an ifstream or
ofstream object. If a file has been opened with the preceding statement, the program
accesses the file by using the internal object name inFile, and the OS accesses the file
under the external name prices.dat. The external filename argument passed to open() is
a string enclosed in double quotation marks. The prices.dat file exists or is created
(depending on whether it’s designated as an input or output file) in the same folder as the
program. More generally, data files are stored in separate folders, and the data file’s full path-
name can be specified as in this example:

inFile.open("c:\\datafiles\\prices.dat");

Notice that two slashes separate folder names and filenames, which is required when
providing a full pathname. Also, in these two examples, the open () method is called by giving
the object name (inFile) first, followed by a period, and then the method name (open). With
a few notable exceptions, this is how all class methods are called.

When an existing file is connecting to an input file stream, the file’s data is made available
for input, starting at the first data item in the file. Similarly, a file connected to an output file
stream creates a new file, said to be in output mode, and makes the file available for output. If

392

I/0 Streams and Data Files

a file exists with the same name as a file opened in output mode, the old file is erased (over-
written) and all its data is lost.

When opening a file for input or output, good programming practice requires checking
that the connection has been established before attempting to use the file. You can do this with
the fail() method, which returns a true value if the file was opened unsuccessfully (that is,
it’s true the open failed) or a false value if the open succeeded. Typically, the fail () method
is used in code similar to the following, which attempts to open the prices.dat file for input,
checks that a valid connection was made, and reports an error message if the file wasn’t opened
for input successfully:

ifstream inFile; // any object name can be used here

inFile.open("prices.dat"); // open the file

// check that the connection was opened successfully
if (inFile.fail())

{
cout << "\nThe file was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;
exit(1);
}

If the fail () method returns a true, indicating that the open failed, this code displays an
error message. In addition, the exit () function, which is a request to the OS to end program
execution immediately, is called. The cstdlib header function must be included in any pro-
gram using exit (), and exit()’s single-integer argument is passed directly to the OS for any
further program action or user inspection. Throughout the remainder of the book, this type of
error checking is included whenever a file is opened. (Section 14.4 shows how to use exception
handling for the same type of error checking.) In addition to the £fail() method, C++ pro-
vides three other methods, listed in Table 9.2, for detecting a file’s status.

Table 9.2 File Status Methods

Prototype Description

fail() Returns a Boolean true if the file hasn't
been opened successfully; otherwise,
returns a Boolean false value.

eof () Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, returns a Boolean false. The
value becomes true only when the first
character after the last valid file character
is read.

Chapter 9 393
I/0 File Stream Objects and Methods

Table 9.2 File Status Methods (continued)

Prototype Description

good () Returns a Boolean true while the file

is available for program use. Returns

a Boolean false if a read has been
attempted past the end of file. The value
becomes false only when the first
character after the last valid file character
is read.

bad() Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, returns a false. The value
becomes true only when the first
character after the last valid file character
is read.

Program 9.1 shows the statements required to open a file for input, including an error-
checking routine to ensure that the open was successful. A file opened for input is said to be
in read mode or input mode. (These two terms are synonymous.)

Program 9.1

#include <iostream>
#include <fstream>
#include <cstdlib> // needed for exit()
using namespace std;
int main()
{
ifstream inFile;
inFile.open("prices.dat"); // open the file with the
// external name prices.dat
if (inFile.fail()) // check for a successful open
{
cout << "\nThe file was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;
exit(1l);
}
cout << "\nThe file has been successfully opened for reading."
<< endl;
// statements to read data from the file are placed here
return 0;

394 1/0 Streams and Data Files

A sample run of Program 9.1 produces the following output:
The file has been successfully opened for reading.

A different check is required for output files (files that are written to) because if a file
exists with the same name as the file to be opened in output mode, the existing file is erased
and all its data is lost. To avoid this situation, the file is first opened in input mode to see
whether it exists. If it does, the user is given the choice of permitting it to be overwritten when
it’s opened later in output mode. The code to perform this check is shaded in Program 9.2.

Program 9.2

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()
using namespace std;

int main()
{
ifstream inFile;
ofstream outFile;
char response;
inFile.open("prices.dat"); // attempt to open the file for input

if (!inFile.fail()) // if it doesn't fail, the file exists
{
cout << "A file by the name prices.dat exists.\n"
<< "Do you want to continue and overwrite it\n"
<< " with the new data (y or n): ";
cin >> response;
if (tolower(response) == 'n')
{
cout << "The existing file will not be overwritten." << endl;
exit(l); //terminate program execution

outFile.open("prices.dat"); // now open the file for writing

Chapter 9 395
I/0 File Stream Objects and Methods

if (inFile.fail()) // check for a successful open

{
cout << "\nThe file was not successfully opened" << endl;
exit(1l);

}

cout << "The file has been successfully opened for output." << endl;
// statements to write to the file would be placed here

return 0;

The following two runs were made with Program 9.2:

A file by the name prices.dat exists.

Do you want to continue and overwrite it
with the new data (y or n): n

The existing file will not be overwritten.

and

A file by the name prices.dat exists.
Do you want to continue and overwrite it
with the new data (y or n): y
The file has been successfully opened for output.

Although Programs 9.1 and 9.2 can be used to open an existing file for reading and writing,
both programs lack statements to perform a read or write and close the file. These topics are
discussed shortly. Before moving on, however, note that it’s possible to combine the declara-
tion of an ifstream or ofstream object and its associated open () statement into one state-
ment. For example, examine these two statements in Program 9.1:

ifstream inFile;
inFile.open("prices.dat");

They can be combined into a single statement:

ifstream inFile("prices.dat");

Embedded and Interactive Filenames Programs 9.1 and 9.2 have two problems:

e The external filename is embedded in the program code.
e There’s no provision for a user to enter the filename while the program is running.

As both programs are written, if the filename is to change, a programmer must modify the
external filename embedded in the call to open() and recompile the program. Both these
problems can be avoided by assigning the filename to a string variable.

396

I/0 Streams and Data Files

Point of Information

Using C-Strings as Filenames

If you use a C-string (which is simply a one-dimensional array of characters) to store an
external filename, you must specify the C-string’s maximum length in brackets immedi-
ately after it's declared. For example, examine the following declaration:

char filename[21] = "prices.dat";

The number in brackets (21) is one more than the maximum number of characters
that can be assigned to the variable £ilename because the compiler adds an end-of-
string character to terminate the string. Therefore, the string value "prices.dat",
which consists of 10 characters, is actually stored as 11 characters. In this example, the
maximum value that can be assigned to the string variable £ilename is a string value
consisting of 20 characters.

In declaring and initializing a string variable for use in an open() method, the variable
must represent a C-string, a one-dimensional array of characters terminated with a null char-
acter. (See the Point of Information “Using C-Strings as Filenames” for precautions when
using a C-string.) A safer alternative, as it doesn’t require specifying a character count—and
one used throughout this book—is to use an object created from the string class. To do this,
add an #include <string> directive, declare an object to be of this class, and convert the
object to a C-string in the open () method call by using the string class method c¢_str().

After a string variable is declared to store a filename, it can be used in one of two ways.
First, as shown in Program 9.3a, it can be used to avoid embedding a filename in the open ()
method by placing the declaration statement at the top of a program. This method also clearly
identifies the file’s name up front.

Program 9.3a

#include <iostream>

#include <fstream>
#include <cstdlib> // needed for exit()
#include <string> // needed for the string class

using namespace std;

int main()

{

string filename = "prices.dat"; // create and initialize a string object

// with the filename at the top of the
// main() function

ifstream inFile;

ISy

Chapter 9 397
I/0 File Stream Objects and Methods

inFile.open(filename.c_str()); // open the file

if (inFile.fail()) // check for successful open
{
cout << "\nThe file named " << filename
<< " was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;
exit(1l);

cout << "\nThe file has been successfully opened for reading.\n";

return 0;

In Program 9.3a, the string object is declared and initialized with the name filename.! This
name is placed at the top of main() for easy file identification and modification. When a string
object is used, as opposed to a string literal, the object name isn’t enclosed in double quotation
marks in the open() method call. However, because open () requires a C-string (the string
class doesn’t use C-strings), the string object must be converted to a C-string in the open () call,
which is done by using the ¢_str() method in the expression filename.c_str().

Finally, in the £ail () method, the file’s external name is displayed by inserting the string
object’s name in the cout output stream. External names of files are identified in this manner
in this book.

Another useful role string objects play is to permit users to enter the filename as the pro-
gram is running. For example, the code

string filename;

cout << "Please enter the name of the file you wish to open: ";
cin >> filename;

allows a user to enter a file’s external name at runtime. The only restriction in this code is that
the user must not enclose the entered string value in double quotation marks, and the entered
string value can’t contain any blanks. The reason no blanks can be included is that when cin
is used, the compiler terminates the string when it encounters a blank. Program 9.3b uses this
code in the context of a complete program.

