

A First Book of

Fourth Edition

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Fairleigh Dickenson University

Gary Bronson

C++

A_C7785_FM.1c iA_C7785_FM.1c i 1/18/11 10:42 AM1/18/11 10:42 AM

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 16 15 14 13 12 11

© 2012 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited
to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2010939813

ISBN-13: 978-1-111-53100-3

ISBN-10: 1-111-53100-5

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com

A First Book of C++, Fourth Edition
Gary Bronson

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Senior Product Manager: Alyssa Pratt

Development Editor: Lisa M. Lord

Copyeditor: Michael Beckett

Proofreader: Camille Kiolbasa

Indexer: Michael Brackney

Editorial Assistant: Jacqueline Lacaire

Content Project Manager: Lisa Weidenfeld

Associate Marketing Manager: Shanna
Shelton

Art Director: Faith Brosnan

Print Buyer: Julio Esperas

Cover Photo: ©istockphoto.com/xmanphoto

Compositor: GEX Publishing Services

Some of the product names and company
names used in this book have been used
for identification purposes only and may be
trademarks or registered trademarks of their
respective manufacturers and sellers.

Any fictional data related to persons or com-
panies or URLs used throughout this book
is intended for instructional purposes only.
At the time this book was printed, any such
data was fictional and not belonging to any
real persons or companies.

Course Technology, a part of Cengage
Learning, reserves the right to revise this
publication and make changes from time to
time in its content without notice.

The programs in this book are for instruc-
tional purposes only.

A_C7785_FM.1c iiA_C7785_FM.1c ii 1/19/11 10:21 AM1/19/11 10:21 AM

www.cengage.com/permissions
www.cengage.com/coursetechnology
www.cengagebrain.com

iiiBrief Table of Contents

Part One
Fundamentals of C++ Programming 1
Chapter 1

Getting Started 3

Chapter 2

Data Types, Declarations, and Displays 37

Chapter 3

Assignment and Interactive Input 79

Chapter 4

Selection 137

Chapter 5

Repetition 179

Chapter 6

Modularity Using Functions 225

Chapter 7

Arrays 291

Chapter 8

Arrays and Pointers 341

Chapter 9

I/O Streams and Data Files 387

Part Two
Object-Oriented Programming 431
Chapter 10

Introduction to Classes 433

Chapter 11

Adding Functionality to Your Classes 491

BRIEF TABLE OF CONTENTS

A_C7785_FM.1c iiiA_C7785_FM.1c iii 1/18/11 10:42 AM1/18/11 10:42 AM

iv Brief Table of Contents

Chapter 12

Extending Your Classes 539

Chapter 13

The Standard Template Library 573

Part Three
Additional Topics 603
Chapter 14

The string Class and Exception Handling 605

Chapter 15

Strings as Character Arrays 665

Chapter 16

Data Structures 701

Appendixes
Appendix A

Operator Precedence Table 729

Appendix B

ASCII Character Codes 731

Appendix C

Bit Operations Online Only

Appendix D

Floating-Point Number Storage Online Only

Appendix E

Solutions to Selected Exercises 733

Index 753

A_C7785_FM.1c ivA_C7785_FM.1c iv 1/18/11 10:42 AM1/18/11 10:42 AM

vContents

CONTENTS

Part One
Fundamentals of C++ Programming 1

Chapter 1
Getting Started 3

1.1 Introduction to Programming 3
Algorithms and Procedures 5
Classes and Objects 9
Program Translation 9

1.2 Function and Class Names 12
The main() Function 15

1.3 The cout Object 18
1.4 Programming Style 22

Comments 23
1.5 Common Programming Errors 26
1.6 Chapter Summary 27
1.7 Chapter Supplement: Software Development 28

Phase I: Development and Design 28
Phase II: Documentation 32
Phase III: Maintenance 33
Backup 33

Chapter 2
Data Types, Declarations, and Displays 37

2.1 Data Types 37
Integer Data Types 38
Determining Storage Size 42
Floating-Point Types 44
Exponential Notation 45

2.2 Arithmetic Operations 48
Expression Types 51
Integer Division 52
Negation 52
Operator Precedence and Associativity 53

2.3 Variables and Declarations 57
Declaration Statements 59
Multiple Declarations 62
Memory Allocation 64

A_C7785_FM.1c vA_C7785_FM.1c v 1/18/11 10:42 AM1/18/11 10:42 AM

vi

2.4 Common Programming Errors 70
2.5 Chapter Summary 71
2.6 Chapter Supplement: Bits, Bytes, and Binary Number Representations 72

Bits and Bytes 72
Binary, Hexadecimal, and Octal Numbers 74

Chapter 3
Assignment and Interactive Input 79

3.1 Assignment Operators 79
Coercion 84
Assignment Variations 85
Accumulating 86
Counting 88

3.2 Formatted Output 93
The setiosflags() Manipulator 97
Hexadecimal and Octal I/O 99

3.3 Mathematical Library Functions 106
Casts 111

3.4 Interactive Keyboard Input 117
A First Look at User-Input Validation 121

3.5 Symbolic Constants 127
Placement of Statements 128

3.6 Common Programming Errors 132
3.7 Chapter Summary 132
3.8 Chapter Supplement: Errors, Testing, and Debugging 133

Compile-Time and Runtime Errors 134
Syntax and Logic Errors 134
Testing and Debugging 135

Chapter 4
Selection 137

4.1 Relational Expressions 137
Logical Operators 139
A Numerical Accuracy Problem 142

4.2 The if-else Statement 143
Compound Statements 146
Block Scope 148
One-Way Selection 149
Problems Associated with the if-else Statement 151

4.3 Nested if Statements 158
The if-else Chain 159

Contents

A_C7785_FM.1c viA_C7785_FM.1c vi 1/18/11 10:42 AM1/18/11 10:42 AM

vii

4.4 The switch Statement 167
4.5 Common Programming Errors 173
4.6 Chapter Summary 174
4.7 Chapter Supplement: A Closer Look at Testing 176

Chapter 5
Repetition 179

5.1 The while Statement 180
5.2 Interactive while Loops 188

Sentinels 194
break and continue Statements 197
The Null Statement 198

5.3 The for Statement 201
Interactive for Loops 208
Nested Loops 209

5.4 The do-while Statement 217
Validity Checks 219

5.5 Common Programming Errors 220
5.6 Chapter Summary 222

Chapter 6
Modularity Using Functions 225

6.1 Function and Parameter Declarations 226
Function Prototypes 227
Calling a Function 228
Defining a Function 229
Placement of Statements 234
Function Stubs 234
Functions with Empty Parameter Lists 235
Default Arguments 236
Reusing Function Names (Overloading) 237
Function Templates 238

6.2 Returning a Single Value 244
Inline Functions 250
Templates with a Return Value 251

6.3 Returning Multiple Values 257
Passing and Using Reference Parameters 258

6.4 Variable Scope 267
Scope Resolution Operator 271
Misuse of Globals 272

Contents

A_C7785_FM.1c viiA_C7785_FM.1c vii 1/18/11 10:42 AM1/18/11 10:42 AM

viii

6.5 Variable Storage Category 276
Local Variable Storage Categories 277
Global Variable Storage Categories 280

6.6 Common Programming Errors 285
6.7 Chapter Summary 285
6.8 Chapter Supplement: Generating Random Numbers 287

Scaling 289

Chapter 7
Arrays 291

7.1 One-Dimensional Arrays 292
Input and Output of Array Values 296

7.2 Array Initialization 303
7.3 Arrays as Arguments 307
7.4 Two-Dimensional Arrays 313

Larger Dimensional Arrays 319
7.5 Common Programming Errors 323
7.6 Chapter Summary 324
7.7 Chapter Supplement: Searching and Sorting Methods 325

Search Algorithms 325
Sort Algorithms 333

Chapter 8
Arrays and Pointers 341

8.1 Introduction to Pointers 341
Storing Addresses 344
Using Addresses 345
Declaring Pointers 346
References and Pointers 348

8.2 Array Names as Pointers 354
Dynamic Array Allocation 360

8.3 Pointer Arithmetic 364
Pointer Initialization 368

8.4 Passing Addresses 369
Passing Arrays 374
Advanced Pointer Notation 378

8.5 Common Programming Errors 383
8.6 Chapter Summary 385

Contents

A_C7785_FM.1c viiiA_C7785_FM.1c viii 1/18/11 10:42 AM1/18/11 10:42 AM

ix

Chapter 9
I/O Streams and Data Files 387

9.1 I/O File Stream Objects and Methods 388
Files 388
File Stream Objects 389
File Stream Methods 390

9.2 Reading and Writing Text Files 403
Reading from a Text File 406
Standard Device Files 411
Other Devices 412

9.3 Random File Access 416
9.4 File Streams as Function Arguments 419
9.5 Common Programming Errors 423
9.6 Chapter Summary 423
9.7 Chapter Supplement: The iostream Class Library 426

File Stream Transfer Mechanism 426
Components of the iostream Class Library 426
In-Memory Formatting 428

Part Two
Object-Oriented Programming 431

Chapter 10
Introduction to Classes 433

10.1 Object-Based Programming 433
A Class Is a Plan 436
From Recipe to Class 436

10.2 Creating Your Own Classes 439
Class Construction 440
Terminology 448

10.3 Constructors 452
Calling Constructors 454
Overloaded and Inline Constructors 455
Destructors 458
Arrays of Objects 459

10.4 Examples 463
Example 1: Constructing a Room Object 463
Example 2: Constructing an Elevator Object 467

Contents

A_C7785_FM.1c ixA_C7785_FM.1c ix 1/18/11 10:42 AM1/18/11 10:42 AM

x

10.5 Class Scope and Duration Categories 473
Static Class Members 474
Friend Functions 478

10.6 Common Programming Errors 482
10.7 Chapter Summary 482
10.8 Chapter Supplement: Thinking in Terms of Objects 484

Representing Problems with Models 485
Modeling Classes 486

Chapter 11
Adding Functionality to Your Classes 491

11.1 Creating Class Operators 491
Assignment Operator 499
Copy Constructors 500
Base/Member Initialization 503
Operator Functions as Friends 504

11.2 How Methods Are Shared 508
The this Pointer 509
The Assignment Operator Revisited 511
Objects as Arguments 514
Notation 515

11.3 Data Type Conversions 519
Built-in to Built-in Conversion 520
Class to Built-in Conversion 520
Built-in to Class Conversion 522
Class to Class Conversion 525

11.4 Two Useful Alternatives: operator() and operator[] 529
11.5 Common Programming Errors 533
11.6 Chapter Summary 533
11.7 Chapter Supplement: Insides and Outsides 535

Abstraction and Encapsulation 537
Code Extensibility 537

Chapter 12
Extending Your Classes 539

12.1 Class Inheritance 540
Access Specifications 541

12.2 Polymorphism 547
12.3 Dynamic Object Creation and Deletion 552
12.4 Pointers as Class Members 562

Assignment Operators and Copy Constructors Reconsidered 565

Contents

A_C7785_FM.1c xA_C7785_FM.1c x 1/18/11 10:42 AM1/18/11 10:42 AM

xi

12.5 Common Programming Errors 568
12.6 Chapter Summary 568
12.7 Chapter Supplement: UML Class and Object Diagrams 569

Class and Object Diagrams 570

Chapter 13
The Standard Template Library 573

13.1 The Standard Template Library 574
13.2 Linked Lists 579

Using the STL list Class 581
Using User-Defined Objects 586

13.3 Stacks 590
Stack Implementation with the deque Class 592

13.4 Queues 598
Queue Implementation with the deque Class 599

13.5 Common Programming Errors 602
13.6 Chapter Summary 602

Part Three
Additional Topics 603

Chapter 14
The string Class and Exception Handling 605

14.1 The string Class 606
string Class Functions 607
String Input and Output 609
String Processing 613

14.2 Character Manipulation Methods 622
Character I/O 627
A Second Look at User-Input Validation 632

14.3 Exception Handling 634
14.4 Exceptions and File Checking 640

Opening Multiple Files 644
14.5 Input Data Validation 649
14.6 Common Programming Errors 656
14.7 Chapter Summary 656
14.8 Chapter Supplement: Namespaces and Creating a Personal Library 657

Contents

A_C7785_FM.1c xiA_C7785_FM.1c xi 1/18/11 10:42 AM1/18/11 10:42 AM

xii Contents

Chapter 15
Strings as Character Arrays 665

15.1 C-String Fundamentals 666
C-String Input and Output 666
C-String Processing 670

15.2 Pointers and C-String Library Functions 675
Library Functions 681
Character-Handling Functions 684
Conversion Functions 688

15.3 C-String Definitions and Pointer Arrays 691
Pointer Arrays 693

15.4 Common Programming Errors 698
15.5 Chapter Summary 698

Chapter 16
Data Structures 701

16.1 Single Structures 702
16.2 Arrays of Structures 708
16.3 Structures as Function Arguments 712

Passing a Pointer 716
Returning Structures 718

16.4 Dynamic Structure Allocation 721
16.5 Unions 724
16.6 Common Programming Errors 727
16.7 Chapter Summary 728

Appendixes
Appendix A

Operator Precedence Table 729

Appendix B

ASCII Character Codes 731

Appendix C

Bit Operations Online Only

Appendix D

Floating-Point Number Storage Online Only

Appendix E

Solutions to Selected Exercises 733
Index 753

A_C7785_FM.1c xiiA_C7785_FM.1c xii 1/18/11 10:42 AM1/18/11 10:42 AM

xiiiPreface

The main goal of this fourth edition of A First Book of C++ remains the same as in previous

editions: to introduce, develop, and reinforce well-organized programming skills using C++.

All topics are presented in a clear, unambiguous, and accessible manner to beginning students.

Students should be familiar with fundamental algebra, but no other prerequisites are assumed.

Therefore, like the first three editions, this new edition begins by providing a strong foun-

dation in structured programming. This foundation is then expanded to an object-oriented

design and programming approach in a pedagogically sound, achievable progression. In addi-

tion to a number of minor changes throughout the book, the major changes in this edition are

the following:

• Part I has been restructured to include arrays, files, and pointers, so it can be used as

the basis for a complete introductory semester course in C++.

• The four chapters covering object-oriented programming have been revised and

moved to Part II so that they form a logical continuation from structured program-

ming to object-oriented programming.

• More than 50 new exercises have been added, and all exercises are labeled to indicate

their function (Review, Practice, Program, Modify, Debug, Desk check, or For thought).

• Three new Chapter Supplements have been added to introduce the fundamentals of

object-oriented design and the Unified Modeling Language (UML).

• A complete set of case studies has been added and is available on the Cengage Web

site, login.cengage.com, for instructors to distribute.

The following features from the third edition have been retained:

• Fundamentals of software engineering are discussed from both procedural and

object-oriented viewpoints.

• Each chapter contains a Common Programming Errors section that describes prob-

lems beginning C++ programmers typically encounter.

• The ANSI/ISO C++ iostream library and namespace mechanism are used in all

programs.

• Exception handling is discussed in a separate section, with practical applications of

exception handling included throughout the book.

• The C++ string class is covered.

• A thorough discussion is included of input data validation and functions to check the

numerical data type of input items and allow reentering invalid numerical types.

In practical terms, this book has been written to support both a one- and two-semester techni-

cal C++ programming course; the only prerequisite is that students should be familiar with

fundamental algebra. This book is constructed to be flexible enough so that instructors

can mold the book to their preferences for topic sequence. This flexibility is achieved in the

following ways.

Part I includes the basic structured syntax, flow control, and modularity topics needed for

a thorough understanding of C++’s structural features. With the topics of arrays (Chapter 7)

and files (Chapter 9) moved to Part I, this part now provides a comprehensive one-semester

 PREFACE

A_C7785_FM.1c xiiiA_C7785_FM.1c xiii 1/18/11 10:42 AM1/18/11 10:42 AM

xiv

course. As Chapters 7 and 9 have been written to depend only on Chapters 1 through 6, their

order of presentation (arrays first and files second, or vice versa) is entirely up to the instruc-

tor’s discretion. With time permitting, the basics of classes, introduced in Chapter 10, can also

be covered to create a one-semester course with an introduction to object-oriented program-

ming. Figure 1 illustrates this one-semester topic dependency, and Figure 2 shows the topic

dependency chart for the entire book.

Part I

Chapters
1 to 6

Arrays

Chapter 7

Files

Chapter 9

Objects

Chapter 10

Figure 1 Topic dependency for a one-semester course

Part I
Procedural

Programming

Part II
(Chapters 10 to 13)

Object-Oriented
Programming

Part III
(Chapters 14 to 16)

Figure 2 Topic dependency chart

Distinctive Features of This Book

Writing Style One thing I have found to be essential in my own classes is that after the

instructor sets the stage in class, the assigned book must continue to encourage, nurture, and

assist students in acquiring and “owning” the material. To do this, the book must be written in

a manner that makes sense to students. My primary concern, and one of the distinctive fea-

tures of this book, is that it has been written for students. Therefore, I believe the writing style

used to convey the concepts is one of the most important aspects of this book.

Preface

A_C7785_FM.1c xivA_C7785_FM.1c xiv 1/18/11 10:42 AM1/18/11 10:42 AM

xv

Software Engineering Rather than simply introduce students to programming in C++, this

book introduces students to the fundamentals of software engineering, from both a proce-

dural and object-oriented viewpoint. It begins with a discussion of these two programming

approaches in Section 1.1 and is reinforced throughout the book.

Introduction to References and Pointers A unique feature of my book A First Book of ANSI C

was introducing pointer concepts early by displaying addresses of variables and then using

other variables to store these addresses. This approach always seemed a more logical method

of understanding pointers than the indirection description in vogue at the time A First Book of
ANSI C was released.

I have since been pleased to see that using an output function to display addresses has

become a standard way of introducing pointers. Although this approach is no longer a unique

feature of this book, I’m proud of its presentation and continue to use it in this book.

References are also introduced early, in Chapter 6, before the introduction of pointers in

Chapter 8.

Program Testing Every C++ program in this book has been compiled and run successfully

and has been quality-assurance tested with Microsoft Visual C++ 2010. Source code for all

programs is available for student download at www.cengagebrain.com. Using this source code

enables students to experiment with and extend the existing programs and modify them more

easily, as required for a number of end-of-section exercises.

Pedagogical Features
To facilitate the goal of making C++ accessible as a first-level course, the following pedagogi-

cal features have been incorporated into the book.

Point of Information Boxes These shaded boxes in each chapter highlight important con-

cepts, useful technical points, programming tips, and tricks used by professional programmers.

End-of-Section Exercises Almost every section in the book contains numerous and diverse

skill-building and programming exercises. In addition, solutions to selected exercises are given

in Appendix E.