'If the file were located in the datafiles folder on the C drive, specifying the full pathname would require the statement
string filename = "C:\\datafiles\\prices.dat";.

398 1/0 Streams and Data Files

Program 9.3b

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string> // needed for the string class
using namespace std;

int main()

{
string filename; // declare a string object with no initialization
ifstream inFile;

cout << "Please enter the name of the file you wish to open: ";
cin >> filename;

inFile.open(filename.c_str()); // open the file
if (inFile.fail()) // check for successful open
{

cout << "\nThe file named " << filename
<< " was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;
exit(1l);
}

cout << "\nThe file has been successfully opened for reading.\n";

return 0;

The following is a sample output of Program 9.3b:

Please enter the name of the file you wish to open: foobar

The file named foobar was not successfully opened
Please check that the file currently exists.

Chapter 9
I/0 File Stream Objects and Methods

399

Point of Information

A Way to Identify a File's Name and Location

During program development, test files are usually placed in the same directory or folder
as the program. Therefore, a method call such as inFile.open("exper.dat")
causes no problems to the OS. In production systems, however, it's not uncommon for
data files to reside in one folder and program files to reside in another. For this reason,
including the full pathname of any file that's opened is always a good idea.

For example, if the exper .dat file resides in the C:\test\£files directory, the
open () call should include the full pathname: inFile.open("C:\\test\\
files\\exper.dat"). Then, no matter where the program is run from, the OS
knows where to locate the file. Note the use of double backslashes, which is required.

Another important convention is to list all filenames at the top of a program instead
of embedding the names deep in the code. You can do this easily by declaring each file-
name as a string object (or a one-dimensional array of characters). For example, placing
the following statement at the top of a program file clearly lists both the name of the
file and its location:

string filename = "c:\\test\\files\\exper.dat";

If some other file is to be tested, all that's required is a simple change to the string lit-
eral in this easy-to-find statement. Remember that using the string class requires add-
ing the #include <string> directive in your program.

Closing a File A file is closed by using the close() method. This method breaks the

con-

nection between the file’s external name and the file stream object, which can be used for
another file. Examine the following statement, which closes the inFile stream’s connection

to its current file:
inFile.close();

As indicated, the close () method takes no argument.

Because all computers have a limit on the maximum number of files that can be open at
one time, closing files that are no longer needed makes good sense. Any open files existing at

the end of normal program execution are closed automatically by the OS.

400 1/0 Streams and Data Files

Point of Information

Using f£stream Objects

In using ifstream and ofstream objects, the input or output mode is indicated by
the object. Therefore, ifstream objects must be used for input, and ofstream
objects must be used for output. Another means of creating file streams is with
fstream objects that can be used for input or output, but this method requires an
explicit mode designation. An £stream object is declared by using the following syntax:

fstream objectName;

When using the £stream class's open () method, two arguments are required: a
file's external name and a mode indicator. Here are the permissible mode indicators;
except for the first two, they can also be used when opening ifstream and
ofstream objects:

Indicator Description

ios::in Open a text file in input mode (not used for ifstream objects)
ios::out Open a text file in output mode (not used for ofstream objects)
ios::app Open a text file in append mode

ios::ate Go to the end of the opened file

ios::binary Open a binary file in input mode (default is text file)
ios::trunc Delete file contents if it exists

ios::nocreate If file doesn't exist, open fails

ios::noreplace If file exists, open for output fails

As with ofstream objects, an £stream object in output mode creates a new file
and makes the file available for writing. If a file exists with the same name as a file
opened for output, the old file is erased. For example, the following statement declares
filel as an object of type fstream:

fstream filel;
The following statement attempts to open the text file prices.dat for output:
filel.open("prices.dat",ios::out);

After this file has been opened, the program accesses the file by using the internal object
name f£ilel, and the computer saves the file under the external name prices.dat.

An fstrean file object opened in append mode means an existing file is available for
data to be added to the end of the file. If the file opened for appending doesn't exist, a
new file with the designated name is created and made available to receive output from
the program. For example, the following statement declares filel as an £stream
object and attempts to open a text file named prices.dat and make it available for
data to be added to the end of the file:

filel.open("prices.dat",ios::app);

continued

Chapter 9 401
I/0 File Stream Objects and Methods

Point of Information

Using £stream Objects (continued)

Finally, an £stream object opened in input mode means an existing external file has
been connected and its data is available as input. For example, the following statement
declares £ilel to be of type £stream and attempts to open a text file named
prices.dat for input:

filel.open("prices.dat",ios::in);

Mode indicators can be combined by the bitwise OR operator, | (see Appendix C,
available online). For example, the following statement opens the £ilel stream, which
can be an fstream or ifstream object, as an input binary stream:

filel.open("prices.dat", ios::in | ios::binary)

If the mode indicator is omitted as the second argument for an ifstream object,
the stream is opened as a text input file by default; if the mode indicator is omitted for
an ofstream object, the stream is opened as a text output file by default.

EXERCISES 9.1

1. (Practice) Write declaration and open statements that link the following external filenames
to their corresponding internal filenames. All files are text-based.

External Filename Internal Filename Mode
coba.mem memo output
book.let letter output
coupons.bnd coups append
yield.bnd yield append
prices.dat priFile input
rates.dat rates input

2. (Practice) a. Write a set of two statements that declares the following objects as ifstream
objects and then opens them as text input files: inData.txt, prices.txt, coupons.dat,

and exper.dat.

b. Rewrite the two statements for Exercise 2a, using a single statement.

3. (Practice) a. Write a set of two statements declaring the following objects as of stream objects
and then opening them as text output files: outDate.txt, rates.txt, distance.txt, and

file2.txt.

b. Rewrite the two statements for Exercise 3a, using a single statement.

402

I/0 Streams and Data Files

Point of Information

Checking for a Successful Connection

You should always check that the open () method established a connection between a
file stream and an external file successfully because the open () call is a request to the
OS that can fail for various reasons. Chief among these reasons is a request to open an
existing file for reading that the OS can’t locate or a request to open a file for output in
a nonexistent folder. If the OS can't satisfy the open request, you need to know about it
and terminate your program. Failure to do so can result in abnormal program behavior
or a program crash.

The most common method for checking that a fail didn't occur when attempting to
use a file for input is the one coded in Program 9.1, which uses separate calls to the
open() and fail () methods. Similarly, the check made in Program 9.2 is typically
included when a file is being opened in output mode.

Alternatively, you might encounter programs that use £stream objects in place of
ifstream and ofstream objects (see the previous Point of Information box). Except for
the open () method (which requires two arguments: a file's external name and a mode
indicator), the fail () method is called the same as in Program 9.1 or Program 9.2.

In all these cases, you can substitute the expression !inFile for the conditional
expression inFile.fail().

4. (Practice) Enter and run Program 9.1 on your computer.
S. (Practice) Enter and run Program 9.2 on your computer.

6. (Practice) a. Enter and run Program 9.3a on your computer.

b. Add a close() method to Program 9.3a, and then run the program.

7. (Practice) a. Enter and run Program 9.3b on your computer.

b. Add a close() method to Program 9.3b, and then run the program.

8. (Practice) Using the reference manuals provided with your computer’s OS, determine the

following:
a. The maximum number of characters the computer can use to name a file for storage
b. The maximum number of data files that can be open at the same time

9. (Practice) Is calling a saved C++ program a file appropriate? Why or why not?

Chapter 9 403
Reading and Writing Text Files

10. (Practice) a. Write declaration and open statements to link the following external filenames
to their corresponding internal filenames. Use only ifstream and ofstream objects.

External Filename

Internal Filename

Mode

coba.mem memo binary and output
coupons.bnd coups binary and append
prices.dat priFile binary and input

b. Redo Exercise 10a, using only £stream objects.
c. Write close() statements for each file opened in Exercise 10a.

9.2 Reading and Writing Text Files

Reading or writing text files involves almost the identical operations for reading input from the
keyboard and writing data to the screen. For writing to a file, the cout object is replaced by
the ofstream object name declared in the program. For example, if outFile is declared as an
object of type ofstream, the following output statements are valid:

outFile << 'a';
outFile << "Hello World!";
outFile << descrip << ' ' << price;

The filename in each of these statements, in place of cout, directs the output stream to a
specific file instead of to the screen. Program 9.4 shows using the insertion operator, <<, to
write a list of descriptions and prices to a file.

When Program 9.4 runs, the, prices.dat file is created and saved by the computer as a
text file (the default file type) in the same folder where the program is located. It’s a sequential
file consisting of the following data:

Mats 39.95
Bulbs 3.22
Fuses 1.08

T'he actual storage of characters in the file depends on the character codes the computer
uses. Although only 30 characters appear to be stored in the file—corresponding to the descrip-
tions, blanks, and prices written to the file—the file contains 36 characters.

404 1/0 Streams and Data Files

Program 9.4

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string> // needed for the string class
#include <iomanip> // needed for formatting
using namespace std;

int main()

{
string filename = "prices.dat"; // put the filename up front
ofstream outFile;

outFile.open(filename.c_str());

if (outFile.fail())

{
cout << "The file was not successfully opened" << endl;
exit(1l);

// set the output file stream formats
outFile << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2);

// send data to the file

outFile << "Mats " << 39.95 << endl
<< "Bulbs " << 3.22 << endl
<< "Fuses " << 1.08 << endl;

outFile.close();
cout << "The file " << filename
<< " has been successfully written." << endl;

return 0;

}

The extra characters consist of the newline escape sequence at the end of each line cre-
ated by the end1 manipulator, which is created as a carriage return character (cr) and linefeed
(1£). Assuming characters are stored with the ASCII code, the prices.dat file is physically
stored as shown in Figure 9.2. For convenience, the character corresponding to each hexa-
decimal code 1s listed below the code. A code of 20 represents the blank character. Additionally,

Chapter 9 405
Reading and Writing Text Files

Point of Information

Formatting Text File Output Stream Data

Output file streams can be formatted in the same manner as the cout standard output
stream. For example, if an output stream named £ileOut has been declared, the fol-
lowing statement formats all data inserted in the £ileOut stream in the same way
these manipulators work for the cout stream:

fileOut << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2);

The first manipulator parameter, ios: : fixed, causes the stream to output all num-
bers as though they were floating-point values. The next parameter, ios: : showpoint,
tells the stream to always provide a decimal point. Therefore, a value such as 1.0 appears
as 1.0, not as 1, which doesn’t contain a decimal point. Finally, the setprecision()
manipulator tells the stream to display two decimal values after the decimal point.
Therefore, the number 1.0, for example, appears as 1.00.

Instead of using manipulators, you can use the stream methods setf () and
precision(). For example, the previous formatting can be accomplished with the
following code:

fileOut.setf(ios::fixed);
fileOut.setf(ios::showpoint);
fileOut.precision(2);

The style you select is a matter of preference. In both cases, the formats need be
specified only once and remain in effect for every number subsequently inserted in the
file stream.

C and C++ append the low-value hexadecimal byte 0x00 as the end-of-file (EOF) sentinel
when the file is closed. This EOF sentinel is never counted as part of the file.

4D 61 74 73 20 33 39 2E 39 35 0D OA 42 75 6C 62 73 20

M a t s 3 9 . 9 5c¢crlf B u 1l b s

33 2E 32 32 0D OA 46 75 73 65 73 20 31 2E 30 38 0D 0A

3 . 2 2crlf F u s e s 1 . 0 8 cr 1f

Figure 9.2 The prices.dat file as stored by the computer

406

I/0 Streams and Data Files

Point of Information

Writing One Character at a Time with the put () Method

All output streams have access to the £stream class’s put () method, which permits
character-by-character output to a stream. This method works in the same manner as
the character insertion operator, <<. The syntax of this method call is the following:

ofstreamName.put (characterExpression);

The characterExpression can be a character variable or literal value. For example,
the following code can be used to output an 'a* to the screen:

cin.put('a');

In a similar manner, if outFile is an ofstream object file that has been opened,
the following code outputs the character value in the character variable named
keycode to the outFile stream:

char keycode;

outFile.put (keycode);

Reading from a Text File

Reading data from a text file is almost identical to reading data from a standard keyboard, except
the cin object is replaced by the ifstream object declared in the program. For example, if
inFile is declared as an object of type ifstream that’s opened for input, the following state-
ment reads the next two items in the file and stores them in the variables descrip and price:

inFile >> descrip >> price;

The file stream name in this statement, in place of cin, directs the input to come from the
file stream rather than the keyboard. Table 9.3 lists other methods that can be used for stream
input. When called, these methods must be preceded by a stream object name.

Chapter 9 407
Reading and Writing Text Files

Table 9.3 fstream Methods

Method Name Description

get () Returns the next character extracted from the
input stream as an int.

get(charVar) Overloaded version of get () that extracts the

next character from the input stream and assigns
it to the specified character variable, charvar.
getline(strObj, termChar) Extracts characters from the specified input
stream, strObj, until the terminating character,
termChar, is encountered. Assigns the characters
to the specified string class object, strObj.

peek() Returns the next character in the input stream
without extracting it from the stream.

ignore(int n) Skips over the next n characters. If n is omit-
ted, the default is to skip over the next single
character.

Program 9.5 shows how the prices.dat file created in Program 9.4 can be read. This
program illustrates one way of detecting the EOF marker by using the good() method (see
Table 9.2). Because this method returns a Boolean true value before the EOF marker has been
read or passed over, it can be used to verify that the data read is valid file data. Only after the
EOF marker has been read or passed over does this method return a Boolean false. Therefore,
the notation while(inFile.good()) used in Program 9.5 ensures that data is from the file
before the EOF has been read.

408 1/0 Streams and Data Files

Program 9.5

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string> // needed for the string class
using namespace std;

int main()

{
string filename = "prices.dat"; // put the filename up front
string descrip;
double price;

ifstream inFile;
inFile.open(filename.c_str());

if (inFile.fail()) // check for successful open
{
cout << "\nThe file was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;
exit(1l);

// read and display the file's contents
inFile >> descrip >> price;
while (inFile.good()) // check next character
{
cout << descrip << ' ' << price << endl;
inFile >> descrip >> price;

inFile.close();

return 0;

Chapter 9 409
Reading and Writing Text Files

Program 9.5 produces the following display:

Mats 39.95
Bulbs 3.22
Fuses 1.08

Examine the expression inFile.good () used in the while statement. This expression
is true as long as the EOF marker hasn’t been read. Therefore, as long as the last character read
is good (that is, the EOF marker hasn’t been passed), the loop continues to read the file. Inside
the loop, the items just read are displayed, and then a new string and a double-precision num-
ber are input to the program. When the EOF has been detected, the expression returns a
Boolean value of false and the loop terminates. This termination ensures that data is read and
displayed up to, but not including, the EOF marker.

A replacement for the expression while(inFile.good()) is the expression
while(!inFile.eof()), which is read as “while the end of file has 707 been reached.” This
replacement works because the eof () method returns a true only after the EOF marker has
been read or passed over. In effect, the relational expression checks that the EOF /Jasn’t been
read—hence, the use of the NO'T" operator, !.

Another means of detecting the EOF is to use the fact that the extraction operator, >>,
returns a Boolean value of true if data is extracted from a stream; otherwise, it returns a
Boolean false value. Using this return value, the following code can be used in Program 9.5
to read the file:

// read and display the file's contents
while (inFile >> descrip >> price) // check next character
cout << descrip << ' ' << price << endl;

Although this code seems a bit cryptic at first glance, it makes perfect sense when you
understand that the expression being tested extracts data from the file and returns a Boolean
value to indicate whether the extraction was successful.

Finally, in the previous while statement or in Program 9.5, the expression
inFile >> descrip >> price can be replaced by a getline () method (see Table 9.3). For
file input, this method has the following syntax:

getline(fileObject, strObj, terminatingChar)

fileObject is the name of the ifstreanm file, strobj is a string class object , and
terminatingChar is an optional character constant or variable specifying the terminating
character. If this optional third argument is omitted, the default terminating character is the
newline ('\n') character. Program 9.6 shows using getline() in the context of a complete
program.

410

I/0 Streams and Data Files

Program 9.6

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string> // needed for the string class
using namespace std;

int main()

{

string filename = "prices.dat"; // put the filename up front
string line;
ifstream inFile;

inFile.open(filename.c_str());

if (inFile.fail()) // check for successful open
{
cout << "\nThe file was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;
exit(1l);

// read and display the file's contents
while (getline(inFile,line))
cout << line << endl;

inFile.close();

return 0;

Program 9.6 is a line-by-line text-copying program, which reads a line of text from the file
and then displays it on the screen. This program’s output is the following;:

Mats 39.95
Bulbs 3.22
Fuses 1.08

If obtaining the description and price as separate variables is necessary, either Program 9.5
should be used, or the string returned by getline () in Program 9.6 must be processed further
to extract the separate data items. (See Section 9.7 for parsing procedures.)

Chapter 9 411
Reading and Writing Text Files

Point of Information

The get () and putback() Methods

All input streams have access to the £stream class's get () method, used for character-
by-character input from an input stream. This method works similarly to character extrac-
tion, using the >> operator, with two important differences: If a newline character,

'‘\n', or a blank character, * ', is encountered, these characters are read in the same
manner as any other alphanumeric character. The syntax of this method call is the
following:

istreamName.get (characterVariable);

For example, the following code can be used to read the next character from the
standard input stream and store the character in the variable ch:

char ch;
cin.get(ch);

Similarly, if inFile is an ifstream object that has been opened to a file, the fol-
lowing code reads the next character in the stream and assigns it to the character vari-
able keycode:

char keycode;
inFile.get(keycode);

In addition to the get () method, all input streams have a putback () method for
putting the last character read from an input stream back on the stream. This method
has the following syntax (with characterExpression representing any character vari-
able or character value):

ifstreamName.putback(characterExpression);

The putback () method provides output capability to an input stream. The putback
character need not be the last character read; it can be any character. All putback char-
acters, however, have no effect on the data file. They affect only the open input stream.
Therefore, the data file characters remain unchanged, although the characters subse-
quently read from the input stream can change.