Pseudocode Descriptions Pseudocode is used throughout the book. Flowchart symbols are

introduced but are used only in illustrating flow-of-control constructs.

Common Programming Errors and Chapter Summary Each chapter ends with a section on

common programming errors and a summary of the main topics covered in the chapter.

Appendixes This book includes appendixes on operator precedence, ASCII codes, and solu-

tions to selected exercises. Additional appendixes on bit operations and floating-point number

storage are available for student download at www.cengagebrain.com.

Preface

A_C7785_FM.1c xvA_C7785_FM.1c xv 1/18/11 10:42 AM1/18/11 10:42 AM

www.cengagebrain.com
www.cengagebrain.com

xvi

Note to students: Microsoft offers a free C++ compiler and development system called

Microsoft Visual C++ Express 2010. To get this development system, go to www.microsoft.com/
express/Downloads/#2010-Visual-CPP and select English as the language. The vc_web file is

downloaded automatically to your Downloads folder. (If you don’t have this folder, do a search

to see where the file was downloaded.) After this file is downloaded, double-click it to install

Visual C++ Express 2010.

All programs in this book can be run as Visual C++ Express 2010 CLR Console Applications

or Win32 Console Applications programs, with two additions:

• The code line #includeƒ“stdafx.h” must be added at the beginning of the

program.

• The code line cin.ignore(); must be included before the return statement.

These added code lines hold the window open after the program runs so that you can view it.

Pressing Enter terminates the program and closes the window. For example, to compile and

run Program 1.1 in this book, you should enter the program in Visual C++ Express 2010 as

follows:

#includeƒ"stdafx.h"ƒƒ//ƒneededƒforƒVisualƒC++ƒExpressƒ2010
#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ"Helloƒthereƒworld!";

ƒƒcin.ignore();ƒƒ//ƒneededƒforƒVisualƒC++ƒExpressƒ2010

ƒƒreturnƒ0;
}

All the solution files provided for this book (and available to instructors) include these two

extra code lines. In programs requiring user input, a second cin.ignore() statement is

included to prevent the Enter key used when entering data from closing the window.

Supplemental Materials
The following supplemental materials are available to instructors when this book is used in a

classroom setting. Most of the materials are also available on the Instructor Resources CD.

Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this book

includes the following:

• Additional instructional material to assist in class preparation, including suggestions

for lecture topics

• Solutions to all end-of-section exercises

ExamView. This book is accompanied by ExamView, a powerful testing software package

that allows instructors to create and administer printed, computer (LAN-based), and Internet

exams. ExamView includes hundreds of questions that correspond to the topics covered in this

Preface

A_C7785_FM.1c xviA_C7785_FM.1c xvi 1/18/11 10:42 AM1/18/11 10:42 AM

www.microsoft.com/express/Downloads/#2010-Visual-CPP
www.microsoft.com/express/Downloads/#2010-Visual-CPP

xviiPreface

book, enabling students to generate detailed study guides that include page references for

further review. These computer-based and Internet testing components allow students to take

exams at their computers and save instructors time because each exam is graded automati-

cally. The Test Bank is also available in WebCT and Blackboard formats.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each

chapter. They are included as a teaching aid for classroom presentations, to make available to

students on the network for chapter review, or to be printed for classroom distribution.

Instructors can add their own slides for additional topics they introduce to the class.

Source Code. The source code for this book is available for students at www.cengagebrain.com

and is also available on the Instructor Resources CD.

Solution Files. The solution files for all programming exercises are available at login.cengage.com

and on the Instructor Resources CD.

Case Studies. A complete set of case studies, keyed to Chapters 1 through 10, are available

to instructors at login.cengage.com.

A_C7785_FM.1c xviiA_C7785_FM.1c xvii 1/18/11 10:42 AM1/18/11 10:42 AM

www.cengagebrain.com

xviii

To Rochelle, David, Matthew, Jeremy, and Winston Bronson

Acknowledgments
The writing of this fourth edition is a direct result of the success (and limitations) of the previ-

ous editions. In this regard, my most heartfelt acknowledgment and appreciation is to the

instructors and students who found the previous editions to be of service in their quests to

teach and learn C++.

Next, I would like to thank Alyssa Pratt, my Senior Product Manager at Course Technology.

In addition to her continuous faith and encouragement, her ideas and partnership were instru-

mental in creating this book. After the writing process was completed, the task of turning the

final manuscript into a book depended on many people other than myself. For this, I espe-

cially want to thank my developmental editor, Lisa Lord, who provided an outstanding job.

Her editing so dovetailed with both the spirit and idiosyncrasies of my own writing style that

it was an absolute pleasure working with her. She stayed true to what I was attempting to

achieve while patiently going through both the technical and grammatical content. A truly

incredible feat! This editing was supplemented by the equally detailed work of my colleague

Professor Joan Zucker Hoffman. Finally, I would like to thank Serge Palladino from Course

Technology’s MQA Department, who was the validation tester for this book, as well as GEX

Publishing Services, especially the interior designer. The dedication of this team of people was

extremely important to me, and I am very grateful to them.

The following reviewers provided extensive, extremely useful, and detailed information

and corrections that made this edition better and more accurate. No matter how careful I was,

each reviewer pointed out something that I missed or could be stated better. I am very thank-

ful to them. Naturally, all errors rest squarely on my shoulders, but these reviewers made the

load much easier: Lynne Band, Middlesex Community College, and Alexandra Vaschillo, Lake

Washington Technical College.

I would also like to acknowledge, with extreme gratitude, the wonderful academic envi-

ronment for learning and teaching created at Fairleigh Dickinson University—starting with

the President, Dr. Michael Adams, followed through in the academic departments by the

university and campus provosts, Dr. Joseph Kiernan and Dr. Kenneth Greene, and finally to

the encouragement and support provided by my dean, Dr. William Moore, and my chairper-

son, Dr. Paul Yoon. Without their support, this book could not have been written.

Finally, I deeply appreciate the patience, understanding, and love provided by my friend,

wife, and partner, Rochelle.

Gary Bronson

Preface

A_C7785_FM.1c xviiiA_C7785_FM.1c xviii 1/18/11 10:42 AM1/18/11 10:42 AM

Part One
Fundamentals of
C++ Programming

1 Getting Started

2 Data Types, Declarations,
 and Displays

3 Assignment and Interactive
Input

4 Selection

5 Repetition

6 Modularity Using Functions

7 Arrays

8 Arrays and Pointers

9 I/O Streams and Data Files

B_C7785_01.1c 1B_C7785_01.1c 1 1/18/11 10:43 AM1/18/11 10:43 AM

1 1.1 Introduction to Programming

 1.2 Function and Class Names

 1.3 The cout Object

 1.4 Programming Style

 1.5 Common Programming Errors

 1.6 Chapter Summary

 1.7 Chapter Supplement: Software
Development

This chapter explains the basic structure of a C++ program and how to develop a working first program.
An additional element required for programming a computer successfully is understanding what an
algorithm does, how programs can be built with a modular design, and what constitutes a “good” pro-
gram, and these topics are covered in this chapter. The goal of all professional programmers is to create
readable, efficient, reliable, and maintainable programs. One method for helping you develop such pro-
grams is explained in Section 1.7.

1.1 Introduction to Programming

A computer is a machine, and like other machines, such as automobiles and lawn mowers, it

must be turned on and then controlled to do the task it was meant to do. In an automobile, the

driver, who sits inside and directs the car, provides control. In a computer, a computer program

provides control. More formally, a computer program is a structured combination of data and

instructions used to operate a computer to produce a specific result. Another term for a com-

puter program is software, and both terms are used interchangeably in this book.

Chapter

Getting Started

B_C7785_01.1c 3B_C7785_01.1c 3 1/18/11 10:43 AM1/18/11 10:43 AM

4 Getting Started

Programming is the process of writing a computer program in a language the computer can

respond to and other programmers can understand. The set of instructions, data, and rules used

to construct a program is called a programming language.

Programming languages are usefully classified by level and orientation. Languages

using instructions resembling written languages, such as English, are referred to as high-
level languages. Visual Basic, C, C++, and Java are examples of high-level languages.1 The

final program written in these languages can be run on a variety of computer types, such as

those manufactured by IBM, Apple, and Hewlett-Packard. In contrast, low-level languages

use instructions that are tied to one type of computer.2 Although programs written in low-

level languages are limited, in that they can run only on the type of computer for which they

were written, they do permit direct access to specialized internal hardware features in a man-

ner not possible with high-level languages. They can also be written to run faster than pro-

grams written in high-level languages.

In addition to programming languages being classified as high or low level, they’re also

classified by orientation, as procedural or object oriented. Until the 1990s, high-level program-

ming languages were predominantly procedural. In a procedural language, instructions are used

to create self-contained units, referred to as procedures. The purpose of a procedure is to accept

data as input and to transform the data in some manner so as to produce a specific result as an

output. Effectively, each procedure moves the data one step closer to the final output, along

the path shown in Figure 1.1.

Process
the
data

Input
data

Output
results

Figure 1.1 Procedure-oriented program operations

The programming process in Figure 1.1 mirrors the input, processing, and output hard-

ware units used to construct a computer. This similarity wasn’t accidental because high-level

programming languages were designed to match and, as optimally as possible, control corre-

sponding hardware units. In C++, a procedure is referred to as a function.

Currently, an object-oriented approach has taken center stage. One motivation for object-
oriented languages was the development of graphical screens and support for graphical user

interfaces (GUIs), capable of displaying windows containing both graphics and text. In a GUI

environment, each window is considered a separate object with associated characteristics, such

as color, position, and size. With an object-oriented approach, a program must first define the

objects it’s manipulating. This definition must include descriptions of the objects’ general

characteristics and specific operations to manipulate them. These operations, for example,

could include changing an object’s size and position and transferring data between objects.

Equally important is that object-oriented languages tend to support reusing existing code

more easily, which removes the need to revalidate and retest new or modified code.

1C++ is sometimes classified as a middle-level language to convey that, although it’s written to be a high-level language, it can also

take advantage of machine features that historically could be accessed only with low-level languages.
2In actuality, a low-level language is defined for the processor around which the computer is constructed.

B_C7785_01.1c 4B_C7785_01.1c 4 1/18/11 10:43 AM1/18/11 10:43 AM

5Chapter 1
Introduction to Programming

C++, which is classified as an object-oriented language, contains features of both proce-

dural and object-oriented languages. The reason for C++’s dual nature is that it began as an

extension to C, which is a procedural language developed in the 1970s at AT&T Bell

Laboratories. In the early 1980s, Bjarne Stroustrup (also at AT&T) used his background in

simulation languages to develop C++. A central feature of simulation languages is that they

model real-life situations as objects that respond to stimuli in well-defined ways. This object

orientation, along with other procedural improvements, was combined with existing C features

to form the C++ language.

Algorithms and Procedures
Because algorithms are central to C++’s procedural side, understanding what an algorithm does

is essential in learning C++. From a procedural point of view, before writing a program, a pro-

grammer must clearly understand the data to be used, the intended result, and the procedure

used to produce this result. This procedure is referred to as an algorithm. More precisely, an

algorithm is a step-by-step sequence of instructions that describe how to perform a computation.

Only after you clearly understand the data you’re using and the algorithm (the specific

steps to produce the result) can you write the program. Seen in this light, procedure-oriented

programming is translating a selected algorithm into a computer program by using a program-

ming language, such as C++.

To understand how an algorithm works, take a look at a simple problem: A program must

calculate the sum of all whole numbers from 1 through 100. Figure 1.2 illustrates three meth-

ods you could use to find the required sum. Each method constitutes an algorithm.

Most people wouldn’t bother to list the possible alternatives in a detailed step-by-step

manner, as shown here, and then select one of the algorithms to solve the problem. Most

people, however, don’t think algorithmically; they tend to think heuristically. For example, if

you have to change a flat tire on your car, you don’t think of all the steps required—you simply

change the tire or call someone else to do the job. This is an example of heuristic thinking.

Unfortunately, computers don’t respond to heuristic commands. A general statement such

as “Add the numbers from 1 through 100” means nothing to a computer because it can respond

only to algorithmic commands written in a language it understands, such as C++. To program

a computer successfully, you must understand this difference between algorithmic and heuris-

tic commands. A computer is an “algorithm-responding” machine; it’s not an “heuristic-

responding” machine. You can’t tell a computer to change a tire or to add the numbers from 1

through 100. Instead, you must give it a detailed, step-by-step sequence of instructions that

collectively form an algorithm. For example, the following sequence of instructions forms a

detailed method, or algorithm, for determining the sum of the numbers from 1 through 100:

Set n equal to 100
Set a equal to 1
Set b equal to 100
Calculate sum = n (a + b)/2
Print the sum

These instructions are not a computer program. Unlike a program, which must be written

in a language the computer can respond to, an algorithm can be written or described in various

ways. When English-like phrases are used to describe the steps in an algorithm, as in this

B_C7785_01.1c 5B_C7785_01.1c 5 1/18/11 10:43 AM1/18/11 10:43 AM

6 Getting Started

example, the description is called pseudocode. When mathematical equations are used, the

description is called a formula. When diagrams with the symbols shown in Figure 1.3 are used,

the description is called a flowchart. Figure 1.4 shows using these symbols to depict an algo-

rithm for determining the average of three numbers.

Method 1 - Columns: Arrange the numbers from 1 to 100 in a column and add
 them

1
2
3
4
.
.
.

98
99

+100
5050

Method 2 - Groups: Arrange the numbers in groups that sum to 101 and multiply
 the number of groups by 101

1 + 100=101
 2 + 99=101
3 + 98=101
4 + 97=101

49 + 52=101
50 + 51=101

.

.

50 groups

(50 x 101=5050)

Method 3 - Formula: Use the formula

n= number of terms to added (100)
a= first number to be added (1)
b= last number to be added (100)

n(a + b)

2
sum =

.

.

= 5050
100(1 + 100)

2
sum =

where

Figure 1.2 Summing the numbers 1 through 100

B_C7785_01.1c 6B_C7785_01.1c 6 1/18/11 10:43 AM1/18/11 10:43 AM

7Chapter 1
Introduction to Programming

Terminal

Input/output

Process

Flow lines

Decision

Loop

Predefined process

Connector

Report

Indicates the beginning or end of a program

Indicates an input or output operation

Indicates computation or data manipulation

Used to connect the other flowchart symbols
and indicate the logic flow

Indicates a program branch point

Indicates the initial, limit, and increment
values of a loop

Indicates a predefined process, as in calling
a function

Indicates an entry to, or exit from, another
part of the flowchart or a connection point

Indicates a written output report

Symbol Name Description

Figure 1.3 Flowchart symbols

B_C7785_01.1c 7B_C7785_01.1c 7 1/18/11 10:43 AM1/18/11 10:43 AM

8 Getting Started

Start

Input
three

values

Calculate
the

average

Display
the

average

End

Figure 1.4 Flowchart for calculating the average of three numbers

Except for illustrating extremely simple program structures, flowcharts have fallen out of

favor among professional programmers because they’re cumbersome to revise and can support

unstructured programming practices. In their place, pseudocode has gained increasing accep-

tance, which uses short English phrases to describe an algorithm. Here’s an example of accept-

able pseudocode for describing the steps to compute the average of three numbers:

Input the three numbers into the computer’s memory
Calculate the average by adding the numbers and dividing the sum by 3
Display the average

As mentioned, before you can write an algorithm by using computer-language statements,

you must first select an algorithm and understand the required steps. Writing an algorithm

with computer-language statements is called coding the algorithm (see Figure 1.5).

Requirements

Select an
algorithm

(step-by-step
procedure)

Translate the
algorithm
into C++
(coding)

Figure 1.5 Coding an algorithm

B_C7785_01.1c 8B_C7785_01.1c 8 1/18/11 10:43 AM1/18/11 10:43 AM

9Chapter 1
Introduction to Programming

Classes and Objects
We live in a world full of objects—planes, trains, cars, cell phones, books, computers, and so

on—so it shouldn’t be surprising that programming languages would eventually be based on

objects. The most basic object in object-oriented C++ programming is a data object, a set of

one or more values packaged as a single unit. For example, a student’s name and grade point

average can be considered a data object; in this case, the object consists of two pieces of data.

Similarly, a name, street address, city, state, and zip code can be packaged as an object, one that

would be useful for a program used to print address labels. Finally, a multiplication table, such

as the 10s table, can be considered a data object—in this case, a specific instance of one table

in a set of multiplication tables.

A central concept in all object-oriented programming languages is the difference between

a specific object and the larger set of which it’s a member. To make this concept clearer, con-

sider a car. From an object viewpoint, a specific car is simply an object of a more general class

of car. Therefore, a particular Ford Taurus with its own specific attributes of color, engine size,

body type, and so on can be considered one car object from the broader class of all possible

Ford Tauruses that could have been built. The manufacturer holds the plan for building a

particular car. Only when this plan is put into action and a car is actually built does a specific

object come into existence. The concept of creating an object from a larger defining set, or

class, of object types is fundamental to all object-oriented programming languages, such as

C++. A specific object is created from the object type or, more accurately speaking, from a class.

This book discusses both aspects of the C++ language: procedural and object oriented. You

start with procedural aspects because C++ is based on the procedural language C; you can’t

write a C++ program without relying on some procedural code. In fact, many useful programs

can be written entirely as procedural programs. After you have a firm grasp of C++’s proce-

dural elements, you can extend these elements to create object-oriented programs with

classes and objects.

As you become more fluent in C++, you’ll begin creating your own classes and objects.

However, as you see later in this chapter and in Chapter 3, two objects—cin for input of data

values and cout for output of data values—are provided in C++. You use these two objects

extensively in your early work.

Program Translation
After an algorithm or a class is written in C++, it still can’t be run on a computer without further

translation because all computers’ internal language consists of a series of 1s and 0s, called

machine language. Generating a machine-language program that the computer can run requires

translating the C++ program, referred to as a source program, into the computer’s machine

language (see Figure 1.6).

B_C7785_01.1c 9B_C7785_01.1c 9 1/18/11 10:43 AM1/18/11 10:43 AM

10 Getting Started

An
executable
program

Other
object

files
(library)

Linker

The
C++

object
program

Compiler

Editor

Type in
the C++ program

The
C++

source
program

Figure 1.6 Creating an executable C++ program

The translation into machine language can be done in two ways. When each statement in

the source program is translated separately and executed immediately after translation, the

programming language is called an interpreted language, and the program doing the translation

is an interpreter. Examples of interpreted languages are BASIC and Perl.

When all statements in a source program are translated as a complete unit before any state-

ment is executed, the programming language is called a compiled language. In this case, the

program doing the translation is called a compiler. Because C++ is a compiled language, a C++

source program is translated as a unit into machine language.