Standard Device Files

The file stream objects you have seen so far have been logical file objects. A logical file object
is a stream that connects a file of logically related data, such as a data file, to a program. In
addition, C++ supports a physical file object, which is a stream that connects to a hardware
device, such as a keyboard, screen, or printer.

The actual physical device assigned to your program for data entry is formally called the
standard input file. Usually, it’s the keyboard. When a cin object method call is encountered in
a C++ program, it’s a request to the OS to go to this standard input file for the expected input.
Similarly, when a cout object method call is encountered, the output is automatically displayed

412

I/0 Streams and Data Files

or “written to” a device that has been assigned as the standard output file. For most systems,
it’s a computer screen, although it can also be a printer.

When a program including the iostream header file is executed, the standard input
stream cin is connected to the standard input device. Similarly, the standard output stream
cout is connected to the standard output device. These two object streams are available for
programmer use, as are the standard error stream, cerr, and the standard log stream, clog.
Both these streams connect to the screen.

Other Devices

The keyboard, display, error, and log streams are connected automatically to the stream objects
cin, cout, cerr, and clog when the iostream header file is included in a program. Other
devices can be used for input or output if the name the system assigns is known. For example,
most PCs assign the name prn to the printer connected to the computer. For these computers,
a statement such as outFile.open("prn") connects the printer to the ofstream object
named outFile. A subsequent statement, such as outFile << "Hello World!";, would
cause the string Hello World! to be output directly to the printer. As the name of an actual
file, prn must be enclosed in double quotation marks in the open () method call.

EXERCISES 9.2

1. (Practice and Modify) a. Enter and run Program 9.5.
b. Modify Program 9.5 to use the expression !inFile.eof() in place of the expression
inFile.good(), and run the program to see whether it operates correctly.

2. (Practice and Modify) a. Enter and run Program 9.6.
b. Modify Program 9.6 by replacing cout with cerr, and verify that the output for the stan-
dard error file stream is the screen.
c. Modify Program 9.6 by replacing cout with clog, and verify that the output for the stan-
dard log stream is the screen.

3. (Practice and Modify) a. Write a C++ program that accepts lines of text from the keyboard
and writes each line to a file named text.dat until an empty line is entered. An empty line
is a line with no text that’s created by pressing the Enter (or Return) key.

b. Modify Program 9.6 to read and display the data stored in the text.dat file created in
Exercise 3a.

4. (Practice) Determine the OS command or procedure your computer provides to display the
contents of a saved file.

S. (Program) a. Create a text file named employee.dat containing the following data:

Anthony A 10031 11.82 12/18/2010
Burrows W 10067 12.14 6/9/2011
Fain B 10083 10.79 5/18/2011
Janney p 10095 12.57 9/28/2008
Smith G 10105 9.50 12/20/2006

Chapter 9 413
Reading and Writing Text Files

b. Write a C++ program to read the employee.dat file created in Exercise 5a and produce a
duplicate copy of the file named employee.bak.

c. Modify the program written in Exercise 5b to accept the names of the original and duplicate
files as user input.

d. The program written for Exercise 5¢ always copies data from an original file to a duplicate
file. What’s a better method of accepting the original and duplicate filenames, other than
prompting the user for them each time the program runs?

6. (Program) a. Write a C++ program that opens a file and displays its contents with line num-
bers. That is, the program should print the number 1 before displaying the first line, print the
number 2 before displaying the second line, and so on for each line in the file.

b. Modify the program written in Exercise 6a to list the file’s contents on the printer assigned
to your computer.

7. (Program) a. Create a text file named info.dat containing the following data (without the
headings):

Name Social Security Hourly Rate Hours Worked
Number

B Caldwell 555-88-2222 10.50 37

D Memcheck 555-77-4444 12.80 40

R Potter 555-77-6666 16.54 40

W Rosen 555-99-8888 11.80 35

b. Write a C++ program that reads the data file created in Exercise 7a and computes and dis-
plays a payroll schedule. The output should list the Social Security number, name, and gross
pay for each person, calculating gross pay as Hourly Rate x Hours Worked.

8. (Program) a. Create a text file named car.dat containing the following data (without the
headings):

Car Number Miles Driven Gallons of Gas Used
54 250 19

62 525 38

71 123 6

85 1322 86

97 235 14

b. Write a C++ program that reads the data in the file created in Exercise 8a and displays the
car number, miles driven, gallons of gas used, and miles per gallon (mpg) for ecach car. The
output should contain the total miles driven, total gallons of gas used, and average mpg for
all cars. These totals should be displayed at the end of the output report.

414

9. (Program) a. Create a text file named parts.dat with the following data (without the

10.

11.

I/0 Streams and Data Files

headings):
Part Number Initial Amount Quantity Sold Minimum
Amount
QA310 95 47 50
CM145 320 162 200
MS514 34 20 25
EN212 163 150 160

b. Write a C++ program to create an inventory report based on the data in the file created in
Exercise 9a. The display should consist of the part number, current balance, and the amount
needed to bring the inventory to the minimum level. The current balance is the initial
amount minus the quantity sold.

(Program) a. Create a text file named pay.dat containing the following data (without the

headings):

Name Rate Hours
Callaway, G. 16.00 40
Hanson, P. 15.00 48
Lasard, D. 16.50 35
Stillman, W. 12.00 50

b. Write a C++ program that uses the information in the file created in Exercise 10a to produce
the following pay report for each employee:

Name Pay Rate Hours Regular Pay Overtime Pay Gross Pay

Compute regular pay as any hours worked up to and including 40 hours multiplied by the pay
rate. Compute overtime pay as any hours worked above 40 hours at a pay rate of 1.5 multiplied
by the regular rate. The gross pay is the sum of regular and overtime pay. At the end of the
report, the program should display the totals of the regular, overtime, and gross pay columns.

(Program) a. Store the following data in a file named numbers.dat:
5 96 87 78 93 21 4 92 82 85 87 6 72 69 85 75 81 73

b. Write a C++ program to calculate and display the average of each group of numbers in the
file created in Exercise 11a. The data is arranged in the file so that each group of numbers
is preceded by the number of data items in the group. Therefore, the first number in the
file, 5, indicates that the next five numbers should be grouped together. The number 4
indicates that the following four numbers are a group, and the 6 indicates that the last six
numbers are a group. (Hint: Use a nested loop. The outer loop should terminate when the
end of file has been encountered.)

12.

13.

14.

Chapter 9 415
Reading and Writing Text Files

(Program) Write a C++ program that allows users to enter the following information from the
keyboard for each student in a class (up to 20 students) and stores the data in a text file named
grade.dat:

Name Exam 1 Grade Exam 2 Grade Homework Grade Final Exam Grade

For each student, your program should first calculate a final grade, using this formula:
Final Grade = 0.20 x Exam 1 + 0.20 x Exam 2 + 0.35 x Homework + 0.25 x Final Exam

Then assign a letter grade on the basis of 90-100 = A, 80-89 = B, 70-79 = C, 60-69 = D, and
less than 60 = F. All the information, including the final grade and the letter grade, should then
be displayed and written to a file.

(Program) A bank’s customer records are to be stored in a file and read into a set of arrays so
that a customer’s record can be accessed randomly by account number. Create the file by
entering five customer records, with each record consisting of an integer account number
(starting with account number 1000), a first name (maximum of 10 characters), a last name
(maximum of 15 characters), and a double-precision number for the account balance.

After the file is created, write a C++ program that requests a user-input account number and
displays the corresponding name and account balance from the file. (H7z#: Read the data in the
file into an array, and then search the array for the account number.)

(Program) Create a text file with the following data or use the shipped.dat file provided on
this book’s Web site. The headings aren’t part of the file; they simply indicate what the data
represents.

Shipped Tracking Part First Last Company
Date Number Number Name Name

04/12/11 D50625 74444 James Lehoff Rotech
04/12/11 D60752 75255 Janet Lezar Rotech
04/12/11 D40295 74477 Bill McHenry Rotech
04/12/11 D23745 74470 Diane Kaiser Rotech
04/12/11 D50892 75155 Helen Richardson NapTime

The format of each line in the file is identical, with fixed-length fields defined as follows:

Field Field Name Starting Ending Field Length
Position Col. No. Col. No.
1 Shipped Date 1 8 8
2 Tracking 12 17 6
Number
3 Part Number 22 26 5
4 First Name 31 35 5
5 Last Name 39 48 10
6 Company 51 64 14

416 1/0 Streams and Data Files

Using this data file, write a C++ program that reads the file and produces a report listing the
shipped date, part number, first name, last name, and company name.

9.3 Random File Access

The term file access refers to the process of retrieving data from a file. There are two types of
file access: sequential access and random access. To understand file access types, first you need
to understand how data is organized in a file.

The term file organization refers to the way data is stored in a file. The files you have used,
and will continue to use, have a sequential organization, meaning characters in the file are
stored in a sequential manner. In addition, each open file has been read in a sequential manner,
meaning characters are accessed one after another, which is called sequential access. Although
characters are stored sequentially, they don’t have to be accessed the same way. In fact, you
can skip over characters and read a sequentially organized file in a nonsequential manner.

In random access, any character in the opened file can be read without having to sequen-
tially read all characters stored ahead of it first. To provide random access to files, each
ifstream object creates a file position marker automatically that keeps track of where the
next character is to be read from or written to. Table 9.4 lists the methods used to access and
change the file position marker. The suffixes g and p in these method names denote get and
put; get refers to an input (get from) file, and put refers to an output (put to) file.

Table 9.4 File Position Marker Methods

Name Description

seekg(offset, mode) For input files, move to the offset position
indicated by the mode.

seekp(offset, mode) For output files, move to the offset posi-
tion indicated by the mode.

tellg(void) For input files, return the current value of
the file position marker.

tellp(void) For output files, return the current value
of the file position marker.

"To understand these methods, you must know how data is referenced in the file by using
the file position marker and how an offset can be used to alter the file position marker’s value.
Each character in a data file is located by its position in the file. The first character in the file
is located at position 0, the next character at position 1, and so forth. The file position marker
contains the positional value, starting from the first character in the file, of where the next
character is to be read from or written. Therefore, if the first character is accessed (read from
or written to), the file position marker is 0; if the second character is to be accessed, the file
position marker is 1, and so on, for each character in the file. By adjusting the file position
marker’s value, the seek () methods enable the programmer to move to any position in the
file. This adjustment is specified by an offset value.

Chapter 9 417
Random File Access

The seek() methods require two arguments: an offset value, as a long integer, and what
position in the file the offset is to be applied to, determined by the mode. The three available
modes are ios: :beg, ios: :cur, and ios: :end, which denote the beginning of the file, cur-
rent position, and end of the file. Therefore, the mode ios: :beg means the offset is relative
to the position of the first character in the file. The mode ios::cur means the offset is rela-
tive to the current position in the file, and the mode ios: :end means the offset is relative to
the last character in the file. From a practical standpoint, a positive offset means move forward
in the file from the designated starting position, and a negative offset means move backward
from this position.

Examples of seek() method calls are shown in the following code. In these examples,
inFile has been opened as an input file and outFile as an output file. The offset passed to
seekg () and seekp () must be a long integer, hence the uppercase L appended to each num-
ber in the method calls.

inFile.seekg(4L,ios::beqg); // go to the fifth character in the input
// file

outFile.seekp(4L,ios::beg); // go to the fifth character in the output
// file

inFile.seekg(4L,ios::cur); // move ahead five characters in the input
// file

outFile.seekp(4L,ios::cur); // move ahead five characters in the output
// file

inFile.seekg(-4L,ios::cur); // move back five characters in the input
// file

outFile.seekp(-4L,ios::cur); // move back five characters in the output
// file

inFile.seekg(0L,ios::beg); // go to start of the input file

outfile.seekp(0L,ios: :beg); // go to start of the output file

inFile.seekg(0L,ios::end); // go to end of the input file

outFile.seekp(0L,ios::end); // go to end of the output file

inFile.seekg(-10L,ios::end); // go to 10 characters before the input
// file's end

outFile.seekp(-10L,ios::end); // go to 10 characters before the output
// file's end

As opposed to seek () methods that move the file position marker, the tell () methods
return the file position marker’s offset value. For example, if 10 characters have been read from
an input file named inFile, the method call returns the long integer 10:

inFile.tellg();

T'his method call means the next character to be read is offset 10 byte positions from the
start of the file and is the 11th character in the file.

Program 9.7 shows using seekg() and tellg() to read a file in reverse order, from the
last character to the first. As each character is read, it’s also displayed.

418

I/0 Streams and Data Files

Program 9.7

#include <iostream>
#include <fstream>
#include <string>
#include <cstdlib>
using namespace std;

int main()

{

string filename = "test.dat";
char ch;
long offset, last;

ifstream inFile(filename.c_str());

if (inFile.fail()) // check for successful open

{

cout << "\nThe file was not successfully opened"

<< "\n Please check that the file currently exists"

<< endl;
exit(1l);
}
inFile.seekg(0L,ios::end); // move to the end of
last = inFile.tellg(); // save the offset of

for(offset = 1L; offset <= last; offset++)
{

inFile.seekg(-offset, ios::end);

ch = inFile.get();

cout << ch << " : ";
inFile.close();

cout << endl;

return 0;

the file
the last character

Assume the test.dat file contains the following characters:

The grade was 92.5

Chapter 9 419
File Streams as Function Arguments

T'he output of Program 9.7 is the following:
5: . :2 :9: : s a: w: te:d:a:r :qg: t: et h :T:

Program 9.7 initially goes to the last character in the file. The offset of this character, the
EOF character, is saved in the variable last. Because tellg() returns a long integer, last has
been declared as a long integer.

Starting from the end of the file, seekg () is used to position the next character to be read,
referenced from the end of the file. As each character is read, it’s displayed, and the offset is
adjusted to access the next character. The first offset used is -1, which represents the character
immediately preceding the EOF marker.

EXERCISES 9.3

1. (Practice) a. Create a file named test.dat containing the data in the test.dat file used in
Program 9.7. (You can use a text editor or copy the test.dat file from this book’s Web site.)
b. Enter and run Program 9.7 on your computer.

2. (Modify) Rewrite Program 9.7 so that the origin for the seekg () method used in the for loop
is the start of the file rather than the end.

3. (Modify) Modify Program 9.7 to display an error message if seekg() attempts to reference a
position beyond the end of file.

4. (Practice) Write a program that reads and displays every second character in a file named
test.dat.

S. (Practice) Using the seek() and tell() methods, write a function named fileChars()
that returns the total number of characters in a file.

6. (Practice) a. Write a function named readBytes () that reads and displays # characters start-
ing from any position in a file. The function should accept three arguments: a file object name,
the offset of the first character to be read, and the number of characters to be read. (Noze: The
prototype for readBytes () should be void readBytes(fstreams&, long, int).)

b. Modify the readBytes () function written in Exercise 6a to store the characters read into
a string or an array. The function should accept the storage address as a fourth argument.

9.4 File Streams as Function Arguments

A file stream object can be used as a function argument. The only requirement is that the
function’s formal parameter be a reference (see Section 6.3) to the correct stream: ifstreams
or ofstreams&. For example, in Program 9.8, an ofstream object named outFile is opened
in main(), and this stream object is passed to the inOut () function. The function prototype
and header for inout () declare the formal parameter as a reference to an ostream object
type. The inout () function is then used to write five lines of user-entered text to the file.

420 1/0 Streams and Data Files

Program 9.8

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
using namespace std;

int main()

{
string fname = "list.dat"; // here is the file you are working with
void inOut(ofstream&); // function prototype
ofstream outFile;

outFile.open(fname.c_str());

if (outFile.fail()) // check for a successful open
{
cout << "\nThe output file " << fname << " was not successfully opened"
<< endl;
exit(1l);
}

inOut (outFile); // call the function

return 0;

void inOut(ofstream& fileOut)

{
const int NUMLINES = 5; // number of lines of text

string line;
int count;

cout << "Please enter five lines of text:" << endl;
for (count = 0; count < NUMLINES; count++)

{
getline(cin,line);
fileOut << line << endl;

cout << "\nThe file has been successfully written." << endl;

return;

Chapter 9 421
File Streams as Function Arguments

In main(), the file is an ostream object named outFile. This object is passed to the
inoOut () function and accepted as the formal parameter £ileOut, which is declared as a
reference to an ostream object type. The inoOut () function then uses its reference param-
eter outFile as an output file stream name in the same manner that main() would use the
fileOut stream object. Program 9.8 uses the getline() method introduced in Section 9.2
(see Table 9.3).

Program 9.9 expands on Program 9.8 by adding a getOpen() function to perform the
open. Liike inOut (), getOpen() accepts a reference argument to an ofstream object. After
getOpen() finishes executing, this reference is passed to inOut(), as in Program 9.8.
Although you might be tempted to write getOpen () to return a reference to an ofstream, it
won’t work because it results in an attempt to assign a returned reference to an existing one.