Figure 1.7 shows the relationship between a program in C++ source code and its compi-

lation into a machine-language object program. The source code is entered by using an editor

program, a word-processing tool that’s part of the development environment a compiler

B_C7785_01.1c 10B_C7785_01.1c 10 1/18/11 10:43 AM1/18/11 10:43 AM

11Chapter 1
Introduction to Programming

provides.3 Remember, however, that you begin entering code only after you have analyzed an

application and planned the program’s design carefully.

C++ source
code

Translation
program
(compiler)

A machine-
language
program

Figure 1.7 Source programs must be translated

After the C++ source code has been entered, translating the program into a machine-

language program begins with the compiler. The output the compiler produces is called an

object program (shown in Figure 1.6). It’s simply a machine-language version of the source

program that the computer can run, with one more processing step required.

Most C++ programs contain statements using preprogrammed routines for input and out-

put and other machine-dependent services. Additionally, a large C++ program might be stored

in two separate program files, with each file compiled separately. Any additional code must be

combined to form a single program before the program can be run, and a linker program per-

forms this step. The result of the linking process is a machine-language program, ready for

execution and containing all the code your program requires. This final program is called an

executable program.

 EXERCISES 1.1

1. (Definitions) Define the following terms:

a. Computer program j. Message

b. Programming language k. Response

c. Programming l. Class

d. Algorithm m. Source program

e. Pseudocode n. Compiler

f. Flowchart o. Object program

g. Procedure p. Executable program

h. Object q. Interpreter

i. Method

2. (Practice) Determine a step-by-step procedure (list the steps) for each of the following tasks:

Note: There’s no single correct answer for each task. This exercise is designed to give you practice in
converting heuristic commands into equivalent algorithms and understanding the differences between
the thought processes involved.

3The source code you enter is manipulated and stored as ASCII text (see Section 2.1), so if you’re using a commercial word-processing

program, you must save source code files in text format.

NO
TE

B_C7785_01.1c 11B_C7785_01.1c 11 1/18/11 10:43 AM1/18/11 10:43 AM

12 Getting Started

a. Fix a flat tire.

b. Make a phone call.

c. Go to the store and purchase a loaf of bread.

d. Roast a turkey.

3. (Practice) Determine and write an algorithm (list the steps) to interchange the contents of

two cups of liquid. Assume that a third cup is available to hold the contents of either cup tem-

porarily. Each cup should be rinsed before any new liquid is poured into it.

4. (Practice) Write a detailed set of instructions in English to calculate the dollar amount of

money in a piggybank that contains h half-dollars, q quarters, n nickels, d dimes, and p pennies.

5. (Practice) Write a set of detailed, step-by-step instructions in English to find the smallest

number in a group of three integer numbers.

6. (Practice) a. Write detailed, step-by-step instructions in English to calculate the fewest num-

ber of dollar bills needed to pay a bill of amount TOTAL. For example, if TOTAL were $98,

the bills would consist of one $50 bill, two $20 bills, one $5 bill, and three $1 bills. For this

exercise, assume that only $100, $50, $20, $10, $5, and $1 bills are available.

 b. Repeat Exercise 6a, but assume the bill is to be paid only in $1 bills.

7. (Practice) a. Write an algorithm to locate the first occurrence of the name JEAN in a list of

names arranged in random order.

 b. Discuss how you could improve your algorithm for Exercise 7a if the list of names were

arranged in alphabetical order.

8. (Practice) Determine and write an algorithm to sort three numbers in ascending (from lowest

to highest) order. How would you solve this problem heuristically?

9. (Practice) Define an appropriate class for each of the following specific objects:

a. The number 5

b. A square measuring 4 inches by 4 inches

c. This C++ book

d. A 1955 Ford Thunderbird car

e. The last ballpoint pen you used

10. (Practice) a. What operations should the following objects be capable of doing?

 i. A 1955 Ford Thunderbird car

 ii. The last ballpoint pen you used

b. Do the operations determined for Exercise 10a apply only to the particular object listed, or

are they more general and applicable to all objects of the type listed?

1.2 Function and Class Names

A well-designed program is constructed by using a design philosophy similar to one for con-

structing a well-designed building. It doesn’t just happen; it depends on careful planning and

B_C7785_01.1c 12B_C7785_01.1c 12 1/18/11 10:43 AM1/18/11 10:43 AM

13Chapter 1
Function and Class Names

execution. As with buildings, an integral part of designing a program is its structure. Programs

with a structure consisting of interrelated segments (called modules), arranged in a logical order

to form an integrated and complete unit, are referred to as modular programs (see Figure 1.8).

Modular programs are easier to develop, correct, and modify than programs constructed in

some other manner.

Module 1

Module 2

Module 4

Module 3

Module 5 Module 6

Figure 1.8 A well-designed program is built by using modules

In C++, modules can be classes or functions. A function, as you have seen, is the name

given to a procedure in C++. It’s composed of a sequence of C++ language instructions. It

helps to think of a function as a small machine that transforms the data it receives into a fin-

ished product. For example, Figure 1.9 illustrates a function that accepts two numbers as

inputs and multiplies the two numbers to produce a result. The interface to the function is its

inputs and results. The method by which inputs are converted to results is encapsulated and

hidden within the function. In this regard, the function can be thought of as a single unit pro-

viding a special-purpose operation.

Result

(a x b)

First
number

Second
number

Figure 1.9 A multiplying function

B_C7785_01.1c 13B_C7785_01.1c 13 1/18/11 10:43 AM1/18/11 10:43 AM

14 Getting Started

A similar analogy is suitable for a class. A class, which encapsulates both data and opera-

tions, can be thought of as a complete processing plant containing all the raw materials (the

data being operated on) and all the machines (functions) needed for input, output, and pro-

cessing of these materials.

An important requirement for designing a good function or class is giving it a name that

conveys some idea of what the function or class does. The names allowed for functions and

classes are also used to name other elements of the C++ language and are collectively referred

to as identifiers. Identifiers can be made up of any combination of letters, digits, and under-

scores (_) selected according to the following rules:

1. The first character of the name must be a letter or an underscore.

2. Only letters, digits, or underscores can follow the first letter. Blank spaces aren’t

allowed; separate words in a multiple-word identifier are indicated by capitalizing the

first letter of one or more of the words. (Although underscores can also be used for this

purpose, they are increasingly being used only for compiler-dependent identifiers.)

3. An identifier name can’t be one of the keywords listed in Table 1.1. (A keyword is a

word the language sets aside for a special purpose and can be used only in a specified

manner.4)

4. The maximum number of characters in an identifier is 1024.5

Table 1.1 Keywords in C++

auto delete goto public this
break do if register template
case doubles inline return typedef
catch else int short union
char enum long signed unsigned
class extern new sizeof virtual
const float overload static void
continue for private struct volatile
default friend protected switch while

Examples of valid C++ identifiers are the following:

grosspay taxCalc addNums degToRad
multByTwo salestax netpay bessel

These are examples of invalid identifiers:

4ab3 (Begins with a number, which violates rule 1.)

e*6 (Contains a special character, which violates rule 2.)

while (Consists of a keyword, which violates rule 3.)

In addition to conforming to C++’s identifier rules, a C++ function name must always be

followed by parentheses. Also, a good function name should be a mnemonic (pronounced

4Keywords in C++ are also reserved words, which means they must be used only for their specified purpose. Attempting to use them

for any other purpose generates an error message.
5The ANSI standard requires that C++ compilers provide at least this number of characters.

B_C7785_01.1c 14B_C7785_01.1c 14 1/18/11 10:43 AM1/18/11 10:43 AM

15Chapter 1
Function and Class Names

“knee-mon-ic”), which is a word designed as a memory aid. For example, the function name

degToRad() is a mnemonic for a function that converts degrees to radians. The name helps

identify what the function does. Function names that aren’t mnemonics should not be used

because they convey no information about what the function does. Following are some exam-

ples of valid function names, including their required parentheses, that don’t convey any useful

information about their purpose. Names of this sort should never be used in a C++ program.

easy() arf() tinker() theForce() mike()

Function names can also consist of mixed uppercase and lowercase letters, as in

locateMaximum(). This convention is becoming increasingly common in C++, although it’s

not required. Identifiers in all uppercase letters are usually reserved for symbolic constants,

covered in Section 3.5.

If you do mix uppercase and lowercase letters, be aware that C++ is a case-sensitive lan-

guage, meaning the compiler distinguishes between uppercase and lowercase letters.

Therefore, in C++, the names TOTAL, total, and TotaL are three different identifiers.

The main() Function
A distinct advantage of using functions—and, as you see in Part II, classes—is that you can

plan the program’s overall structure in advance. You can also test and verify each function’s

operation separately to ensure that it meets its objectives.

For functions to be placed and executed in an orderly fashion, each C++ program must

have one, and only one, function named main. The main() function is referred to as a

driver function because it tells the other functions the sequence in which they execute (see

Figure 1.10).6

Figure 1.11 shows the main() function’s structure. The first line of the function—in this

case, intƒmain()—is referred to as a function header line. This line is always the first line of

a function and contains three pieces of information:

• What type of data, if any, is returned from the function

• The name of the function

• What type of data, if any, is sent to the function

6Functions executed from main() can, in turn, execute other functions. Each function, however, always returns to the function that

initiated its execution. This is true even for main(), which returns control to the operating system that was in effect when main()

was initiated.

Point of Information
Tokens

In a computer language, a token is the smallest unit of the language that has a unique
meaning to the compiler. Therefore, keywords, programmer-defined identifiers, and all
special mathematical symbols, such as + and -, are considered tokens of the C++ lan-
guage. Separating characters in a multicharacter token with intervening characters or
white space results in a compiler error.

B_C7785_01.1c 15B_C7785_01.1c 15 1/18/11 10:43 AM1/18/11 10:43 AM

16 Getting Started

2nd
module

3rd
module

Last
module

main()
You go first

I’m done

You go second

I’m done

You go third

I’m done

You go last

I’m done

.

.

.

.

.

.

1st
module

Figure 1.10 The main() function directs all other functions

int main()
{

 program statements in here;

 return 0;
}

The function body

Type of returned value

The function name An empty argument list

Figure 1.11 The structure of a main() function

The keyword before the function name defines the type of value the function returns

when it has finished operating. When placed before the function’s name, the keyword int

(listed in Table 1.1), for example, means the function returns an integer value. Similarly, empty

parentheses following the function name indicate that no data is transmitted to the function

when it runs. (Data transmitted to a function at runtime is referred to as an argument of the

function.) The braces, { and }, determine the beginning and end of the function body and

enclose the statements making up the function.

You’ll be naming and writing many of your own C++ functions. In fact, the rest of Part I is

primarily about the statements required to construct useful functions and how to combine

functions and data into useful programs. Each program, however, must have one and only one

main() function. Until you learn how to pass data to a function and return data from a function

B_C7785_01.1c 16B_C7785_01.1c 16 1/18/11 10:43 AM1/18/11 10:43 AM

17Chapter 1
Function and Class Names

(the topics of Chapter 6), the header line shown in Figure 1.11 serves for all the programs you

need to write. Until they’re explained more fully, simply regard the first two lines

intƒmain()ƒ

{

as indicating “the program begins here,” and regard the last two lines

ƒƒreturnƒ0;

}

as designating the end of the program. Fortunately, many useful functions and classes have

already been written for you. Next, you see how to use an object created from one of these

classes to create your first working C++ program.

 EXERCISES 1.2

1. (Practice) State whether the following are valid identifiers and if so, whether they’re mne-

monic names that convey some idea of their purpose. If the identifier names are invalid,

state why.

1m1234 newBal abcd A12345 1A2345
power absVal invoices do while
add_5 taxes netPay 12345 int
newBalance a2b3c4d5 sales_tax amount $taxes

Point of Information
Executable and Nonexecutable Statements

You’ll be introduced to many C++ statements in this book that can be used to create
functions and programs. All statements in a function, however, belong to two broad
categories: executable statements and nonexecutable statements.

An executable statement causes the computer to perform some specific action
when the program runs. For example, a statement telling the computer to display output
or add numbers is an executable statement. Executable statements must always end with
a semicolon.

A nonexecutable statement describes some feature of the program or its data but
doesn’t cause the computer to perform any action when a program runs. An example of
a nonexecutable statement is a comment (described in Section 1.4). A comment is
intended for use by anyone reading the program. The compiler ignores all comments
when it translates source code.

The statements inside the braces determine what the function does. All statements
causing the computer to perform a specific action when the function is executed must
end with a semicolon (;). These statements are executable statements and are described
in more detail as you progress in your understanding of C++.

B_C7785_01.1c 17B_C7785_01.1c 17 1/18/11 10:43 AM1/18/11 10:43 AM

18 Getting Started

2. (Practice) Assume the following functions have been written:

getLength(),ƒgetWidth(),ƒcalcArea(),ƒdisplayArea()

a. Based on their names, what do you think each function might do?

b. In what order do you think a main() function might execute these functions (based on

their names)?

3. (Practice) Assume the following functions have been written:

inputPrice(),ƒcalcSalestax(),ƒcalcTotal()

a. Based on their names, what do you think each function might do?

b. In what order do you think a main() function might execute these functions (based on

their names)?

4. (Practice) Determine names for functions that do the following:

a. Find the average of a set of numbers.

b. Find the area of a rectangle.

c. Find the circumference of a circle.

d. Find the maximum value in a set of numbers.

e. Convert an uppercase letter to a lowercase letter.

f. Sort a set of numbers from lowest to highest.

g. Alphabetize a list of names.

5. (Practice) Just as the keyword int can be used to signify that a function returns an integer,

the keywords void, char, float, and double can be used to signify that a function returns no

value, a character, a floating-point number, and a double-precision number, respectively. Using

this information, write header lines for a function named abs() that receives no arguments but

returns the following:

a. No value

b. A character

c. A floating-point number

d. A double-precision number

1.3 The cout Object

One of the most versatile and commonly used objects in C++ is cout (pronounced “see out”

and derived from console output). It’s an output object that sends whatever data is passed to it

to the standard display device, which is a computer screen in most systems. For example, if the

data Helloƒthereƒworld! is passed to cout, this data is printed (displayed) on your screen.

To pass this data to the cout object, simply place the insertion symbol, <<, after the object’s

name and before the message, as shown:

coutƒ<<ƒ“Helloƒthereƒworld!”

Now try putting all this together. Take a look at Program 1.1, which is a working C++

program that can be run on your computer.

B_C7785_01.1c 18B_C7785_01.1c 18 1/18/11 10:43 AM1/18/11 10:43 AM

19Chapter 1
The cout Object

 Program 1.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“Helloƒthereƒworld!”;

ƒƒreturnƒ0;
}

The first line of the program is a preprocessor command that uses the reserved word

include:

#includeƒ<iostream>

Preprocessor commands begin with a pound sign (#) and perform some action before the

compiler translates the source program into machine code. Specifically, the #include prepro-

cessor command causes the contents of the named file—in this case, iostream—to be

inserted wherever the #include command appears in the program. The iostream file is part

of the standard library that contains, among other code, two classes: istream and ostream.

These two classes provide data declarations and methods used for data input and output,

respectively. The iostream file is called a header file because a reference to it is always placed

at the top, or head, of a C++ program by using the #include command. You might be wonder-

ing what the iostream file has to do with this simple program. The answer is that the cout

object is created from the ostream class. Therefore, the iostream header file must be

included in all programs using cout. As shown in Program 1.1, preprocessor commands don’t

end with a semicolon.

Following the preprocessor #include command is a statement containing the reserved

word using. The following statement, for example, tells the compiler where to find header

files in the absence of an explicit designation:

usingƒnamespaceƒstd;

You can think of a namespace as a file the compiler accesses when it’s looking for prewrit-

ten classes or functions. Because the iostream header file is contained in a file named std

(for the standard library), the compiler automatically uses iostream’sƒcout object from this

namespace whenever cout is referenced.7 By using namespaces, you can create your own

classes and functions with the same names the standard library provides and place them in

differently named namespaces. You can then tell the program which class or function to use by

specifying the namespace where you want the compiler to look for the class or function.

The using statement is followed by the start of the program’s main() function, which

begins with the header line described previously. The body of the function, enclosed in braces,

7Section 14.8 describes how to create your own namespace.

B_C7785_01.1c 19B_C7785_01.1c 19 1/18/11 10:43 AM1/18/11 10:43 AM

20 Getting Started

consists of only two statements. The first statement in main() sends one message to the cout

object: the string “Helloƒthereƒworld!”.

Because cout is an object of a prewritten class, you don’t have to create it; it’s available

for use just by activating it correctly. Like all C++ objects, cout can perform only certain well-

defined actions. For cout, this action is to assemble data for output display. When a string of

characters is passed to cout, the object makes sure the string is displayed onscreen correctly,

as shown in this output from Program 1.1:

Helloƒthereƒworld!

Strings in C++ are any combination of letters, numbers, and special characters enclosed in

quotation marks (“stringƒinƒhere”). The quotation marks are used to delimit (mark) the

beginning and ending of the string and aren’t considered part of the string. Therefore, the

string of characters making up the message sent to cout must be enclosed in quotation marks,

as was done in Program 1.1.

Now examine another program to understand cout’s versatility. Read Program 1.2 to

determine what it does.

 Program 1.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“Computers,ƒcomputersƒeverywhere”;
ƒƒcoutƒ<<ƒ“\nƒƒasƒfarƒasƒIƒcanƒC”;

ƒƒreturnƒ0;
}

Point of Information
What Is Syntax?

A programming language’s syntax is the set of rules for formulating statements that are
grammatically correct for the language. In practice, it means a C++ statement with cor-
rect syntax has the proper form (types of words and order of words) specified for the
compiler. If statements are in the proper form, the compiler accepts them and doesn’t
generate an error message.

Note, however, that a statement or program can be syntactically correct yet logically
incorrect. In other words, the statement or program is structured correctly but produces
an incorrect result. It’s similar to an English statement that’s grammatically correct but
makes no sense, such as “The tree is a ragged cat.”

B_C7785_01.1c 20B_C7785_01.1c 20 1/18/11 10:43 AM1/18/11 10:43 AM

21Chapter 1
The cout Object

When Program 1.2 is run, the following is displayed:

Computers,ƒcomputersƒeverywhere
ƒƒƒasƒfarƒasƒIƒcanƒC

You might be wondering why the \n didn’t appear in the output. The characters \ and n,

when used together, are called a newline escape sequence. They tell cout to send instructions to

the display device to move to the beginning of a new line. In C++, the backslash (\) character

provides an “escape” from the normal interpretation of the character following it and alters its

meaning. If the backslash were omitted from the second cout statement in Program 1.2, the n

would be printed as the letter “n,” and the program would output the following:

Computers,ƒcomputersƒeverywherenƒasƒfarƒasƒIƒcanƒC

Newline escape sequences can be placed anywhere in the message passed to cout. See

whether you can determine the display Program 1.3 produces.