Program 9.9

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
using namespace std;

int getOpen(ofstream&); // function prototype - pass a
// reference to an fstream

void inOut(ofstream&); // function prototype - pass a
// reference to an fstream

int main()

{
ofstream outFile; // filename is an fstream object
getOpen(outFile); // open the file
inOut (outFile); // write to it
return 0;
}

int getOpen(ofstream& fileOut)
{

string name;

cout << "\nEnter a filename: ";
getline(cin,name);

fileOut.open(name.c_str()); // open the file

422 1/0 Streams and Data Files

if (fileOut.fail()) // check for successful open
{
cout << "Cannot open the file" << endl;
exit(1l);
}
else

return 1;

void inOut(ofstream& fileOut)

{
const int NUMLINES = 5; // number of lines
int count;
string line;
cout << "Please enter five lines of text:" << endl;
for (count = 0; count < NUMLINES; ++count)
{
getline(cin,line);
fileOut << line << endl;
}
cout << "\nThe file has been successfully written.";
return;
}

Program 9.9 allows the user to enter a filename from the standard input device and then
opens the ofstream connection to the external file. If an existing data file’s name is entered,
the file is destroyed when it’s opened for output. A useful trick for preventing this mishap is
shown in the shaded code in Program 9.2.

EXERCISES 9.4

1. (Practice) A function named pFile() is to receive a filename as a reference to an ifstream
object. What declarations are required to pass a filename to pFile()?

2. (Practice) Write a function named fcheck () that checks whether a file exists. The function
should accept an ifstream object as a formal reference parameter. If the file exists, the func-
tion should return a value of 1; otherwise, the function should return a value of 0.

3. (Practice) A data file consisting of a group of lines has been created. Write a function named
printLine() that reads and displays any line of the file. For example, the function called
printLine(fstream& fName,5); should display the fifth line of the passed object stream.

Chapter 9 423
Chapter Summary

4. (Modify) Rewrite the getOpen () function used in Program 9.9 to incorporate the file-checking
procedures described in this section. Specifically, if the entered filename exists, an appropriate
message should be displayed. The user should be given the option of entering a new filename
or allowing the program to overwrite the existing file. Use the function written for Exercise 2
in your program.

9.5 Common Programming Errors

The common programming errors with files are as follows:

1. Forgetting to open a file before attempting to read from it or write to it.

2. Using a file’s external name in place of the internal file stream object name when
accessing the file. The only stream method that uses the data file’s external name is
the open () method. As always, all stream methods discussed in this chapter must be
preceded by a stream object name followed by a period (the dot operator).

3. Opening a file for output without first checking that a file with the same name already
exists. If it does and you didn’t check for a preexisting filename, the file is overwritten.

4. Not understanding that the end of a file is detected only after the EOF marker has been
read or passed over.

5. Attempting to detect the end of a file by using character variables for the EOF marker.
Any variable used to accept the EOF must be declared as an integer variable. For
example, if ch is declared as a character variable, the following expression produces an
infinite loop:?

while ((ch = in.file.peek()) != EOF)

This problem occurs because a character variable can never take on an EOF code. EOF
is an integer value (usually -1) with no character representation, which ensures that the
EOF code can’t be confused with a legitimate character encountered as normal data in
the file. To terminate the loop created by the preceding expression, the variable ch
must be declared as an integer variable.

6. Using an integer argument with the seekg() and seekp () functions. This offset must
be a long integer constant or variable. Any other value passed to these functions can
have unpredictable results.

9.6 Chapter Summary

1. A data file is any collection of data stored together in an external storage medium under a
common name.

2. A dara file is connected to a file stream by using a file stream object.

ZThis infinite loop doesn’t occur on UNIX systems, where characters are stored as signed integers.

424

I/0 Streams and Data Files

. File stream objects are created from the ifstream, ofstream, or fstream classes. File

stream objects declared as ifstream objects are created as input streams, and file streams
declared as ofstream objects are created as output streams. File stream objects declared as
fstream objects must indicate the type of stream explicitly. To do this, use declaration
statements similar to the following (inFile and outFile are user-selected object names):

ifstream inFile; or fstream(inFile, ios::in)
ofstream outFile; or fstream(outFile, ios::out)

. After a file stream object is created, it’s connected to a file by using an open () method. This

method connects a file’s external name with an internal stream object name. After the file
is opened, all subsequent accesses to it require the internal stream object name.

. An opened output file stream creates a new data file or erases the data in an existing opened

file. An opened input file stream makes an existing file’s data available for input. An error
condition results if the file doesn’t exist and can be detected by using the fail () method.

. In addition to any files opened in a function, the standard stream objects cin, cout, and

cerr are declared and opened automatically when a program runs. cin is an input file
stream object used for data entry (usually from the keyboard), cout is an output file stream
object used for data display (usually onscreen), and cerr is an output file stream object
used for displaying system error messages (usually onscreen).

. Data files can be accessed randomly by using the seekg(), seekp(), tellg(), and

tellp() methods. The g versions of these methods are used to alter and query the file
position marker for input file streams, and the p versions do the same for output file
streams.

. 'Table 9.5 lists class-supplied methods for file manipulation. The getline() method is

defined in the string class, and all other methods are defined in the £stream class. These
methods can be used by all ifstream and ofstrean files.

Table 9.5 File Manipulation Methods

Method Name Description

get () Extract the next character from the

input stream and return it as an int.

get (chrvVar) Extract the next character from the

input stream and assign it to chrvar.

getline(fileObj, string, termChar) Extract the next string of characters

from the input file stream object and
assign them to string until the speci-
fied terminating character is detected.
If omitted, the default terminating
character is a newline.

Chapter 9 425
Chapter Summary

Table 9.5 File Manipulation Methods (continued)

Method Name Description
getline(C-stringVar,int n,'\n") Extract and return characters from the
input stream until n-1 characters are
read or a newline is encountered (ter-
minates the input with a '\0").

peek () Return the next character in the input
stream without extracting it from the
stream.

put (chrExp) Put the character specified by chrExp
on the output stream.

putback(chrExp) Push the character specified by chrExp

back onto the input stream. Does not
alter the data in the file.

ignore(int n) Skip over the next n characters; if n is
omitted, the default is to skip over the
next single character.

eof () Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, it returns a Boolean false.
The value becomes true only when
the first character after the last valid
file character is read.

good () Returns a Boolean true while the file
is available for program use. Returns

a Boolean false if a read has been
attempted past the end of file. The
value becomes false only when the
first character after the last valid file
character is read.

bad () Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, it returns a false. The
value becomes true only when the
first character after the last valid file
character is read.

fail() Returns a Boolean true if the file
hasn’t been opened successfully; other-
wise, it returns a Boolean false.

426

I/0 Streams and Data Files

9.7 Chapter Supplement: The iostream Class Library

As you have seen, the classes in the iostream class library access files by using entities called
streams. For most systems, the data bytes transferred on a stream represent ASCII characters
or binary numbers. The mechanism for reading a byte stream from a file or writing a byte
stream to a file is hidden when using a high-level language, such as C++. Nevertheless, under-
standing this mechanism is useful so that you can place the services provided by the iostream
class library in context.

File Stream Transfer Mechanism

Figure 9.3 illustrates the mechanism for transferring data between a program and a file. As
shown, this transfer involves an intermediate file buffer contained in the computer’s memory.
Each opened file is assigned its own file buffer, which is a storage area used by the data trans-
ferred between the program and the file.

Disk, tape, or
Computer memory CD/DVD
Program
Buffer
Transfer handled Transfer handled
: : S > File
by iostream library by a device driver

Figure 9.3 The data transfer mechanism

The program either writes a set of data bytes to the file buffer or reads a set of data bytes
from the file buffer by using a stream object. The data transfer between the device storing the
data file (usually a disk or CD/DVD) and the file buffer is handled by special OS programs.
These programs, called device drivers, aren’t stand-alone programs; they’re an integral part of
the OS. A device driver is a section of OS code that accesses a hardware device, such as a disk,
and handles the data transfer between the device and the computer’s memory. Because the
computer’s internal data transfer rate is generally much faster than any device connected to it,
the device driver must correctly synchronize the data transfer speed between the computer
and the device sending or receiving data.

"Typically, a disk device driver transfers data between the disk and file buffer only in fixed
sizes, such as 1024 bytes at a time. Therefore, the file buffer is a convenient means of permitting
a device driver to transfer data in blocks of one size, and the program can access them by using
a different size (typically, as separate characters or as a fixed number of characters per line).

Components of the iostream Class Library

The iostream class library consists of two primary base classes: streambuf and ios. The
streambuf class provides the file buffer, shown in Figure 9.3, and general routines for trans-
ferring binary data. The ios class contains a pointer to the file buffers provided by the

Chapter 9 427
Chapter Supplement: The iostream Class
Library

streambuf class and general routines for transferring text data. From these two base classes,
several other classes are derived and included in the iostream class library.

Figure 9.4 is an inheritance diagram for the ios family of classes as it relates to the
ifstream, ofstream, and fstream classes. Figure 9.5 is an inheritance diagram for the
streambuf family of classes. In these diagrams, the arrows point from a derived class to a base
class, so they’re actually easier to read from top to bottom. For example, Figure 9.4 indicates
that all the stream objects shown are derived from the ios class, and the ifstream class is
derived from both the fstreamand istream classes. In all cases, a derived class has full access
to all methods of its base class.

istream 3 fstream ﬁ ostream ﬁ

H > e H N - /4

ifstream 3 frstream a ofstream a

/

iostream

Figure 9.4 The base class ios and its derived classes

streambuf ’

filebuf ’ strstreambuf’

Figure 9.5 The base class streambuf and its derived classes

Table 9.6 lists the correspondence between the classes shown in Figures 9.4 and 9.5,
including the header files defining these classes.

428

I/0 Streams and Data Files

Table 9.6 Correspondence Between Classes in Figures 9.4 and 9.5

ios Class streambuf Class Header File

istream streambuf iostream or fstream
ostream
iostream
ifstream filebuf fstream
ofstream
fstream

Therefore, the ifstream, ofstream, and f£stream classes you have used for file access
use a buffer provided by the filebuf class and defined in the fstream header file. Similarly,
the cin, cout, cerr, and clog iostream objects use a buffer provided by the streambuf
class and defined in the iostream header file.

In-Memory Formatting

In addition to the classes shown in Figure 9.5, a class named strstream is derived from the
ios class. This class uses the strstreambuf class shown in Figure 9.5, requires the strstream
header file, and provides capabilities for writing and reading strings to and from in-memory
defined streams.

When created as an output stream, in-memory streams are typically used to “assemble” a
string from smaller pieces until a complete line of characters is ready to be written to cout or
to a file. Attaching a strstream object to a buffer for this purpose is similar to attaching an
fstream object to an output file. For example, the statement

strstream inmem(buf, 72, ios::out);

creates a strstream object named buf to have a capacity of 72 bytes in output mode.
Program 9.10 shows how this statement is used in the context of a complete program.

Program 9.10 produces the following output:
|[No. of units = 10 Price per unit = $§ 36.85]|

This output illustrates that the character buffer has been filled in correctly by insertions
to the inmem stream. (Note that the end-of-string NULL, *\0', which is the last insertion to
the stream, is required to close off the C-string correctly.) After the character array has been
filled, it’s written to a file as a single string.

Chapter 9 429
Chapter Supplement: The iostream Class
Library

Program 9.10

#include <iostream>
#include <strstream>
#include <iomanip>

using namespace std;

int main()
{
const int MAXCHARS = 81; // one more than the maximum characters in a line
int units = 10;
double price = 36.85;
char buf[MAXCHARS];

strstream inmem(buf, MAXCHARS, ios::out); // open an in-memory stream
// write to the buffer through the stream
inmem << "No. of units = "
<< setw(3) << units
<< " Price per unit = §"
<< setw(6) << setprecision(2) << fixed << price << '\0';
cout << '|' << buf << '|';

cout << endl;

return 0;

In a similar manner, a strstream object can be opened in input mode. Input in-memory
streams are used as a working storage area, or buffer, for accepting and storing a complete line
of text read from a file or standard input. After the buffer has been filled, the extraction
operator would be used to “disassemble” the string into component parts and convert each
data item into its designated data type. Doing this allows inputting data from a file on a line-
by-line basis before assigning data items to their respective variables.

Part

Two

Object-Oriented
Programming

10 Introduction to Classes
11 Adding Functionality to

Your Classes
12 Extending Your Classes

13 The Standard Template
Library

Chapter 1 O
10.1 Object-Based Programming

10.2 Creating Your Own Classes
10.3 Constructors Introduction to
10.4 Examples Classes

10.5 Class Scope and Duration Categories
10.6 Common Programming Errors

10.7 Chapter Summary

10.8 Chapter Supplement: Thinking in
Terms of Objects

Besides being an improved version of C, the distinguishing characteristic of C++ is its support of object-
oriented programming. Central to this object orientation is the concept of a class, which is a programmer-
defined data type. Objects are created from classes.

This chapter explores the implications of allowing programmers to define their own data types by
using classes. Additionally, you see how to construct classes and create objects from them. As you’ll see,
the construction of a class is based on variables and methods. What C++ provides is a unique way of
combining these two elements into a self-contained, cohesive unit from which objects can be created.

10.1 Object-Based Programming

As you learned in Chapter 1, a procedural program is simply an algorithm written in a program-
ming language. The reasons for this emphasis on procedural programming are mostly histori-
cal. When computers were developed in the 1940s, mathematicians used them for military
purposes. These early computers computed bomb trajectories and decoded enemy orders and
diplomatic transmissions. Until well into the 1970s, computers were still used mainly for

434

Introduction to Classes

mathematical and scientific as well as accounting and payroll applications. The common factor
in all these applications is that they use well-defined algorithms and equations. This use was
reflected in the name of the first commercial high-level language, introduced in 1957: Formula
Translation (FORTRAN).!In the 1960s, nearly all computer courses were taught in engineer-
ing or mathematics departments. The term computer science wasn’t yet in common use, and
computer science departments were just being formed.

"T'his situation has changed dramatically, mainly for two reasons. One reason was the failure
of procedural programs to adequately contain software costs for larger programming projects.
These costs included both initial program development and subsequent program maintenance
costs. As Figure 10.1 shows, the major cost of most large computer projects, whether technical
or commercial, is software. Software costs contribute so heavily to total project costs because
they’re related to human productivity and are labor-intensive, whereas equipment costs are
related to manufacturing technologies.

Hardware !
(the equipment)

1S
g
&
=
= Software
I I (the programs)
1980 1995 2010

Year
Figure 10.1 Software is the major cost of most computer projects

Increasing manufacturing productivity a thousandfold, with the resulting decrease in hard-
ware costs, is far easier than for programmers to double the quantity or quality of the code they
produce. For example, microchips that cost more than $500 10 years ago can now be purchased
for less than $1. Similarly, the processing power of computers that cost more than a million
dollars in the 1960s is now exceeded by laptop computers costing only hundreds of dollars.
Consequently, as hardware costs have plummeted, software productivity and its associated
costs have remained fairly constant. Therefore, the ratio of software costs to total system costs
(hardware plus software) has increased substantially. One way to increase programmer produc-
tivity is to create code that can be reused easily without extensive revising, retesting, and
revalidating. Procedural code didn’t provide this reusability, which has led to the search for
better software approaches.

1Business-oriented applications, such as accounting and payroll, were usually coded in Common Business-Oriented Language
(COBOL).

Chapter 10 435
Object-Based Programming

Point of Information

Procedural, Hybrid, and Pure Object-Oriented Languages

Most high-level programming languages can be categorized as procedural, object-oriented,
or hybrid. FORTRAN, the first commercial high-level programming language, is procedural.
This makes sense because FORTRAN was designed to perform mathematical calculations
that used standard algebraic formulas. These formulas were described as algorithms, and
then the algorithms were coded by using function and subroutine procedures. Subsequent
procedural languages included BASIC, COBOL, and Pascal.

The first requirement of a pure object-oriented language, such as Smalltalk and Eiffel,
is that it must contain three specific features: classes, inheritance, and polymorphism
(described in this chapter and Chapter 12). In addition, however, a “pure” object-oriented
language must always use classes. In a pure object-oriented language, all data types are
constructed as classes, all data values are objects, all operators can be overloaded, and
every data operation can be executed only by using a class member method. In a pure
object-oriented language, it's impossible not to use object-oriented features in a program.
This isn't the case in a hybrid language.

In a hybrid language, such as C++, it's impossible not to use procedural elements in a
program because the use of any non-class data type or operation, such as adding two
integers, violates pure object-oriented requirements. Although a hybrid language must be
able to define classes, its distinguishing feature is that it's possible to write a complete pro-
gram with only procedural code. Additionally, hybrid languages need not provide inheri-
tance and polymorphism—but they must provide classes. Languages that use classes but
don't provide inheritance and polymorphism are referred to as object-based languages
rather than object-oriented languages. All versions of Visual Basic before version 4 are
examples of object-based hybrid languages.

A second reason for disenchantment with traditional procedural programming was the
emergence of graphical screens and windowed applications. Programming multiple windows
on the same graphical screen is almost impossible with standard procedural programming tech-
niques. The solution to producing cost-effective and reusable graphical programs was found in
artificial intelligence—based and simulation programming techniques. Artificial intelligence
programming contained extensive research on object recognition, and simulation programming
required considerable background on representing items as objects, with well-defined interac-
tions between them. This object-based paradigm was well suited for graphical windowed
environments, in which each window can be specified as a self-contained object. Items then
placed in a window can also be represented as objects.

Objects are also well suited to a programming representation because an object can be
specified by two basic characteristics: a current state, which defines how the object appears at
the moment, and a behavior, which defines how the object reacts to external inputs. Both
characteristics can be coded easily by using an object-based approach.

"To understand this point, consider a physical object, such as an elevator. Like all objects,
an elevator can be modeled in terms of a state and a behavior. Its state might be given in terms
of its size, location, interior decoration, or any number of attributes, and its behavior might be

436

Introduction to Classes

specified in terms of its reaction when one of its buttons is pushed. Constructing a model of
an eclevator, however, requires selecting the attributes and behaviors that are of interest. For
purposes of a simulation, for example, you might be concerned only with the elevator’s current
floor position and how to simulate movement between floors. Other attributes and behaviors
might be left out of the model because they don’t affect the aspects of the elevator you’re
interested in studying. In Section 10.4, you see how to create an elevator object in C++ and
then simulate its movement from floor to floor.