 Program 1.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“Computersƒeverywhere\nƒasƒfarƒas\n\nIƒcanƒsee.”;

ƒƒreturnƒ0;
}

This is the output for Program 1.3:

Computersƒeverywhere
ƒasƒfarƒas

Iƒcanƒsee.

 EXERCISES 1.3

1. (Program) Enter and run Program 1.1 on a computer. (Note: You must understand the pro-

cedures for entering and running a C++ program on the particular computer installation

you’re using.)

2. (Program) a. Using cout, write a C++ program that prints your name on one line, your street

address on a second line, and your city, state, and zip code on the third line.

b. Run the program you wrote for Exercise 2a on a computer.

B_C7785_01.1c 21B_C7785_01.1c 21 1/18/11 10:43 AM1/18/11 10:43 AM

22 Getting Started

3. (Program) a. Write a C++ program to display the following verse:

Computers,ƒcomputersƒeverywhere
ƒƒasƒfarƒasƒIƒcanƒsee.
Iƒreally,ƒreallyƒlikeƒtheseƒthings,
ƒƒOhƒjoy,ƒOhƒjoyƒforƒme!

b. Run the program you wrote for Exercise 3a on a computer.

4. (Practice) a. How many cout statements would you use to display the following?

PARTƒNO.ƒƒƒƒƒƒPRICE
T1267ƒƒƒƒƒƒƒƒƒ$6.34
T1300ƒƒƒƒƒƒƒƒƒ$8.92
T2401ƒƒƒƒƒƒƒƒƒ$65.40
T4482ƒƒƒƒƒƒƒƒƒ$36.99

b. What’s the minimum number of cout statements that could be used to print the table in

Exercise 4a?

c. Write a complete C++ program to produce the output shown in Exercise 4a.

d. Run the program you wrote for Exercise 4c on a computer.

5. (For thought) In response to a newline escape sequence, cout positions the next displayed

character at the beginning of a new line. This positioning of the next character actually repre-

sents two distinct operations. What are they?

1.4 Programming Style

C++ programs start execution at the beginning of the main() function. Because a program can

have only one starting point, every C++ program must contain one and only one main()
function. As you have seen, all the statements making up the main() function are then

included within the braces following the function name. Although the main() function must

be present in every C++ program, C++ doesn’t require placing the word main, the parentheses,

or the braces in any particular form. The form used in the previous section

intƒmain()
{
ƒƒprogramƒstatementsƒinƒhere;
ƒƒreturnƒ0;
}

was chosen strictly for clarity and ease in reading the program but is not required. For example,

this general form of a main() function also works:

ƒintƒmain
ƒ(
ƒ)ƒ{ƒƒfirstƒstatement;secondƒstatement;
ƒƒƒƒƒƒƒƒƒƒƒƒthirdƒstatement;fourth
statement;
returnƒ0;}

B_C7785_01.1c 22B_C7785_01.1c 22 1/18/11 10:43 AM1/18/11 10:43 AM

23Chapter 1
Programming Style

Notice that you can put more than one statement on a line or place a statement on more

than one line. Except for strings, quotation marks, identifiers, and keywords, C++ ignores all

white space. (White space refers to any combination of blank spaces, tabs, or new lines.) For

example, changing the white space in Program 1.1 and making sure not to split the string

Helloƒthereƒworld! across two lines results in the following valid program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain
(
){
coutƒ<<
“Helloƒthereƒworld!”;
ƒƒreturnƒ0;
}

Although this version of main() does work, it’s an example of poor programming style

because it’s difficult to read and understand. For readability, the main() function should

always be written in this standard form:

intƒmain()
{
ƒƒprogramƒstatementsƒinƒhere;
ƒƒreturnƒ0;
}

In this standard form, the function name starts at the left margin (call this column 1) and

is placed with the required parentheses on a line by itself. The opening brace of the function

body follows in column 1 on the next line, directly under the first letter of the line containing

the function’s name. Similarly, the closing function brace is placed by itself in column 1 (lined

up with the opening brace) as the last line of the function. This structure highlights the func-

tion as a single unit.

Within the function, all program statements are indented at least two spaces. Indentation

is another sign of good programming practice, especially if the same indentation is used for

similar groups of statements. Notice in Program 1.2 that the same indentation was used for

both cout statements.

As you progress in your understanding and mastery of C++, you’ll develop your own

indentation standards. Just keep in mind that the final form of your programs should be con-

sistent and always aid others in reading and understanding your programs.

Comments
Comments are explanatory remarks made in a program. When used carefully, comments can

be helpful in clarifying the overall program’s purpose, explaining what a group of statements

is meant to accomplish, or explaining what one line is intended to do. C++ supports two types

of comments: line and block. Both types can be placed anywhere in a program and have no

effect on program execution. The compiler ignores all comments—they are there only for the

convenience of those reading the program.

B_C7785_01.1c 23B_C7785_01.1c 23 1/18/11 10:43 AM1/18/11 10:43 AM

24 Getting Started

A line comment begins with two slashes (//) and continues to the end of the line. For

example, the following are line comments:

//ƒthisƒisƒaƒcomment
//ƒthisƒprogramƒprintsƒoutƒaƒmessage
//ƒthisƒprogramƒcalculatesƒaƒsquareƒroot

The symbolsƒ//, with no white space between them, designate the start of the line com-

ment. The end of the line on which the comment is written designates the end of the comment.

A line comment can be written on a line by itself or at the end of the line containing a

program statement. Program 1.4 shows using line comments in a program.

 Program 1.4

//ƒthisƒprogramƒdisplaysƒaƒmessage
#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“Helloƒthereƒworld!”;ƒ//ƒthisƒproducesƒtheƒdisplay
ƒƒreturnƒ0;
}

The first comment appears on a line by itself at the top of the program and describes what

the program does. This location is generally a good place to put a short comment describing

the program’s purpose. If more comments are required, they can be added, one per line. When

a comment is too long to be contained on one line, it can be separated into two or more line

comments, with each comment preceded by two slashes (//). For example, the following com-

ment generates a C++ error message because the second line doesn’t start with the // symbols:

//ƒthisƒcommentƒisƒinvalidƒbecauseƒit
ƒƒƒextendsƒoverƒtwoƒlines

This comment is correct, written as follows:

//ƒthisƒcommentƒisƒusedƒtoƒillustrateƒa
//ƒcommentƒthatƒextendsƒacrossƒtwoƒlines

Comments extending across two or more lines are, however, more conveniently written as

block comments than as multiple-line comments. Block comments begin with the symbolsƒ/*

and end with the symbols */, as in this example:

/*ƒThisƒisƒaƒblockƒcommentƒthat
ƒƒƒƒspans
ƒƒƒƒthreeƒlinesƒ*/

B_C7785_01.1c 24B_C7785_01.1c 24 1/18/11 10:43 AM1/18/11 10:43 AM

25Chapter 1
Programming Style

In C++, a program’s structure is intended to make it readable and understandable, so

extensive comments aren’t necessary. This guideline is reinforced by selecting function names

carefully to convey their purpose, as discussed previously. However, if the program element’s

purpose still isn’t clear from its structure, name, or context, include comments where clarifica-

tion is needed.

Obscure code with no comments is a sure sign of bad programming, especially when other

people must maintain or read the program. Similarly, excessive comments are a sign of bad

programming because not enough thought was given to making the code self-explanatory.

Typically, any program you write should begin with comments including a short program

description, your name, and the date the program was written or last modified. For space con-

siderations and because all programs in this book were written by the author, these initial

comments are used only for short program descriptions when they aren’t provided as part of

the accompanying text.

 EXERCISES 1.4

1. (Debug) a. Will the following program work?

ƒƒ#includeƒ<iostream>
ƒƒusingƒnamespaceƒstd;
ƒƒintƒmain()ƒ{coutƒ<<ƒ“Helloƒthereƒworld!”;ƒreturnƒ0;}

b. Even if the program in Exercise 1a works, explain why it’s not a good program.

2. (Modify) Rewrite the following programs to conform to good programming practice and cor-

rect syntax:

a. #includeƒ<iostream>
ƒƒƒƒintƒmain(
ƒƒƒƒ){
ƒƒƒƒcoutƒƒƒƒƒƒƒƒƒƒ<<
ƒƒƒƒ“Theƒtimeƒhasƒcome”
ƒƒƒƒ;ƒreturnƒ0;}

b. #includeƒ<iostream>
ƒƒusingƒnamespaceƒstd;
ƒƒƒƒintƒmain
ƒƒƒƒ(ƒƒƒƒ){coutƒ<<ƒ“Newarkƒisƒaƒcity\n”;coutƒ<<
ƒƒƒƒ“InƒNewƒJersey\n”;ƒcoutƒ<<
ƒƒƒƒ“Itƒisƒalsoƒaƒcity\n”
ƒƒƒƒ;ƒcoutƒ<<ƒ“InƒDelaware\n”
ƒƒƒƒ;ƒreturnƒ0;}

c. #includeƒ<iostream>
ƒƒusingƒnamespaceƒstd;
ƒƒƒƒintƒmain()ƒ{coutƒ<<ƒReadingƒaƒprogram\n”;coutƒ<<
ƒƒƒƒ“isƒmuchƒeasier\n”
ƒƒƒƒ;ƒcoutƒ<<ƒ“ifƒaƒstandardƒformƒforƒmain()ƒisƒused\n”)
ƒƒƒƒ;ƒcout ☞

B_C7785_01.1c 25B_C7785_01.1c 25 1/18/11 10:43 AM1/18/11 10:43 AM

26 Getting Started

ƒƒƒƒƒ<<”andƒeachƒstatementƒisƒwritten\n”;cout
ƒƒƒƒƒ<<ƒƒƒƒƒƒƒƒƒƒƒ“onƒaƒlineƒbyƒitself\n”)
ƒƒƒƒƒ;ƒreturnƒ0;}

d. #includeƒ<iostream.h>
ƒƒƒƒusingƒnamespaceƒstd;
ƒƒƒƒƒintƒmain
ƒƒƒƒƒ(ƒƒƒƒ){ƒcoutƒ<<ƒ“EveryƒC++ƒprogram”
ƒƒƒƒƒ;ƒcout
ƒƒƒƒƒ<<”\nmustƒhaveƒoneƒandƒonlyƒone”
ƒƒƒƒƒ;
ƒƒƒƒƒcoutƒ<<ƒ“main()ƒfunction”
ƒƒƒƒƒ;
ƒƒƒƒƒcoutƒ<<
ƒƒƒƒƒ“\nƒtheƒescapeƒsequenceƒofƒcharacters”)
ƒƒƒƒƒ;ƒcoutƒ<<
ƒƒƒƒƒƒƒ“\nforƒaƒnewlineƒcanƒbeƒplacedƒanywhere”
ƒƒƒƒƒ;ƒcout
ƒƒƒƒƒ<<”\nƒwithinƒtheƒmessageƒpassedƒtoƒcout”
ƒƒƒƒƒ;ƒreturnƒ0;}

3. (For thought) a. When used in a message, the backslash character alters the meaning of the

character immediately following it. If you want to print the backslash character, you have to

tell cout to escape from the way it normally interprets the backslash. What character do you

think is used to alter the way a single backslash character is interpreted?

b. Using your answer to Exercise 3a, write the escape sequence for printing a backslash.

4. (For thought) a. A token of a computer language is any sequence of one or more characters

that has a unique meaning to the compiler. Separating characters with intervening characters

or white space results in a compiler error. Using this definition of a token, determine whether

escape sequences, function names, and keywords listed in Table 1.1 are tokens of the C++

language.

b. Discuss whether adding white space to a message alters the message and whether mes-

sages can be considered tokens of C++.

c. Using the definition of a token in Exercise 4a, determine whether the following statement

is true: “Except for tokens of the language, C++ ignores all white space.”

1.5 Common Programming Errors

Part of learning any programming language is making the elementary mistakes commonly

encountered when you begin using the language. These mistakes tend to be frustrating

because each language has its own set of common programming errors lying in wait for the

unwary. The errors commonly made when first programming in C++ include the following:

1. Omitting the parentheses after main().

2. Omitting or incorrectly typing the opening brace, {, that signifies the start of a

function body.

B_C7785_01.1c 26B_C7785_01.1c 26 1/18/11 10:43 AM1/18/11 10:43 AM

27Chapter 1
Chapter Summary

3. Omitting or incorrectly typing the closing brace, }, that signifies the end of a function.

4. Omitting the semicolon at the end of each C++ executable statement.

5. Adding a semicolon after the #includeƒ<iostream> preprocessor command.

6. Misspelling the name of an object or function, such as typing cot instead of cout.

7. Forgetting to enclose a string sent to cout with double quotation marks.

8. Forgetting the \n to indicate a new line.

The third, fourth, fifth, and sixth errors in this list tend to be the most common. A worth-

while practice is writing a program and introducing each error, one at a time, to see what error

messages your compiler produces. When these error messages appear as a result of inadvertent

errors, you’ll have had experience in understanding the messages and correcting the errors.

1.6 Chapter Summary
1. A computer program is a self-contained unit of instructions and data used to operate a com-

puter to produce a specific result.

2. An algorithm is a step-by-step procedure that must terminate; it describes how a computa-

tion or task is to be performed.

3. A C++ program consists of one or more modules called functions. One of these functions must

be called main(). The main() function identifies the starting point of a C++ program.

4. The simplest C++ program consists of the single function main() and has this form:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒprogramƒstatementsƒinƒhere;

ƒƒreturnƒ0;
}

 This program consists of a preprocessor #include statement, a using statement, a header

line for the main() function, and the body of the main() function. The body of the func-

tion begins with the opening brace, {, and ends with the closing brace, }.

5. All executable C++ statements within a function body must be terminated by a semicolon.

6. Many functions and classes are supplied in a standard library provided with each C++ com-

piler. One set of classes, used to create input and output capabilities, is defined in the

iostream header file.

7. The cout object is used to display text or numerical results. A stream of characters can be

sent to cout by enclosing the characters in quotation marks and using the insertion symbol,

<<, as in the statement cout <<ƒ“HelloƒWorld!”;. The text in the string is displayed

onscreen and can include newline escape sequences for controlling the format.

B_C7785_01.1c 27B_C7785_01.1c 27 1/18/11 10:43 AM1/18/11 10:43 AM

28 Getting Started

1.7 Chapter Supplement: Software Development

At its most basic level, a program is a solution developed to solve a particular problem, written

in a form that can be run on a computer. Therefore, writing a program is almost the last step

in a process that first determines the problem to be solved and the method to be used in the

solution. Each field of study has its own name for the systematic method of designing solutions

to solve problems. In science and engineering, the approach is referred to as the scientific
method, and in quantitative analysis, the approach is called the systems approach. Professional

software developers use the software development procedure for understanding the problem to

be solved and for creating an effective, suitable software solution. This procedure, shown in

Figure 1.12, consists of three overlapping phases:

1. Development and design

2. Documentation

3. Maintenance

Request for
a program

Time

Program no
longer used

Maintenance

Documentation

Development
and design

Program
life cycle
stages

Figure 1.12 The three phases of software development

As a discipline, software engineering is concerned with creating readable, efficient, reli-

able, and maintainable programs and systems, and it uses the software development procedure

to achieve this goal.

Phase I: Development and Design
Phase I begins with a statement of a problem or a specific request for a program, which is referred

to as a program requirement. After a problem has been stated or a specific request for a program

solution has been made, the development and design phase begins. This phase consists of four

well-defined steps, as illustrated in Figure 1.13 and summarized in the following sections.

B_C7785_01.1c 28B_C7785_01.1c 28 1/18/11 10:43 AM1/18/11 10:43 AM

29Chapter 1
Chapter Supplement: Software Development

Design

Coding

Testing

Development
and

design
steps

Analysis

Time

Figure 1.13 The development and design steps

Step 1: Analyze the Problem
The analysis of a problem can consist of up to two parts. The first part is a basic analysis that

must be performed on all problems; it consists of extracting the complete input and output

information supplied by the problems. For this analysis, you must:

1. Determine and understand the output items the program must produce.

2. Determine the input items.

Together, these two items are referred to as the problem’s input/output (I/O). Only after

determining a problem’s I/O can you select specific steps for transforming inputs into outputs.

At this point, doing a hand calculation to verify that the output can indeed be obtained from

the inputs is sometimes necessary and/or useful. Clearly, if you have a formula that relates

inputs to the output, you can omit this step. If the required inputs are available and the desired

outputs can be produced, the problem is said to be clearly defined and can be solved.

For a variety of reasons, completing a basic analysis might not be possible. If so, an

extended analysis might be necessary. An extended analysis simply means you must gather

more information about the problem so that you thoroughly understand what’s being asked for

and how to achieve the result. In this book, any additional information required to understand

the problem is supplied along with the problem statement.

Step 2: Develop a Solution
Next, you select the exact set of steps, called the algorithm, to use for solving the problem.

Typically, you find the solution by a series of refinements, starting with the initial algorithm

you find in the analysis step, until you have an acceptable and complete algorithm. This algo-

rithm must be checked, if it wasn’t in the analysis step, to make sure it produces the required

outputs correctly. The check is usually carried out by doing one or more hand calculations that

haven’t been done already.

For small programs, the selected algorithm might be extremely simple and consist of only

one or more calculations. More typically, you need to refine the initial solution and organize it

into smaller subsystems, with specifications for how the subsystems interface with each other.

To achieve this goal, the algorithm’s description starts from the highest level (top) requirement

and proceeds downward to the parts that must be constructed to meet this requirement. To

B_C7785_01.1c 29B_C7785_01.1c 29 1/18/11 10:43 AM1/18/11 10:43 AM

30 Getting Started

make this explanation more meaningful, think of a computer program that must track the

number of parts in inventory. The required output for this program is a description of all parts

carried in inventory and the number of units of each item in stock; the given inputs are the

initial inventory quantity of each part, the number of items sold, the number of items returned,

and the number of items purchased.

For these specifications, a designer could initially organize the program’s requirements

into the three sections shown in Figure 1.14. This figure is referred to as both a top-level
structure diagram and a first-level structure diagram because it represents the first overall

structure of the program the designer has selected.

Calculation
section

Data
entry

section

Report
section

Inventory
control

program

Figure 1.14 A first-level structure diagram

After an initial structure is developed, it’s refined until the tasks in the boxes are com-

pletely defined. For example, the data entry and report modules shown in Figure 1.14 would

be refined further. The data entry module certainly must include provisions for entering data.

Because planning for contingencies and human error is the system designer’s responsibility,

provisions must also be made for changing incorrect data after an entry is made and for delet-

ing previous entries. Similar subdivisions for the report module can be made. Figure 1.15 is a

second-level structure diagram for an inventory-tracking system that includes these further

refinements.

Calculation
section

Data
entry

section

Report
section

Inventory
control

program

Printer
reports

Screen
reports

Delete
data

Change
data

Enter
data

Figure 1.15 A second-level structure diagram with refinements

B_C7785_01.1c 30B_C7785_01.1c 30 1/18/11 10:43 AM1/18/11 10:43 AM

31Chapter 1
Chapter Supplement: Software Development

The process of refining a solution continues until the smallest requirement is included.

Notice that the design produces a treelike structure, in which the levels branch out as you

move from the top of the structure to the bottom. When the design is finished, each task des-

ignated in a box is typically coded with separate sets of instructions that are executed as

they’re called on by tasks higher up in the structure.

Step 3: Code the Solution (Write the Program)
This step consists of actually writing a C++ program that corresponds to the solution devel-

oped in Step 2. If the analysis and solution steps have been performed correctly, the coding

step becomes rather mechanical in nature. In a well-designed program, the statements making

up the program, however, conform to certain well-defined patterns or structures that have been

defined in the solution step. These structures control how the program executes and consist

of the following types:

• Sequence

• Selection

• Iteration

• Invocation

Sequence defines the order in which the program executes instructions. Specifying which

instruction comes first, which comes second, and so on is essential if the program is to achieve

a well-defined purpose.

Selection provides the capability to make a choice between different operations, depend-

ing on the result of some condition. For example, the value of a number can be checked before

a division is performed. If the number isn’t zero, it can be used as the denominator of a division

operation; otherwise, the division isn’t performed and the user is issued a warning message.

Iteration, also referred to as “looping” and “repetition,” makes it possible to repeat the

same operation based on the value of a condition. For example, grades might be entered and

added repeatedly until a negative grade is entered. In this case, the entry of a negative grade

is the condition that signifies the end of the repetitive input and addition of grades. At that

point, an average for all grades entered could be calculated.

Invocation involves invoking, or summoning, a set of statements as it’s needed. For exam-

ple, computing a person’s net pay involves the tasks of obtaining pay rates and hours worked,

calculating the net pay, and providing a report or check for the required amount. Each task is

typically coded as a separate unit that’s called into execution, or invoked, as it’s needed.

Step 4: Test and Correct the Program
The purpose of testing is to verify that a program works correctly and actually fulfills its

requirements. In theory, testing would reveal all existing program errors. (In computer termi-

nology, a program error is called a bug.8) In practice, finding all errors would require checking

all possible combinations of statement execution. Because of the time and effort required, this

goal is usually impossible, except for extremely simple programs. (Section 4.7 explains why

this goal is generally considered impossible.)

8The derivation of this term is rather interesting. When a program stopped running on the Mark I at Harvard University in September

1945, Grace Hopper traced the malfunction to a dead insect that had gotten into the electrical circuits. She recorded the incident in

her logbook as “Relay #70. . . . (moth) in relay. First actual case of bug being found.”

B_C7785_01.1c 31B_C7785_01.1c 31 1/18/11 10:43 AM1/18/11 10:43 AM

32 Getting Started

Because exhaustive testing isn’t feasible for most programs, different philosophies and

methods of testing have evolved. At its most basic level, however, testing requires a conscious

effort to make sure a program works correctly and produces meaningful results. This effort

means giving careful thought to what the test is meant to achieve and to the data used in the

test. If testing reveals an error (bug), the process of debugging, which includes locating, cor-

recting, and verifying the correction, can be initiated. Realize that although testing might

reveal the presence of an error, it doesn’t necessarily indicate the absence of one. Therefore, the fact

that a test revealed one bug does not indicate that another one isn’t lurking somewhere else in

the program.

To catch and correct errors in a program, developing a set of test data for determining

whether the program produces correct answers is important. In fact, often an accepted step in

formal software development is to plan test procedures and create meaningful test data before
writing the code. Doing this step first helps you be more objective about what the program

must do because it circumvents the subconscious temptation after coding to avoid test data

that would reveal a problem with your program. The procedures for testing a program should

examine every possible situation in which the program will be used. The program should be

tested with data in a reasonable range as well as at the limits and in areas where the program

should tell users the data is invalid. Developing good test procedures and data for sophisti-

cated problems can be more difficult than writing the program code.

Table 1.2 lists the comparative amount of effort that’s typically expended on each devel-

opment and design step in large commercial programming projects. As this listing shows, cod-

ing is not the major effort in Phase I. Many new programmers have trouble because they

spend most of their time writing the program and don’t spend enough time understanding the

problem or designing a suitable solution. (Note in the table that 50% of total development

time is spent on testing, with many programmers testing only code that others have written.)

To help you avoid making the same mistake, remember the programming proverb “It’s impos-

sible to write a successful program for a problem or application that’s not fully understood.”

An equally valuable proverb is “The sooner you start coding a program, the longer it usually

takes to complete.”

Table 1.2 Effort Expended in Phase I

Step Effort
Analyze the problem 10%
Develop a solution 20%
Code the solution (write the program) 20%
Test the program 50%

Phase II: Documentation
Because of inadequate documentation, so much work becomes useless or lost and many tasks

must be repeated, so documenting your work is one of the most important steps in problem

solving. Many critical documents are created during the analysis, design, coding, and testing

steps. Completing the documentation phase requires collecting these documents, adding user-

operating material, and presenting documentation in a form that’s most useful to you and your

organization.

B_C7785_01.1c 32B_C7785_01.1c 32 1/18/11 10:43 AM1/18/11 10:43 AM

33Chapter 1
Chapter Supplement: Software Development

Although not everybody classifies them in the same way, every problem solution has five

main documents:

• Program description

• Algorithm development and changes

• Well-commented program listing

• Sample test runs

• Users’ manual

Putting yourself in the shoes of a person who might use your work—anyone from assis-

tants to programmers/analysts and management—should help you strive to make the content

of important documentation clear. The documentation phase formally begins in the develop-

ment and design phase and continues into the maintenance phase.

Phase III: Maintenance
This phase is concerned with the ongoing correction of problems, revisions to meet changing

needs, and addition of new features. Maintenance is often the major effort, the primary source

of revenue, and the longest lasting of all the phases. Development might take days or months,

but maintenance could continue for years or decades. The better the documentation is, the

more efficiently maintenance can be performed, and the happier customers and end users

will be.

Backup
Although not part of the formal design process, making and keeping backup copies of the

program at each step of the programming and debugging process are critical. Deleting or

changing a program’s current working version beyond recognition can happen quite easily.

With backup copies, you can recover the last stage of work with little effort. The final working

version of a useful program should be backed up at least twice. In this regard, another useful

programming proverb is “Backup is unimportant if you don’t mind starting over again.” Many

organizations keep at least one backup on site, where it can be retrieved easily, and another

backup copy in a fireproof safe or at a remote location.

 EXERCISES FOR SECTION 1.7
Note: In each of these exercises, a programming problem is given. Read the problem statement first and
then answer the questions pertaining to the problem. Do not attempt to write a program to solve the
problems. Instead, simply answer the questions following the program specifications.

1. (Practice) A C++ program is required that calculates the amount, in dollars, contained in a

piggybank. The bank contains half dollars, quarters, dimes, nickels, and pennies.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 1c using the following sample data: half dollars 0,

quarters 17, dimes 24, nickels 16, and pennies 12.

NO
TE

B_C7785_01.1c 33B_C7785_01.1c 33 1/18/11 10:43 AM1/18/11 10:43 AM

34 Getting Started

2. (Practice) A C++ program is required to calculate the value of distance, in miles, given this

relationship:

distance = average - speed × time

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 2c using the following sample data: speed is 55 miles

per hour and time is 2.5 hours.

e. How must the algorithm you wrote in Exercise 2c be modified if the elapsed time is given

in minutes instead of hours?

3. (Practice) A C++ program is required to determine the value of Ergies, given this relationship:

Ergies = Fergies × Lergies

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 3c using the following sample data: Fergies = 14.65

and Lergies = 4.

4. (Practice) A C++ program is required to display the following name and address:

 Mr. S. Hazlet

 63 Seminole Way

 Dumont, NJ 07030

a. For this programming problem, how many lines of output are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

5. (Practice) A C++ program is required to determine how far a car has traveled after 10 seconds,

assuming the car is initially traveling at 60 mph and the driver applies the brakes to decelerate

at a uniform rate of 12 miles/sec2. Use the following formula:

distance = st - (1/2)dt2

s is the initial speed of the car.

d is the deceleration.

t is the elapsed time.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 5c by using the data given in the problem.

6. (Practice) In 1627, Manhattan Island was sold to Dutch settlers for approximately $24. If the

proceeds of that sale had been deposited in a Dutch bank paying 5% interest, compounded

B_C7785_01.1c 34B_C7785_01.1c 34 1/18/11 10:43 AM1/18/11 10:43 AM

35Chapter 1
Chapter Supplement: Software Development

annually, what would the principal balance be at the end of 2012? The following display is

required; xxxxxx is the amount calculated by the program:

BalanceƒasƒofƒDecemberƒ31,ƒ2012ƒis:ƒxxxxxx

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Is the algorithm for converting the input items into output items provided?

7. (Practice) A C++ program is required that calculates and displays the weekly gross pay and

net pay of two employees. The first employee is paid an hourly rate of $16.43, and the second

is paid an hourly rate of $12.67. Both employees have 20% of their gross pay withheld for

income tax, and both pay 2% of their gross pay, before taxes, for medical benefits.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 7c, using the following sample data: The first

employee works 40 hours during the week, and the second employee works 35 hours.

8. (Program) This is the formula for the standard normal deviate, z, used in statistical

applications:

z = (X - μ)/σ

X is a single value.

μ refers to a mean value.

s refers to a standard deviation.

 Using this formula, write a program that calculates and displays the value of the standard

normal deviate when X = 85.3, μ = 80, and s = 4.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 8c, using the data given in the problem.

9. (Practice) The equation describing exponential growth is as follows:

y = ex

 Using this equation, a C++ program is required to calculate the value of y.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Write an algorithm for converting the input items into output items.

d. Test the algorithm written for Exercise 9c, assuming e is 2.718 and x is 10.

B_C7785_01.1c 35B_C7785_01.1c 35 1/18/11 10:43 AM1/18/11 10:43 AM

2 2.1 Data Types

 2.2 Arithmetic Operations

 2.3 Variables and Declarations

 2.4 Common Programming Errors

 2.5 Chapter Summary

 2.6 Chapter Supplement: Bits, Bytes,
and Binary Number
Representations

C++ programs can process different types of data in different ways. For example, calculating the bacteria
growth in a polluted pond requires mathematical operations on numerical data, whereas sorting a list of
names requires comparison operations with alphabetical data. This chapter introduces C++’s elementary
data types and the operations that can be performed on them. You also see how to use the cout object to
display the results of these operations.

2.1 Data Types

The objective of all programs is to process data, be it numerical, alphabetical, audio, or video.

Central to this objective is classifying data into specific types. For example, calculating the

interest due on a bank balance requires mathematical operations on numerical data, and alpha-

betizing a list of names requires comparison operations on character-based data. Additionally,

some operations aren’t applicable to certain types of data. For example, it makes no sense to

add names together. To prevent programmers from attempting to perform an inappropriate

operation, C++ allows performing only certain operations on certain types of data.

Chapter

Data Types,
Declarations, and
Displays

C_C7785_02.1c 37C_C7785_02.1c 37 1/18/11 10:44 AM1/18/11 10:44 AM

38 Data Types, Declarations, and Displays

The types of data permitted and the operations allowed for each type are referred to as a

data type. Formally, a data type is defined as a set of values and a set of operations that can be

applied to these values. For example, the set of all integer (whole) numbers constitutes a set

of values. This set of numbers, however, doesn’t constitute a data type until a set of operations

is included. These operations, of course, are the familiar mathematical and comparison opera-

tions. The combination of a set of values plus operations results in a true data type.

C++ categorizes data types as class or built-in types. A class data type (referred to as a

“class,” for short) is a programmer-created data type. This means the programmer defines both

acceptable values and operations, and this type is discussed in Part II of this book.

A built-in data type is provided as an integral part of the programming language. Built-in data

types are also referred to as primitive types. C++’s built-in numerical data types consist of the basic

numerical types shown in Figure 2.1 and the operations listed in Table 2.1. As Table 2.1 shows, the

majority of operations for built-in data types use conventional mathematical symbols. For class data

types, most operations, as you see in Part II, are provided as functions.

Numerical data types

Floating-point
types

Integer types

Figure 2.1 Built-in data types

Table 2.1 Built-In Data Type Operations

Built-in Data Type Operations
Integer +,ƒ-,ƒ*,ƒ/,ƒ%,ƒ=,ƒ==,ƒ!=,ƒ<=,ƒ>=,ƒsizeof(), and bit

operations (see Appendix C, available online)
Floating-point +,ƒ-,ƒ*,ƒ/,ƒ=,ƒ==,ƒ!=,ƒ<=,ƒ>=,ƒsizeof()ƒ

Literal values are used to introduce the built-in data types in C++. A literal value means

the value identifies itself. (Another name for a literal value is a literal or constant.) For exam-

ple, all numbers, such as 2, 3.6, and -8.2, are referred to as literal values because they literally

display their values. Text, such as “HelloƒWorld!”, is also referred to as a literal value

because the text itself is displayed. You have been using literal values throughout your life but

have known them as numbers and words. In Section 2.3, you see some examples of nonliteral

values—that is, values that don’t display themselves but are stored and accessed by using

identifiers.

Integer Data Types
C++ provides nine built-in integer data types, as shown in Figure 2.2. The essential difference

between these integer data types is the amount of storage used for each type, which affects the

range of values each type is capable of representing. The three most important and common

types used in many applications are int, char, and bool. The other types were provided to

C_C7785_02.1c 38C_C7785_02.1c 38 1/19/11 8:09 AM1/19/11 8:09 AM

39
Data Types

Chapter 2

accommodate special situations (such as a very small or large range of numbers) and have been

retained for historical reasons. They enabled programmers to maximize memory usage by

selecting the data type using the smallest amount of memory, consistent with an application’s

requirements. When computer memories were small and expensive, compared with today’s

computers, the amount of memory used was a major concern. Although no longer a concern for

most programs, these types still allow programmers to optimize memory usage when necessary.

This optimization is often required in engineering applications, such as control systems used

in home appliances and automobiles.

bool

char

short int

int

long int

unsigned char

unsigned short int

unsigned int

unsigned long int

Integer data types

Figure 2.2 C++ integer data types

The int Data Type The values supported by the int data type are whole numbers, which

are mathematically known as integers. An integer value consists of digits only and can option-

ally be preceded by a plus (+) or minus (-) sign. Therefore, an integer value can be the number

0 or any positive or negative number without a decimal point. The following are examples of

valid integers:

0ƒƒƒƒƒƒ-10ƒƒƒƒƒƒ1000ƒƒƒƒƒƒ-26351
5ƒƒƒƒƒƒ+25ƒƒƒƒƒƒƒ253ƒƒƒƒƒƒƒƒƒ+36

As these examples show, integers can contain an explicit sign. However, no commas,

decimal points, or special symbols, such as the dollar sign, are allowed, as in these examples of

invalid integers:

$255.62ƒƒƒƒ3.ƒƒƒƒƒƒƒƒƒ1,492.89
2,523ƒƒƒƒƒƒ6,243,892ƒƒƒ+6.0

Compilers differ in their internal limit on the largest (most positive) and smallest (most

negative) integer values that can be stored in each data type.1 The most common storage allo-

cation is 4 bytes for the int data type, which restricts the values used to represent integers

from -2,147,483,648 to 2,147,483,647.2

1The limits the compiler imposes are found in the limits header file and defined as the constants INT_MIN and INT_MAX.
2The magnitude of the most negative number is always one more than the magnitude of the most positive number. The reason is the

twos complement method of integer storage, described in Section 2.6.

C_C7785_02.1c 39C_C7785_02.1c 39 1/18/11 10:44 AM1/18/11 10:44 AM

40 Data Types, Declarations, and Displays

The char Data Type The char data type is used to store single characters, including the

letters of the alphabet (uppercase and lowercase), the digits 0 through 9, and special symbols,

such as + $. , - and !. A character value is any single letter, digit, or special symbol enclosed

by single quotation marks, as shown in these examples:

'A'ƒƒƒ'$'ƒƒƒ'b'ƒƒƒ'7'ƒƒƒ'y'ƒƒƒ'!'ƒƒƒ'M'ƒƒƒ'q'

Character values are typically stored in a computer with the ASCII or Unicode codes. ASCII

(pronounced “as-key”) is the acronym for American Standard Code for Information Interchange.

Both ASCII and Unicode codes assign characters to specific patterns of 0s and 1s. Table 2.2 lists

the correspondence between ASCII bit patterns and the lowercase and uppercase letters.

Table 2.2 The ASCII Letter Codes

Lowercase
Letter

Binary
Code

Lowercase
Letter

Binary
Code

Uppercase
Letter

Binary
Code

Uppercase
Letter

Binary
Code

a 01100001 n 01101110 A 01000001 N 01001110
b 01100010 o 01101111 B 01000010 O 01001111
c 01100011 p 01110000 C 01000011 P 01010000
d 01100100 q 01110001 D 01000100 Q 01010001
e 01100101 r 01110010 E 01000101 R 01010010
f 01100110 s 01110011 F 01000110 S 01010011
g 01100111 t 01110100 G 01000111 T 01010100
h 01101000 u 01110101 H 01001000 U 01010101
i 01101001 v 01110110 I 01001001 V 01010110
j 01101010 w 01110111 J 01001010 W 01010111
k 01101011 x 01111000 K 01001011 X 01011000
l 01101100 y 01111001 L 01001100 Y 01011001
m 01101101 z 01111010 M 01001101 Z 01011010

The newer Unicode code is used for international applications because it accommodates

character sets for almost all languages, in addition to English. As the first 256 Unicode codes

are the same binary codes as the complete set of 256 ASCII codes (with the addition of eight

leading 0s), you needn’t be concerned with which storage code is used for English-language

characters.

Using Table 2.2, you can determine how the characters 'B', 'A', 'R', 'T', 'E', and 'R',

for example, are stored in a computer by using ASCII codes. This sequence of six characters
requires 6 bytes of storage (1 byte for each letter) and is stored as shown in Figure 2.3. (Review
Section 2.6 if you’re unfamiliar with the concept of a byte.)