A Class Is a Plan

In creating C++’s objects, you must first create a structure, or plan, for a class of objects from
which individual objects are created. For example, before attempting to assemble a bicycle or
a backyard basketball hoop, you would want to know that all the parts are available and have
a set of assembly instructions. In preparing a dinner, you might consult a recipe that specifies
a list of ingredients and procedures for combining them correctly. In all these examples, even
if written instructions aren’t available, they have to at least exist in the mind of the builder, the
chef, or whoever is in charge of the project. In C++, the plans from which objects are created
and used are referred to as classes.

From a programming perspective, a class can be considered a construction plan for objects
and how they can be used. This plan lists the required data items and supplies instructions for
using the data. After one or more objects from this plan, or class, have been constructed, they
can then be operated on only in ways defined by the class. Although many objects can be cre-
ated from the same class, each different object type requires its own class, which is similar to
producing many Chevrolet Camaros from one set of plans and Chevrolet Malibus from another.

To understand how a C++ class is actually constructed, a recipe is a useful analogy. The
difference is that a C++ class is a recipe for assembling data rather than food items. Other than
that, the relationship between a C++ class and a somewhat modified recipe is almost one to
one and is extremely informative.

Take a look at the recipe shown in Figure 10.2. Most recipes contain similar types of com-
ponents, but what’s surprising is that almost exactly the same elements are required in con-
structing a C++ class. Notice that the recipe shown in this figure isn’t the final spread; it
merely provides a plan for creating a sardine spread. The recipe can be used many times, and
each time it’s used, a particular batch of sardine spread is produced.

From Recipe to Class

Now you can make the connection between the recipe in Figure 10.2 and a C++ class. As
mentioned, a class can be considered the plan or recipe from which programming objects are
created. Like its recipe counterpart, a class typically contains sections for ingredients and
methods.

Chapter 10 437
Object-Based Programming

Recipe Name: Gary's Sardine Spread

Ingredients:

Measure Contents

1 can Boneless and skinless sardines
2 stalks Celery

1/4 medium Red onion

1 tablespoon Mayonnaise

1/4 cup Parsley

dash Olive oil

splash Red wine vinegar
dash Salt

dash Pepper

Method of Preparation:

Finely shred the sardines using two forks

Finely dice the celery and onion and mix well with sardines
Add olive oil and mix well

Add mayonnaise and mix well

Add red wine vinegar and mix well

Finely dice the parsley and mix well

Salt and pepper to taste

Figure 10.2 Recipe for Gary’s sardine spread

In the ingredients section, instead of recipe measures such as a teaspoon or cup, C++ deals
with measures for holding integers, double-precision numbers, strings, and other types of suit-
able data “ingredients.” Besides a measure, each data item has a specific value, such as 5, and
a name, such as firstIntegerNumber. Therefore, the list of data items used in a C++ class
1s, like the list of ingredients in a recipe, contained in a specific section. As an example, sup-
pose you're creating a C++ program to calculate the average of two numbers. The following
programming plan for determining an average shows the data elements and methods for con-
structing a class for this application, which will form the basis of an object-oriented solution:

// Class declaration section
Class Name: AverageofTwoNumbers
// A list of data items to use (the parts list)

Type Name
double firstNumber
double secondNumber

// A list of necessary methods (prototypes)
double assignValues(double, double);
double calculateAndDisplay(double, double);

// Class implementation section (the instructions)
Code for the two methods listed previously

Notice that this programming plan contains the same two basic sections shown in Figure 10.2:
a list of ingredients (in this case, the ingredients are data items) and an assembly section contain-
ing the actual instructions, as methods, for using the ingredients listed.

438 Introduction to Classes

There are, however, three notable differences in the ingredients section. First, the
Measure column in Figure 10.2 is relabeled as Type in the programming plan. Second, the
Contents column in Figure 10.2 is missing in the programming plan. The actual values, or
contents, can be assigned as default method parameters or, more typically, provided as user-
entered values requested by the listed methods. Finally, the class declaration section provides
not only a list of data “ingredients,” but also a list of method names and data types (the proto-
types). Using this basic structure, you’re ready to learn how to develop C++ classes in the next
section for constructing working object-oriented programs.

EXERCISES 10.1

1. (Practice) Figure 10.3 is a simplified diagram for assembling a birdhouse. Referring to this
diagram, create a parts list and instructions for constructing it.

Back

Roof
Screw Screw
holes holes
G

Front

Screw
holes

Figure 10.3 Building a birdhouse

2. (Practice) a. List the items you need to build a staircase with five steps.
b. Write instructions for assembling the items listed in Exercise 2a.

3. (Practice) a. List the ingredients you need to create 10 peanut butter and jelly sandwiches.
b. Write instructions for assembling the items listed in Exercise 3a.

Chapter 10 439
Creating Your Own Classes

4. (Practice) Find assembly instructions from a recent item you have built (for example, a bicycle
or a bookcase with one shelf). Identify the major elements in the assembly instructions that
correspond to the Ingredients and Method of Preparation sections shown in Figure 10.2.

S. (Practice) Determine the data items and methods that would be useful for a class used for
simulating tossing a single die. Choose your own class name and data item names.

6. (Practice) Determine the data items and methods that would be useful for a class used for cal-
culating the floor space of a rectangular room. Choose your own class name and data item names.

10.2 Creating Your Own Classes

In computer terminology, the combination of data and associated operations is defined as a class.
That is, a class defines bozk the types of data and the types of operations that can be performed
on the data. Seen in this light, the built-in data types in C++ can also be considered classes, in
that they provide types of data and operations that can be performed on the data. Because of
this correspondence, C++ classes are sometimes referred to as programmer-defined data types
or abstract data types. In a simplified form, this relationship can be described as follows:

class = allowable data values + operational capabilities

Before seeing how to construct your own classes, take a moment to review a list of the
operational capabilities supplied with C++’s built-in data types. The reason for this review is
that you have to provide some of these capabilities as part of the classes you create. Although
you probably don’t think of these capabilities when you use them, the designers of C++
clearly had to when they created the C++ compiler. Table 10.1 lists the minimum set of these
capabilities.

Table 10.1 Operational Capabilities of C++'s Built-In Data Types

Capability Example

Define one or more variables of the class int a, b;
Initialize a variable at definition int a = 5;
Assign a value to a variable a = 10;

Assign one variable’s value to another a = b;

variable

Perform mathematical operations a + b;

Convert from one data type to another a = int (7.2);

Constructing a class is easy, and you already have all the necessary tools in variables and
functions. In C++, variables provide the means of defining new data types, and functions pro-
vide the means of defining operational capabilities. Using this information, you can extend the
previous definition of a class to its C++ representation:

C++ class = data + functions

440

Introduction to Classes

In other words, a C++ class provides a mechanism for packaging data and functions
together in a self-contained unit. This chapter explains how classes are constructed and how
objects are created from them, including initialization and assignment of values to objects.
The mathematical and conversion capabilities listed in Table 10.1, as they apply to classes,
are discussed in Chapter 11.

Class Construction

A class defines both data and functions. This definition is usually accomplished by construct-
ing a class in two parts: a declaration section and an implementation section. As shown in the
following code example, the declaration section declares both the data types and functions for
the class. The implementation section then defines the functions whose prototypes have been
declared in the declaration section.?

// class declaration section
class className
{

data declarations

function prototypes

}i

// class implementation section
function definitions

Both the variables and functions listed in the class declaration section are collectively
referred to as class members. Separately, the variables are referred to as both data members and
instance variables (the terms are synonymous), and the functions are referred to as member
functions and methods. (The term “class methods” is also used.) A method can’t have the same
name as a data member.

As a specific example of a class, take a look at the following definition of a class named
Date. This type of class is important in applications where equipment delivery dates and
schedules depend on exact date determinations. To accomplish this task, a number of methods
for determining whether a date falls on a weekend or holiday, for example, would still have to
be added to this class:

//class declaration section
class Date

{
private: // notice the colon after the word private
int month; // a data member
int day; // a data member
int year; // a data member

ZThis separation into two parts isn’t mandatory, as the implementation can be included in the declaration statement.

Chapter 10 441
Creating Your Own Classes

public: // again, notice the colon here
Date(int = 7, int = 4, int = 2012); // a member method
void setDate(int, int, int); // a member method
void showDate(); // a member method

}; // this is a declaration - don't forget the semicolon

// class implementation section
// this is where methods are defined
Date::Date(int mm, int dd, int yyyy)

{
month = mm;
day = dd;
year = yyyyi
}

void Date::setDate(int mm, int dd, int yyyy)
{

month = mm; day = dd; year = yyyy;

return;

void Date::showDate()
{
cout << "The da