6 bytes of storage

B A R T E R

01000010 01000001 01010010 01010100 01000101 01010010

Figure 2.3 The letters BARTER stored in a computer

C_C7785_02.1c 40C_C7785_02.1c 40 1/18/11 10:44 AM1/18/11 10:44 AM

41Chapter 2
Data Types

The Escape Character As you’ve seen in Section 1.3, the backslash (\) has a special meaning in

C++ as the escape character. When a backslash is placed in front of a group of characters, it tells the

compiler to escape from the way these characters are normally interpreted. The combination of a

backslash and these characters is called an escape sequence. Table 2.3 lists C++’s most common

escape sequences.

Table 2.3 Escape Sequences

Escape
Sequence

Character
Represented Meaning ASCII Code

\n Newline Move to a new line 00001010
\t Horizontal tab Move to the next horizontal tab setting 00001001
\v Vertical tab Move to the next vertical tab setting 00001011
\b Backspace Move back one space 00001000
\r Carriage return Move the cursor to the start of the

current line; used for overprinting
00001101

\f Form feed Issue a form feed 00001100
\a Alert Issue an alert (usually a bell sound) 00000111
\\ Backslash Insert a backslash character (used to place

an actual backslash character in a string)
01011100

\? Question mark Insert a question mark character 00111111
\' Single quotation Insert a single-quote character (used to

place an inner single quote inside a set of
outer single quotes)

00100111

\” Double
quotation

Insert a double-quote character (used to
place an inner double quote inside a set
of outer double quotes)

00100010

\nnn Octal number Consider the number nnn (n is a digit) an
octal number

Dependent on
nnn

\xhhhh Hexadecimal
number

Consider the number hhhh (h is a digit) a
hexadecimal number

Dependent on
hhhh

\0 Null character Insert the null character, which is defined
as having the value 0

00000000

Although each escape sequence in Table 2.3 is made up of two characters, the combination

of these characters, with no intervening white space, causes the compiler to create the single ASCII
code listed in the table.

The bool Data Type In C++, the bool data type is used to represent Boolean (logical) data,

so it’s restricted to one of two values: true or false. This data type is most useful when a

program must examine a condition and take a prescribed course of action, based on whether

C_C7785_02.1c 41C_C7785_02.1c 41 1/18/11 10:44 AM1/18/11 10:44 AM

42 Data Types, Declarations, and Displays

the condition is true or false. For example, in a sales application, the condition being examined

might be “is the total purchase for $100 or more.” Only when this condition is true is a discount

applied. Because the bool data type uses an integer storage code, however, it has useful impli-

cations that most professional C++ programmers utilize. Chapter 4 covers the practical uses of

Boolean conditions, so the bool data type is discussed in more detail in that chapter.

Determining Storage Size
A unique feature of C++ is that you can see where and how values are stored. As an example,

the C++ operator sizeof() provides the number of bytes (discussed in Section 2.6) used to

store values for the data type given in the parentheses. This built-in operator doesn’t use an

arithmetic symbol to perform its operation. Program 2.1 uses this operator to determine the

amount of storage reserved for the int, char, and bool data types.

 Program 2.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“\nDataƒTypeƒƒBytes”;
ƒƒcoutƒ<<ƒ“\n---------ƒƒ-----”;
ƒƒcoutƒ<<ƒ“\nintƒƒƒƒƒƒƒƒƒƒ“ƒ<<ƒsizeof(int);
ƒƒcoutƒ<<ƒ“\ncharƒƒƒƒƒƒƒƒƒ“ƒ<<ƒsizeof(char);
ƒƒcoutƒ<<ƒ“\nboolƒƒƒƒƒƒƒƒƒ“ƒ<<ƒsizeof(bool);
ƒƒcoutƒ<<ƒ'\n';

ƒƒreturnƒ0;
}

In reviewing Program 2.1, notice that the \n character is included at the start of each out-

put string in the first five cout statements. Each time the compiler encounters the newline

escape sequence, as part of a string or as one character, it’s translated as a single character that

forces the display to start at the beginning of a new line. In the final cout statement, the new-

line escape sequence is inserted as a single '\n' character. Although quotation marks can be

used for this final newline insertion, as “\n”, doing so designates a string. The single quotes,

as in '\n', clearly indicate that a single character is being transmitted. From a practical stand-

point, however, both notations ('\n' and “\n”) force a new line in the display.

C_C7785_02.1c 42C_C7785_02.1c 42 1/18/11 10:44 AM1/18/11 10:44 AM

43Chapter 2
Data Types

The output of Program 2.1 is compiler dependent, meaning each compiler reports the

amount of storage it provides for the data type under consideration. When run on a computer

using Microsoft’s current Visual C++ compiler, for example, the following output is produced:

DataƒTypeƒƒBytes
---------ƒƒ-----
intƒƒƒƒƒƒƒƒƒƒ4
charƒƒƒƒƒƒƒƒƒ1
boolƒƒƒƒƒƒƒƒƒ1

For this output, which is the typical storage almost all current C++ compilers provide, you

can determine the range of values that can be stored in each data type. Doing so, however,

requires understanding the difference between a signed and an unsigned data type, discussed

in the next section.

Signed and Unsigned Data Types A signed data type allows storing negative values, the

value 0, and positive values, so int is a signed data type. An unsigned data type provides for

only non-negative values (that is, 0 and positive values). Some applications require only

unsigned numerical values. For example, many date applications store dates in the numerical

form yearmonthday (storing 12/25/2011 as 20111225, for example) and are concerned only with

dates after 0 CE. For these applications, which never require a negative value, an unsigned

data type can be used.

All unsigned integer types, such as unsignedƒint, provide a range of positive values that,

for all practical purposes, is double the range for their signed counterparts. This extra positive

range is made available by using the negative range of its signed version for additional positive

numbers.

Table 2.4 lists the range of integer values supported by current C++ compilers for its signed

and unsigned integer data types. As you can see, a longƒint uses the same amount of storage

(4 bytes) as an int. The only requirement of the ANSI C++ standard is that an int must pro-

vide at least as much storage as a shortƒint, and a longƒint must provide at least as much

storage as an int. On early desktop computers with a memory capacity limited to thousands of

Point of Information
The Character '\n' and the String “\n”

The compiler recognizes both '\n' and “\n” as containing the newline character. The
difference is in the data type used. Formally, '\n' is a character literal, and “\n” is a
string literal. From a practical standpoint, both cause the same thing to happen: A new
line is forced in the output display. In encountering the character value '\n', however,
the compiler translates it by using the ASCII code 00001010 (see Table 2.3). In encoun-
tering the string value “\n”, the compiler translates it by using the same character code
but adds the code for the end-of-string character, '\0', which is 00000000.

Good programming practice requires ending the last output display with a newline
escape sequence. This practice ensures that the first line of output from one program
doesn’t end up on the last line displayed by the previously executed program.

C_C7785_02.1c 43C_C7785_02.1c 43 1/18/11 10:44 AM1/18/11 10:44 AM

44 Data Types, Declarations, and Displays

bytes, a shortƒint typically used 1 byte of storage, an int 2 bytes, and a longƒint 4 bytes.

This storage limited the range of int values from -32,768 to +32,767 and unsignedƒint values

from 0 to 65,535, thus doubling the number of possible positive values, which was significant.

With the current range of int values in the -2 billion to +2 billion range, doubling positive val-

ues is rarely a consideration. Additionally, a longƒint is unnecessary now because it uses the

same storage capacity as an int.

Table 2.4 Integer Data Type Storage

Name of Data Type Storage Size Range of Values
char 1 256 characters
bool 1 true (considered as any positive value)

and false (which is a 0)
shortƒint 2 -32,768 to +32,767
unsignedƒshortƒint 2 0 to 65,535
int 4 -2,147,483,648 to +2,147,483,647
unsignedƒint 4 0 to 4,294,967,295
longƒint 4 -2,147,483,648 to +2,147,483,647
unsignedƒlongƒint 4 0 to 4,294,967,295

Floating-Point Types
A floating-point number, more commonly known as a real number, can be the number 0 or any

positive or negative number containing a decimal point. The following are examples of floating-

point numbers:

+10.625ƒƒƒ5.0ƒƒƒ-6.2ƒƒƒ3251.92ƒƒƒ0.0ƒƒƒ0.33ƒƒƒ-6.67ƒƒƒ+2.

Notice that the numbers 5.0, 0.0, and +2. are classified as floating-point values, but the

same numbers written without a decimal point (5, 0, +2) would be integer values. As with integer
values, special symbols, such as the dollar sign and comma, aren’t permitted in real numbers.
Examples of invalid real numbers are as follows:

5,326.25ƒƒƒ24ƒƒƒ6,459ƒƒƒ$10.29ƒƒƒ7.007.645

C++ supports three floating-point data types: float, double, and longƒdouble. The dif-

ference between these data types is the amount of storage the compiler uses for each type. Most
compilers use twice the amount of storage for doubles as for floats, which allows a double to

have approximately twice the precision of a float. For this reason, a float value is sometimes

referred to as a single-precision number and a double value as a double-precision number. The

actual storage allocation for each data type, however, depends on the compiler. The ANSI C++

standard requires only that a double have at least the same amount of precision as a float,

and a longƒdouble have at least the same amount of storage as a double. Currently, most C++

compilers allocate 4 bytes for floats and 8 bytes for doubles and long doubles, which pro-

duces the range of numbers listed in Table 2.5.

C_C7785_02.1c 44C_C7785_02.1c 44 1/18/11 10:44 AM1/18/11 10:44 AM

45Chapter 2
Data Types

Table 2.5 Floating-Point Data Types

Type Storage Absolute Range of Values (+ and -)
float 4 bytes 1.40129846432481707x10-45 to

3.40282346638528860x10+38

double and
longƒdouble

8 bytes 4.94065645841246544x10-324 to
1.79769313486231570x10+308

In compilers using the same amount of storage for double and long double numbers,

these two data types are identical. (The sizeof() operator in Program 2.1 can always be used
to determine the amount of storage your compiler reserves for these data types.) A float literal is

indicated by appending an f or F to the number, and a longƒdouble is created by appending

an l or L to the number. In the absence of these suffixes, a floating-point number defaults to

a double. For example, take a look at the following:

9.234 indicates a double literal.
9.234F indicates a float literal.
9.234L indicates a long double literal.

The only difference in these numbers is the amount of storage the computer can use for

them. Appendix D (available online) describes the binary storage format used for floating-

point numbers and its impact on number precision.

Exponential Notation
Floating-point numbers can also be written in exponential notation, which is similar to scien-

tific notation and is commonly used to express both very large and very small values in com-

pact form. The following examples show how numbers with decimals can be expressed in

exponential and scientific notation:

Decimal Notation Exponential Notation Scientific Notation
162.5 1.625e2 1.625 � 102

63421. 6.3421e4 6.3421 � 104

.00731 7.31e-3 7.31 � 10-3

.000625 6.25e-4 6.25 � 10-4

In exponential notation, the letter e stands for “exponent.” The number following the e

represents a power of 10 and indicates the number of places the decimal point should be

moved to obtain the standard decimal value. The decimal point is moved to the right if the

number after the e is positive or moved to the left if the number after the e is negative. For

example, the e2 in 1.625e2 means move the decimal place two places to the right, so the

number becomes 162.5. The e-3 in 7.31e-3 means move the decimal point three places to

the left, so 7.31e-3 becomes .00731.

Certain notations occur frequently enough in computer applications that they have their

own symbols. Table 2.6 lists the most commonly used of these symbols.

C_C7785_02.1c 45C_C7785_02.1c 45 1/18/11 10:44 AM1/18/11 10:44 AM

46 Data Types, Declarations, and Displays

Table 2.6 Exponential and Scientific Symbol Names

Exponential
Notation Scientific Notation Symbol Name
e-12 10-12 p pico
e-9 10-9 n nano
e-6 10-6 µ micro
e-3 10-3 m milli
e3 103 k kilo
e6 106 M mega
e9 109 G giga
e12 1012 T tera

For example, the storage capacities of flash drives are currently specified in gigabytes

(GB), meaning they contain trillions (109) of bytes. Similarly, computer processing speeds are

specified in the nanosecond (nsec) range, which means a billionth (10-9) of a second.

Point of Information
What Is Precision?

In numerical theory, the term precision typically refers to numerical accuracy. In this con-
text, the statement “This computation is accurate, or precise, to the fifth decimal place”
means the fifth digit after the decimal point has been rounded, and the number is accu-
rate to within ±0.00005.

In computer programming, “precision” can refer to a number’s accuracy or the num-
ber of significant digits; significant digits are defined as the number of clearly correct
digits plus 1. For example, if the number 12.6874 has been rounded to the fourth deci-
mal place, it’s correct to say that this number is precise to the fourth decimal place. In
other words, all digits in the number are accurate except the fourth decimal digit, which
has been rounded. Similarly, this same number has a precision of six digits, which means
the first five digits are correct and the sixth digit has been rounded. Another way of say-
ing this is that the number 12.6874 has six significant digits.

The significant digits in a number need not have any relation to the number of dis-
played digits. For example, if the number 687.45678921 has five significant digits, it’s
accurate only to the value 687.46; the last digit is assumed to be rounded. Similarly, dol-
lar values in large financial applications are often rounded to the nearest hundred thou-
sand dollars. In these applications, a displayed dollar value of $12,400,000, for example,
isn’t accurate to the closest dollar. If this value is specified as having three significant dig-
its, it’s accurate only to the hundred-thousand digit.

C_C7785_02.1c 46C_C7785_02.1c 46 1/18/11 10:44 AM1/18/11 10:44 AM

47Chapter 2
Data Types

 EXERCISES 2.1

1. (Practice) Determine data types suitable for the following data:

a. The average of four grades

b. The number of days in a month

c. The length of the Golden Gate Bridge

d. The numbers in a state lottery

e. The distance from Brooklyn, N.Y. to Newark, N.J.

f. The single-character prefix that specifies a component type

2. (Practice) Compile and run Program 2.1.

3. (Modify) Modify Program 2.1 to determine the storage your compiler uses for all the C++

integer data types.

4. (Practice) Show how the name KINGSLEY is stored in a computer that uses the ASCII code

by drawing a diagram similar to Figure 2.3, shown previously.

5. (Practice) Repeat Exercise 4, using the letters of your own last name.

6. (Modify) Modify Program 2.1 to determine how many bytes your compiler assigns to the

float, double, and longƒdouble data types.

7. (Practice) Convert the following numbers from exponential form to standard decimal form:

a. 6.34e5

b. 1.95162e2

c. 8.395e1

d. 2.95e-3

e. 4.623e-4

8. (Practice) Convert the following numbers from scientific notation to standard decimal form:

a. 2.67 � 103

b. 2.67 � 10-3

c. 1.872 � 109

d. 1.872 � 10-9

e. 6.6256 � 10-34

9. (Practice) Write the following decimal numbers in scientific notation:

a. 126.

b. 656.23

c. 3426.95

d. 4893.2

e. .321

f. .0123

g. .006789

C_C7785_02.1c 47C_C7785_02.1c 47 1/18/11 10:44 AM1/18/11 10:44 AM

48 Data Types, Declarations, and Displays

10. (For thought) Because computers use different representations for storing integer, floating-

point, double-precision, and character values, discuss how a program might alert the computer

to the data types of different values it will be using.

11. (For thought) Although you have concentrated on operations involving integer and floating-

point numbers, C++ allows adding and subtracting characters and integers. (These operations

are possible with characters because they’re integer data types and are stored by using integer

codes.) Therefore, characters and integers can be mixed in arithmetic expressions. For exam-

ple, if your computer uses the ASCII code, the expression 'a'ƒ+ƒ1 equals 'b' and 'z'ƒ-ƒ1

equals 'y'. Similarly, 'A'ƒ+ƒ1 is 'B' and 'Z'ƒ-ƒ1 is 'Y'. With this information as back-

ground, determine the character results of the following expressions. (Assume all characters

are stored by using ASCII codes.)

a. 'm'ƒ-ƒ5

b. 'm'ƒ+ƒ5

c. 'G'ƒ+ƒ6

d. 'G'ƒ-ƒ6

e. 'b'ƒ+ƒ7

f. 'g'ƒ-ƒ1

g. 'G'ƒ-ƒ1

Note: To complete the following exercise, you need to understand basic computer storage concepts.
Specifically, if you’re unfamiliar with the concepts of bytes and words, refer to Section 2.6 before doing
the next exercise.

12. (Practice) Although the total number of bytes varies from computer to computer, memory

sizes of 65,536 to more than several million bytes are common. In computer language, the

letter K represents the number 1024, which is 2 raised to the 10th power, and M represents the

number 1,048,576, which is 2 raised to the 20th power. Therefore, a memory size of 640 KB is

really 640 times 1024 (655,360 bytes), and a memory size of 4 MB is really 4 times 1,048,576

(4,194,304 bytes). Using this information, calculate the actual number of bytes in the following:

a. A memory containing 512 MB

b. A memory consisting of 256 MB words, with each word consisting of 2 bytes

c. A memory consisting of 256 MB words, with each word consisting of 4 bytes

d. A thumb drive that specifies 2 MB

e. A disk that specifies 250 MB

f. A disk that specifies 8 GB (Hint: See Table 2.6.)

2.2 Arithmetic Operations

The previous section presented the data values corresponding to C++’s built-in data types.

This section explains the arithmetic operations that can be applied to these values.

Integers and real numbers can be added, subtracted, multiplied, and divided. Although it’s

usually better not to mix integers and real numbers when performing arithmetic operations,
you can get predictable results when using different data types in the same arithmetic expression.

NO
TE

C_C7785_02.1c 48C_C7785_02.1c 48 1/18/11 10:44 AM1/18/11 10:44 AM

49Chapter 2
Arithmetic Operations

Surprisingly, you can add and subtract character data and mix it with integer data to produce useful
results. (For example, 'A'ƒ+ƒ1 results in the character 'B'.) These operations are possible

because characters are stored by using integer codes.

The following operators used for arithmetic operations are called arithmetic operators:

Operation Operator
Addition +
Subtraction -
Multiplication *
Division /
Modulus division3 %

These operators are also called binary operators, which means the operator requires two

operands to produce a result. An operand can be a literal value or an identifier with an associ-

ated value. A simple binary arithmetic expression consists of a binary operator connecting two

literal values in this form:

literalValueƒoperatorƒliteralValue

Examples of simple binary arithmetic expressions include the following:

3ƒ+ƒ7
8ƒ-ƒ3
12.62ƒ+ƒ9.8
0.08ƒ*ƒ12.2
12.6ƒ/ƒ2

The spaces around arithmetic operators in these examples are inserted strictly for clarity

and can be omitted without affecting the value of the expression. However, an expression in

C++ must be entered in a straight-line form, as shown in these examples. For example, the

C++ expression equivalent to 12.6 divided by 2 must be entered as 12.6ƒ/ƒ2, not as the alge-

braic expression shown here:

12 6

2

.

You can use cout to display the value of any arithmetic expression. To do this, the value

must be sent to the object. For example, the following statement yields the display 21:

coutƒ<<ƒ(6ƒ+ƒ15);

Strictly speaking, the parentheses surrounding the expression 6 + 15 aren’t required to

indicate that the value of the expression (that is, 21) is being displayed.4 In addition to

3Don’t be concerned at this stage if you don’t understand the term “modulus division.” You learn more about this operator later in the

section “Integer Division.”
4The parentheses aren’t required because the + operator has a higher precedence than the << operator; therefore, the addition is

performed before the insertion.

C_C7785_02.1c 49C_C7785_02.1c 49 1/18/11 10:44 AM1/18/11 10:44 AM

50 Data Types, Declarations, and Displays

displaying a numerical value, cout can display a string identifying the output, as was done

in Section 2.1. For example, the following statement sends two pieces of data, a string and

a value, to cout:

coutƒ<<ƒ“Theƒsumƒofƒ6ƒandƒ15ƒisƒ“ƒ<<ƒƒ(6ƒ+ƒ15);

Each set of data sent to cout must be preceded by its own insertion operator, <<. In the

preceding example, the first data sent for display is the string “Theƒsumƒofƒ6ƒandƒ15ƒisƒ“,

and the second item sent is the value of the expression 6ƒ+ƒ15. This statement produces the

following display:

Theƒsumƒofƒ6ƒandƒ15ƒisƒ21

The space between the word “is” and the number 21 is caused by the space in the string

sent to cout. As far as cout is concerned, its input is a set of characters sent to be displayed in

the order they’re received. Characters from the input are queued, one behind the other, and

sent to the screen for display. Placing a space in the input makes the space part of the stream

of characters that’s displayed. For example, the statement

coutƒ<<ƒ“Theƒsumƒofƒ12.2ƒandƒ15.754ƒisƒ“ƒ<<ƒƒ(12.2ƒ+ƒ15.754);

yields the following display:

Theƒsumƒofƒ12.2ƒandƒ15.754ƒisƒ27.954

When multiple insertions are sent to cout, the code can be spread across multiple lines.

Only one semicolon, however, must be used, which is placed after the last insertion and termi-

nates the complete statement. Therefore, the preceding display is also produced by the fol-

lowing statement, which spans two lines:

coutƒ<<ƒ“Theƒsumƒofƒ12.2ƒandƒ15.754ƒisƒ“
ƒƒƒƒƒ<<ƒƒ(12.2ƒ+ƒ15.754);

When you allow a statement to span multiple lines, two rules must be followed: A string

contained in quotation marks can’t be split across lines, and the terminating semicolon should

appear only on the last line. You can always place multiple insertion symbols within a line.

If floating-point numbers have six or fewer decimal digits, they’re displayed with enough

decimal places to accommodate the fractional part of the number. If the number has more than

six decimal digits, the fractional part is rounded to six decimal digits, and if the number has no

decimal digits, neither a decimal point nor any decimal digits are displayed.5

Program 2.2 illustrates using cout to display the results of arithmetic expressions in the

context of a complete program.

5None of this output is defined as part of the C++ language. Rather, it’s defined by a set of classes and routines provided with each

C++ compiler.

C_C7785_02.1c 50C_C7785_02.1c 50 1/18/11 10:44 AM1/18/11 10:44 AM

51Chapter 2
Arithmetic Operations

 Program 2.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“15.0ƒplusƒ2.0ƒequalsƒ“ƒ<<ƒ(15.0ƒ+ƒ2.0)ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“15.0ƒminusƒ2.0ƒequalsƒ“ƒ<<ƒ(15.0ƒ-ƒ2.0)ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“15.0ƒtimesƒ2.0ƒequalsƒ“ƒ<<ƒ(15.0ƒ*ƒ2.0)ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“15.0ƒdividedƒbyƒ2.0ƒequalsƒ“ƒ<<ƒ(15.0ƒ/ƒ2.0)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

The output of Program 2.2 is the following:

15.0ƒplusƒ2.0ƒequalsƒ17
15.0ƒminusƒ2.0ƒequalsƒ13
15.0ƒtimesƒ2.0ƒequalsƒ30
15.0ƒdividedƒbyƒ2.0ƒequalsƒ7.5

The only new item used in Program 2.2 is endl, which is an example of a C++ manipula-

tor. A manipulator is an item used to change how an output stream of characters is displayed.

In particular, the endl manipulator causes a newline character ('\n') to be inserted in the

display first, and then forces all current insertions to be displayed immediately, instead of wait-

ing for more data. (Section 3.2 lists the most commonly used manipulators.)

Expression Types
An expression is any combination of operators and operands that can be evaluated to yield a

value. An expression containing only integer values as operands is called an integer expression,

and the result of the expression is an integer value. Similarly, an expression containing only

floating-point values (single-precision and double-precision) as operands is called a floating-point
expression (also called a “real expression”), and the result of the expression is a floating-point

value. An expression containing integer and floating-point values is called a mixed-mode
expression. When mixing integer and floating-point values in an arithmetic operation, each

operation’s data type is determined by the following rules:

• If both operands are integers, the result of the operation is an integer.

• If one operand is a real value, the result of the operation is a double-precision value.

The result of an arithmetic expression is never a single-precision (float) number. This is

because during execution, a C++ program temporarily converts all single-precision numbers to

double-precision numbers when an arithmetic expression is evaluated.

C_C7785_02.1c 51C_C7785_02.1c 51 1/18/11 10:44 AM1/18/11 10:44 AM

52 Data Types, Declarations, and Displays

Although this point has no direct bearing on your work in this chapter, it’s worth noting

that the arithmetic operations of addition, subtraction, multiplication, and division are actually

implemented differently for integer and floating-point values. In this sense, arithmetic opera-

tors are considered to be “overloaded.” More formally, an overloaded operator is an operator

whose actual implementation depends on the types of operands encountered. In Part II, when

you see how to modify an operator’s execution, you’ll need this overloading capability.

Integer Division
The division of two integer values can produce rather strange results for the unwary. For

example, the expression 15/2 yields the integer result 7. Because integers can’t contain a frac-

tional part, the value 7.5 can’t be obtained. The fractional part resulting when two integers are

divided—the remainder—is always dropped (truncated). Therefore, the value of 9/4 is 2 and

20/3 is 6.

Often, however, you need to retain the remainder of an integer division. To do this, C++

provides the modulus operator (also referred to as the “remainder operator”), which has the

symbol %. This operator captures the remainder when an integer is divided by an integer; using

a noninteger value with the modulus operator results in a compiler error. The following exam-

ples show how the modulus operator is used:

9 % 4 is 1 (the remainder when 9 is divided by 4 is 1)
17 % 3 is 2 (the remainder when 17 is divided by 3 is 2)
15 % 4 is 3 (the remainder when 15 is divided by the 4 is 3)
14 % 2 is 0 (the remainder when 14 is divided by 2 is 0)

Negation
In addition to binary operators, C++ provides unary operators, which operate on a single oper-

and. One of these unary operators uses the same symbol as binary subtraction (-). With this

unary operator, the minus sign in front of a single numerical value negates (reverses the sign

of) the number.

Point of Information
The endl Manipulator

On many systems, the endl manipulator (derived from the term “end line”) and the \n
escape sequence are processed in the same way and produce the same effect. The one
exception is on systems where output is accumulated internally until enough characters
collect to make it advantageous to display them all in one burst onscreen. In these sys-
tems, referred to as “buffered,” the endl manipulator forces all accumulated output to
be displayed immediately, without waiting for additional characters to fill the buffer area
before being printed. As a practical matter, you wouldn’t notice a difference in the final
display. As a general rule, however, use the \n escape sequence whenever it can be
included in an existing string, and use the endl manipulator whenever a \n would
appear by itself or to formally signify the end of a specific group of output.

C_C7785_02.1c 52C_C7785_02.1c 52 1/18/11 10:44 AM1/18/11 10:44 AM

53Chapter 2
Arithmetic Operations

Table 2.7 summarizes the six arithmetic operations described so far and lists the data type

for the result each operator produces, based on the data type of the operands involved.

Table 2.7 Summary of Arithmetic Operators

Operation Operator
Symbol

Type Operand(s) Result

Addition + Binary Both are integers
One operand is not
an integer

Integer
Double-precision

Subtraction - Binary Both are integers
One operand is not
an integer

Integer
Double-precision

Multiplication * Binary Both are integers
One operand is not
an integer

Integer
Double-precision

Division / Binary Both are integers
One operand is not
an integer

Integer
Double-precision

Modulus % Binary Both are integers
One operand is not
an integer

Integer
Compiler error

Negation - Unary Integer or double Same as operand

Operator Precedence and Associativity
In addition to simple expressions, such as 5ƒ+ƒ12 and .08ƒ*ƒ26.2, you can create more com-

plex arithmetic expressions. C++, like most other programming languages, requires following

certain rules when writing expressions containing more than one arithmetic operator:

• Two binary operator symbols must never be placed side by side. For example, 5ƒ*ƒ%ƒ6

is invalid because two operators, * and %, are placed next to each other.

• Parentheses can be used to form groupings, and all expressions enclosed in parentheses

are evaluated first. In this way, you can use parentheses to alter the evaluation to any

order. For example, in the expression (6ƒ+ƒ4)ƒ/ƒ(2ƒ+ƒ3), the 6ƒ+ƒ4 and 2ƒ+ƒ3 are

evaluated first to yield 10ƒ/ƒ5. The 10ƒ/ƒ5 is then evaluated to yield 2.

• Parentheses can be enclosed by other parentheses. For example, the expression

(2ƒ*ƒ(3ƒ+ƒ7)ƒ)ƒ/ƒ5 is valid and evaluates to 4. When parentheses are included

within parentheses, expressions in the innermost parentheses are always evaluated first.

The evaluation continues from innermost to outermost parentheses until all expressions

in parentheses have been evaluated. The number of closing parentheses,), must always

equal the number of opening parentheses, (, so that no unpaired sets exist.

• Parentheses can’t be used to indicate multiplication; instead, the multiplication

operator, *, must be used. For example, the expression (3ƒ+ƒ4)ƒ(5ƒ+ƒ1) is invalid.

The correct expression is (3ƒ+ƒ4)ƒ*ƒ(5ƒ+ƒ1).

C_C7785_02.1c 53C_C7785_02.1c 53 1/18/11 10:44 AM1/18/11 10:44 AM

54 Data Types, Declarations, and Displays

Parentheses should specify logical groupings of operands and indicate the intended order

of arithmetic operations clearly to the compiler and programmers. Although expressions in

parentheses are always evaluated first, expressions containing multiple operators, whether

enclosed in parentheses or not, are evaluated by the priority, or precedence, of the operators.

There are three levels of precedence:

1. P1—All negations are done first.

2. P2—Multiplication, division, and modulus operations are computed next. Expressions

containing more than one multiplication, division, or modulus operator are evaluated

from left to right as each operator is encountered. For example, in the expression

35ƒ/ƒ7ƒ%ƒ3ƒ*ƒ4, all operations have the same priority, so the operations are per-

formed from left to right as each operator is encountered. The division is done first,

yielding the expression 5ƒ%ƒ3ƒ*ƒ4. The modulus operation, 5ƒ%ƒ3, is performed

next, yielding a result of 2. Finally, the expression 2ƒ*ƒ4 is computed to yield 8.

3. P3—Addition and subtraction are computed last. Expressions containing more than one

addition or subtraction are evaluated from left to right as each operator is encountered.

In addition to precedence, operators have an associativity, which is the order in which

operators of the same precedence are evaluated, as described in rule P2. For example, does the

expression 6.0ƒ*ƒ6ƒ/ƒ4 yield 9.0, which is (6.0ƒ*ƒ6)ƒ/ƒ4, or 6.0, which is 6.0ƒ*ƒ(6ƒ/ƒ4)?

The answer is 9.0 because C++’s operators use the same associativity as in general mathematics,

which evaluates multiplication from left to right, as rule P2 indicates.

Table 2.8 lists the precedence and associativity of the operators discussed in this section.

As you have seen, an operator’s precedence establishes its priority in relation to all other

operators. Operators at the top of Table 2.8 have a higher priority than operators at the bottom

of the table. In expressions with multiple operators of different precedence, the operator with

the higher precedence is used before an operator with lower precedence. For example, in the

expression 6ƒ+ƒ4ƒ/ƒ2ƒ+ƒ3, because the division operator has a higher precedence (P2) than

the addition operator, the division is done first, yielding an intermediate result of 6ƒ+ƒ2ƒ+ƒ3.

The additions are then performed, left to right, to yield a final result of 11.

Table 2.8 Operator Precedence and Associativity

Operator Associativity
Unary - Right to left
*ƒ/ƒ% Left to right
+ƒ- Left to right

Finally, take a look at using the precedence rules shown in Table 2.8 to evaluate an expres-

sion containing operators of different precedence, such as 8ƒ+ƒ5ƒ*ƒ7ƒ%ƒ2ƒ*ƒ4. Because the

multiplication and modulus operators have a higher precedence than the addition operator,

C_C7785_02.1c 54C_C7785_02.1c 54 1/18/11 10:44 AM1/18/11 10:44 AM

55Chapter 2
Arithmetic Operations

these two operations are evaluated first (P2), using their left-to-right associativity, before the

addition is evaluated (P3). Therefore, the complete expression is evaluated as follows:

8ƒ+ƒ5ƒ*ƒ7ƒ%ƒ2ƒ*ƒ4ƒ=
ƒƒƒ8ƒ+ƒ35ƒ%ƒ2ƒ*ƒ4ƒ=
ƒƒƒƒƒƒƒƒ8ƒ+ƒ1ƒ*ƒ4ƒ=
ƒƒƒƒƒƒƒƒƒƒƒƒ8ƒ+ƒ4ƒ=ƒ12

 EXERCISES 2.2

1. (Practice) For the following correct algebraic expressions and corresponding incorrect C++

expressions, find the errors and write corrected C++ expressions:

Algebra C++ Expression

a. (2)(3)ƒ+ƒ(4)(5) (2)(3)ƒ+ƒ(4)(5)

b. 6 + 18
2

 6ƒ+ƒ18ƒ/ƒ2

c. 4.5
12.2 - 3.1

 4.5ƒ/ƒ12.2ƒ-ƒ3.1

d. 4.6(3.0ƒ+ƒ14.9) 4.6ƒ(3.0ƒ+ƒ14.9)

e. (12.1ƒ+ƒ18.9)(15.3ƒ-ƒ3.8) (12.1ƒ+ƒ18.9)ƒ(15.3ƒ-ƒ3.8)

2. (Practice) Determine the values of the following integer expressions:

a. 3ƒ+ƒ4ƒ*ƒ6 f. 20ƒ-ƒ2ƒ/ƒ(6ƒ+ƒ3)

b. 3ƒ*ƒ4ƒ/ƒ6ƒ+ƒ6 g. (20ƒ-ƒ2)ƒ/ƒ6ƒ+ƒ3

c. 2ƒ*ƒ3ƒ/ƒ12ƒ*ƒ8ƒ/ƒ4 h. (20ƒ-ƒ2)ƒ/ƒ(6ƒ+ƒ3)

d. 10ƒ*ƒ(1ƒ+ƒ7ƒ*ƒ3) i. 50ƒ%ƒ20

e. 20ƒ-ƒ2ƒ/ƒ6ƒ+ƒ3 j. (10ƒ+ƒ3)ƒ%ƒ4

3. (Practice) Determine the value of the following floating-point expressions:

a. 3.0ƒ+ƒ4.0ƒ*ƒ6.0

b. 3.0ƒ*ƒ4.0ƒ/ƒ6.0ƒ+ƒ6.0

c. 2.0ƒ*ƒ3.0ƒ/ƒ12.0ƒ*ƒ8.0ƒ/ƒ4.0

d. 10.0ƒ*ƒ(1.0ƒ+ƒ7.0ƒ*ƒ3.0)

e. 20.0ƒ-ƒ2.0ƒ/ƒ6.0ƒ+ƒ3.0

f. 20.0ƒ-ƒ2.0ƒ/ƒ(6.0ƒ+ƒ3.0)

g. (20.0ƒ-ƒ2.0)ƒ/ƒ6.0ƒ+ƒ3.0

h. (20.0ƒ-ƒ2.0)ƒ/ƒ(6.0ƒ+ƒ3.0)

C_C7785_02.1c 55C_C7785_02.1c 55 1/18/11 10:44 AM1/18/11 10:44 AM

56 Data Types, Declarations, and Displays

4. (Practice) Evaluate the following mixed-mode expressions and list the data type of the result.

In evaluating the expressions, be aware of the data types of all intermediate calculations.

a. 10.0ƒ+ƒ15ƒ/ƒ2ƒ+ƒ4.3

b. 10.0ƒ+ƒ15.0ƒ/ƒ2ƒ+ƒ4.3

c. 3.0ƒ*ƒ4ƒ/ƒ6ƒ+ƒ6

d. 3ƒ*ƒ4.0ƒ/ƒ6ƒ+ƒ6

e. 20.0ƒ-ƒ2ƒ/ƒ6ƒ+ƒ3

f. 10ƒ+ƒ17ƒ*ƒ3ƒ+ƒ4

g. 10ƒ+ƒ17ƒ/ƒ3.0ƒ+ƒ4

h. 3.0ƒ*ƒ(4ƒ%ƒ6)ƒ+ƒ6

i. 10ƒ+ƒ17ƒ%ƒ3ƒ+ƒ4

5. (Practice) Assume that amount stores the integer value 1, m stores the integer value 50, n stores

the integer value 10, and p stores the integer value 5. Evaluate the following expressions:

a. nƒ/ƒpƒ+ƒ3

b. mƒ/ƒpƒ+ƒnƒ-ƒ10ƒ*ƒamount

c. mƒ-ƒ3ƒ*ƒnƒ+ƒ4ƒ*ƒamount

d. amountƒ/ƒ5

e. 18ƒ/ƒp

f. -pƒ*ƒn

g. -mƒ/ƒ20

h. (mƒ+ƒn)ƒ/ƒ(pƒ+ƒamount)

i. mƒ+ƒnƒ/ƒpƒ+ƒamount

6. (Practice) Repeat Exercise 5, assuming that amount stores the value 1.0, m stores the value

50.0, n stores the value 10.0, and p stores the value 5.0.

7. (Practice) Enter, compile, and run Program 2.2.

8. (Desk check) Determine the output of the following program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()ƒƒ//ƒaƒprogramƒillustratingƒintegerƒtruncation
{
ƒƒcoutƒ<<ƒ“answer1ƒisƒtheƒintegerƒ“ƒ<<ƒ9/4;
ƒƒcoutƒ<<ƒ“\nanswer2ƒisƒtheƒintegerƒ“ƒ<<ƒ17/3;

ƒƒreturnƒ0;
}

C_C7785_02.1c 56C_C7785_02.1c 56 1/18/11 10:44 AM1/18/11 10:44 AM

57Chapter 2
Variables and Declarations

9. (Desk check) Determine the output of the following program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()ƒƒ//ƒaƒprogramƒillustratingƒtheƒ%ƒoperator
{
ƒƒcoutƒ<<ƒ“Theƒremainderƒofƒ9ƒdividedƒbyƒ4ƒisƒ“ƒ<<ƒ9ƒ%ƒ4;
ƒƒcoutƒ<<ƒ“\nTheƒremainderƒofƒ17ƒdividedƒbyƒ3ƒisƒ“ƒ<<ƒ17ƒ%ƒ3;

ƒƒreturnƒ0;
}

10. (Program) Write a C++ program that displays the results of the expressions 3.0ƒ*ƒ5.0,

7.1ƒ*ƒ8.3ƒ-ƒ2.2, and 3.2ƒ/ƒ(6.1ƒ*ƒ5). Calculate the value of these expressions manu-

ally to verify that the displayed values are correct.

11. (Program) Write a C++ program that displays the results of the expressions 15ƒ/ƒ4, 15ƒ%ƒ4,

and 5ƒ*ƒ3ƒ-ƒ(6ƒ*ƒ4). Calculate the value of these expressions manually to verify that the

displayed values are correct.

2.3 Variables and Declarations

All integer, floating-point, and other values used in a program are stored in and retrieved from

the computer’s memory. Conceptually, locations in memory are arranged like the rooms in a

large hotel, and each memory location has a unique address, like room numbers in a hotel.

Before high-level languages such as C++, memory locations were referenced by their addresses.

For example, storing the integer values 45 and 12 in the memory locations 1652 and 2548 (see

Figure 2.4) required instructions equivalent to the following:

Put a 45 in location 1652
Put a 12 in location 2548

1652 2548

1245

Memory addresses

Storage for one integer Storage for one integer

Figure 2.4 Enough storage for two integers

C_C7785_02.1c 57C_C7785_02.1c 57 1/18/11 10:44 AM1/18/11 10:44 AM

58 Data Types, Declarations, and Displays

To add the two numbers just stored and save the result in another memory location, such

as 3000, you need an instruction such as the following:

Add the contents of location 1652
to the contents of location 2548
and store the result in location 3000

Clearly, this method of storage and retrieval is cumbersome. In high-level languages such

as C++, symbolic names, called variables, are used in place of memory addresses. A variable is

simply a name the programmer assigns to refer to computer storage locations. The term “vari-

able” is used because the value stored in the memory locations assigned to the variable can

change, or vary. For each name the programmer uses, the computer keeps track of the memory

address corresponding to that name. In the hotel room analogy, it’s equivalent to putting a

name on a room’s door and referring to the room by this name, such as calling it the Blue Room

instead of Room 205.

In C++ the selection of variable names is left to the programmer, as long as the following

rules are observed:

• The variable name must begin with a letter or underscore (_) and can contain only

letters, underscores, or digits. It can’t contain blank spaces, commas, or special sym-

bols, such as () & , $ # . ! ?. Use initial uppercase letters to separate names consist-

ing of multiple words.

• A variable name can’t be a keyword (see Table 1.1).

These rules are similar to those for selecting function names. Like function names, vari-

able names should be mnemonics that give some indication of the variable’s purpose. For a

variable used to store a value that’s the total of other values, a good name is sum or total.

Variable names giving no indication of the value stored, such as r2d2, linda, and getum,

shouldn’t be used. As with function names, variable names can consist of uppercase and

lowercase letters.

Assume the first memory location shown in Figure 2.5, which has the address 1652, is

given the name num1. The memory location 2548 is given the variable name num2, and mem-

ory location 3000 is given the variable name total.

num1

1652 2548 3000

num2 total

1245 57

Variable names

Memory addresses

Figure 2.5 Naming storage locations

C_C7785_02.1c 58C_C7785_02.1c 58 1/18/11 10:44 AM1/18/11 10:44 AM

59Chapter 2
Variables and Declarations

Using these variable names, the operation of storing 45 in location 1652, storing 12 in loca-

tion 2548, and adding the contents of these two locations is accomplished with these C++

statements:

num1ƒ=ƒ45;
num2ƒ=ƒ12;
totalƒ=ƒnum1ƒ+ƒnum2;

Each of these statements is called an assignment statement because it tells the computer

to assign (store) a value in a variable. Assignment statements always have an equals sign (=)

and one variable name immediately to the left of the =. The value to the right of the equals

sign is determined first; this value is then assigned to the variable to the left of the equals sign.

The blank spaces in assignment statements are inserted for readability. Assignment statements

are explained in more detail in Chapter 3, but for now, just know that you can use them to store

values in variables.

A variable name is useful because it frees programmers from having to think about where

data is physically stored in the computer. You simply use the variable name and let the com-

piler worry about where in memory the data is actually stored. Before storing a value in a vari-

able, however, C++ requires clearly declaring the type of data to be stored in it. You must tell

the compiler, in advance, the names of variables used for characters, the names used for inte-

gers, and the names used to store other C++ data types.

Declaration Statements
To name a variable and specify the data type that can be stored in it, you use a declaration
statement, which has this general form:

dataTypeƒvariableName;

In this form, dataType designates a valid C++ data type, and variableName is the name

you select for the variable. For example, variables used to hold integer values are declared by

using the keyword int to specify the data type and have this form:

intƒvariableName;

Point of Information
Atomic Data

All the variables declared so far have been used to store atomic data values. An atomic
data value is considered a complete entity and can’t be decomposed into a smaller data
type supported by the language. For example, although an integer can be decomposed
into separate digits, C++ doesn’t have a numerical digit type. Instead, each integer is
regarded as a complete value and, therefore, is considered atomic data. Because the
integer data type supports only atomic data values, it’s said to be an atomic data type.
As you might expect, doubles, chars, and bools are atomic data types, too.

C_C7785_02.1c 59C_C7785_02.1c 59 1/18/11 10:44 AM1/18/11 10:44 AM

60 Data Types, Declarations, and Displays

Therefore, the following declaration statement declares sum as the name of a variable

capable of storing an integer value:

intƒsum;

In addition, the keyword long is used to specify a long integer.6 For example, the

statement

longƒdatenum;

declares datenum as a variable used to store a long integer. When you’re using the long

qualifier, you can also include the keyword int, so the previous declaration can also be written

as follows:

longƒintƒdatenum;

Variables used to hold single-precision values are declared by using the keyword float,

and variables used to hold double-precision values are declared by using the keyword double.

For example, the following statement declares firstnum as a variable used to store a single-

precision number:

floatƒfirstnum;

Similarly, the following statement declares that the variable secnum is used to store a

double-precision number:

doubleƒsecnum;

Although declaration statements can be placed anywhere in a function, typically they’re

grouped together and placed after the function’s opening brace. However, a variable must

always be declared before using it, and like all C++ statements, declaration statements must

end with a semicolon. A simple main() function containing declaration statements right after

the opening function brace has this general form:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdeclarationƒstatements;

ƒƒotherƒstatements;

ƒƒreturnƒ0;
}

Program 2.3 uses this form in declaring and using four double-precision variables, with the

cout object used to display one of the variable’s contents.

6Additionally, the keywords unsignedƒint are used to specify an integer that can store only non-negative numbers, and the keyword

short specifies a short integer.

C_C7785_02.1c 60C_C7785_02.1c 60 1/18/11 10:44 AM1/18/11 10:44 AM

61Chapter 2
Variables and Declarations

 Program 2.3

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒdoubleƒgrade1;ƒƒ//ƒdeclareƒgrade1ƒasƒaƒdoubleƒvariable
ƒƒdoubleƒgrade2;ƒƒ//ƒdeclareƒgrade2ƒasƒaƒdoubleƒvariable
ƒƒdoubleƒtotal;ƒƒƒ//ƒdeclareƒtotalƒasƒaƒdoubleƒvariable
ƒƒdoubleƒaverage;ƒ//ƒdeclareƒaverageƒasƒaƒdoubleƒvariable

ƒƒgrade1ƒ=ƒ85.5;
ƒƒgrade2ƒ=ƒ97.0;
ƒƒtotalƒ=ƒgrade1ƒ+ƒgrade2;
ƒƒaverageƒ=ƒtotal/2.0;ƒƒ//ƒdivideƒtheƒtotalƒbyƒ2.0
ƒƒcoutƒ<<ƒ“Theƒaverageƒgradeƒisƒ“ƒ<<ƒaverageƒ<<ƒendl;

ƒƒreturnƒ0;
}

The placement of the declaration statements in Program 2.3 is straightforward, although

you’ll see shortly that these four declarations can be combined into a single declaration state-

ment. When Program 2.3 runs, the following output is displayed:

Theƒaverageƒgradeƒisƒ91.25

Notice that when a variable name is inserted in a cout statement, the value stored in the

variable is placed on the output stream and displayed.

Just as integer and real (single-precision, double-precision, and long double) variables

must be declared before they can be used, a variable used to store a single character must also

be declared. Character variables are declared by using the keyword char. For example, the

following declaration specifies that ch is a character variable:

charƒch;

Program 2.4 illustrates this declaration and the use of cout to display the value stored in

a character variable.

C_C7785_02.1c 61C_C7785_02.1c 61 1/18/11 10:44 AM1/18/11 10:44 AM

62 Data Types, Declarations, and Displays

 Program 2.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcharƒch;ƒƒƒƒƒ//ƒthisƒdeclaresƒaƒcharacterƒvariable

ƒƒchƒ=ƒ'a';ƒƒƒƒ//ƒstoreƒtheƒletterƒaƒinƒch
ƒƒcoutƒ<<ƒ“Theƒcharacterƒstoredƒinƒchƒisƒ“ƒ<<ƒchƒ<<ƒendl;
ƒƒchƒ=ƒ'm';ƒƒƒƒ//ƒnowƒstoreƒtheƒletterƒmƒinƒch
ƒƒcoutƒ<<ƒ“Theƒcharacterƒnowƒstoredƒinƒchƒisƒ“<<ƒchƒ<<ƒendl;

ƒƒreturnƒ0;
}

When Program 2.4 runs, this output is produced:

Theƒcharacterƒstoredƒinƒchƒisƒa
Theƒcharacterƒnowƒstoredƒinƒchƒisƒm

Notice that the first letter stored in the variable ch is a and the second letter stored is m.

Because a variable can be used to store only one value at a time, assigning m to the variable

overwrites the a value automatically.

Multiple Declarations
Variables of the same data type can always be grouped together and declared by using a single

declaration statement, which has this common form:

dataTypeƒvariableList;

For example, the four separate declarations used in Program 2.3

doubleƒgrade1;
doubleƒgrade2;
doubleƒtotal;
doubleƒaverage;

can be replaced with this single declaration statement:

doubleƒgrade1,ƒgrade2,ƒtotal,ƒaverage;

Similarly, the two character declarations

charƒch;
charƒkey;

C_C7785_02.1c 62C_C7785_02.1c 62 1/18/11 10:44 AM1/18/11 10:44 AM

63Chapter 2
Variables and Declarations

can be replaced with this single declaration statement:

charƒch,ƒkey;

Declaring multiple variables in a single declaration statement requires giving the data

type of variables only once, separating all variable names by commas, and using only one semi-

colon to terminate the declaration. The space after each comma is inserted for readability and

isn’t required.

Declaration statements can also be used to store a value in declared variables. For exam-

ple, the declaration statement

intƒnum1ƒ=ƒ15;

both declares the variable num1 as an integer variable and sets the value of 15 in the variable.

When a declaration statement is used to store a value in a variable, the variable is said to be ini-
tialized. Therefore, in this example, it’s correct to say the variable num1 has been initialized to 15.

Similarly, the following declaration statements declare three double-precision variables

and initialize two of them:

doubleƒgrade1ƒ=ƒ87.0;
doubleƒgrade2ƒ=ƒ93.5;
doubleƒtotal;

Expressions using constants and/or previously initialized variables can also be used as

initializers. Therefore, the expression 87.5ƒ-ƒ3.0ƒ*ƒfactor is a valid initializer only if

factor has been declared and initialized previously. Additionally, multiple initializations can

be made by using a single declaration statement. These declarations, however, should be

clear and, if possible, short, as in the declaration intƒx,ƒy=0,ƒz=0;. Program 2.3 with dec-

laration initialization becomes Program 2.3a.

 Program 2.3a

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒgrade1ƒ=ƒ85.5;
ƒƒdoubleƒgrade2ƒ=ƒ97.0;
ƒƒdoubleƒtotal,ƒaverage;

ƒƒtotalƒ=ƒgrade1ƒ+ƒgrade2;
ƒƒaverageƒ=ƒtotal/2.0;ƒƒ//ƒdivideƒtheƒtotalƒbyƒ2.0
ƒƒcoutƒ<<ƒ“Theƒaverageƒgradeƒisƒ“ƒ<<ƒaverageƒ<<ƒendl;

ƒƒreturnƒ0;
}

C_C7785_02.1c 63C_C7785_02.1c 63 1/18/11 10:44 AM1/18/11 10:44 AM

64 Data Types, Declarations, and Displays

Notice the blank line after the last declaration statement. Inserting a blank line after vari-

able declarations placed at the top of a function body is a good programming practice. It

improves a program’s appearance and readability.

An interesting feature of C++ is that variable declarations can be intermixed and even

contained in other statements; the only requirement is that a variable must be declared before

its use. For example, the variable total in Program 2.3a could have been declared when it’s

first used with the statement doubleƒtotalƒ=ƒgrade1ƒ+ƒgrade2;. In restricted situations

(such as debugging, described in Section 4.7, or in a for loop, described in Section 5.3), declar-

ing a variable at its first use can be helpful. In general, however, it’s preferable not to spread

out declarations; instead, group them as concisely and clearly as possible at the top of each

function.

Memory Allocation
The declaration statements you have seen so far have performed both software and hardware

tasks. From a software perspective, declaration statements always provide a list of variables and

their data types. In this software role, variable declarations also help control an otherwise com-

mon and troublesome error caused by misspelling a variable’s name in a program. For example,

assume a variable named distance is declared and initialized by using this statement:

intƒdistanceƒ=ƒ26;

Later in the program, say the variable is inadvertently misspelled in this statement:

mpgƒ=ƒdistnceƒ/ƒgallons;

In languages that don’t require variable declarations, the program treats distnce as a new

variable and assigns it an initial value of 0 or uses whatever value happens to be in the vari-

able’s storage area. In either case, a value is calculated and assigned to mpg, and finding the

error or even knowing an error occurred could be difficult. These errors are impossible in C++,

however, because the compiler flags distnce as an undeclared variable. The compiler can’t,

of course, detect when one declared variable is mistakenly typed in place of another declared

variable.

In addition to their software role, declaration statements can also perform a hardware

task. Because each data type has its own storage requirements, the computer can allocate

enough storage for a variable only after knowing the variable’s data type. Variable declara-

tions provide this information, so they can be used to force the compiler to reserve enough

physical memory storage for each variable. Declaration statements used for this hardware

task are also called definition statements because they define or tell the compiler how much

memory is needed for data storage.

All the declaration statements you have encountered so far have also been definition state-

ments. Later, you’ll see declaration statements that don’t allocate storage and are used simply

to alert the program to the data types of variables created elsewhere in the program.

Figures 2.6a through 2.6d illustrate the operations set in motion by definition statements.

The figures show that definition statements (or declaration statements that also allocate

memory) “tag” the first byte of each set of reserved bytes with a name. This name is, of course,

the variable’s name, and the computer uses it to locate the starting point of a variable’s

reserved memory area.

C_C7785_02.1c 64C_C7785_02.1c 64 1/18/11 10:44 AM1/18/11 10:44 AM

65Chapter 2
Variables and Declarations

Tells the computer to

int total;

Reserve enough room
for an integer number

“Tag” the first byte of
 reserved storage with
 the name total

Tells the computer to

4 bytes

Figure 2.6a Defining the integer variable named total

Tells the computer to

float firstnum;

Reserve enough room
for a single-precision number

“Tag” the first byte of
 reserved storage with
 the name firstnum

Tells the computer to

4 bytes

Figure 2.6b Defining the floating-point variable named firstnum

Tells the computer to

double secnum;

Reserve enough room
for a double-precision number

“Tag” the first byte of
 reserved storage with
 the name secnum

Tells the computer to

8 bytes

Figure 2.6c Defining the double-precision variable named secnum

Tells the computer to

char key;

Reserve enough room
for a character

“Tag” the first byte of
 reserved storage with
 the name key

Tells the computer to

1 byte

Figure 2.6d Defining the character variable named key

C_C7785_02.1c 65C_C7785_02.1c 65 1/18/11 10:44 AM1/18/11 10:44 AM

66 Data Types, Declarations, and Displays

After a variable has been declared in a program, typically a programmer uses it to refer to

the variable’s contents (its value). The value’s memory location is generally of little concern to

programmers. The compiler, however, must know where each value is stored and locate each

variable correctly. For this task, the compiler uses the variable name to locate the first byte of

storage previously allocated to the variable. Knowing the variable’s data type then allows the

compiler to store or retrieve the correct number of bytes.

 EXERCISES 2.3

1. (Practice) State whether the following variable names are valid. If they’re invalid, state the

reason.

prod_a c1234 abcd _c3 12345
newbal while $total newƒbal a1b2c3d4
9ab6 sum.of average grade1 finGrade

2. (Practice) State whether the following variable names are valid. If they’re invalid, state the

reason. Also, indicate which of the valid variable names shouldn’t be used because they convey

no information about the variable.

salestax a243 r2d2 firstNum cc_a1
harry sue c3p0 average sum
maximum okay a awesome goforit
3sum for tot.a1 c$five netpay

3. (Practice) a. Write a declaration statement to declare that the variable count will be used to

store an integer.

b. Write a declaration statement to declare that the variable grade will be used to store a

floating-point number.

c. Write a declaration statement to declare that the variable yield will be used to store a

double-precision number.

d. Write a declaration statement to declare that the variable initial will be used to store a

character.

4. (Practice) Write a single declaration statement for each set of variables:

a. num1, num2, and num3 used to store integer numbers

b. grade1, grade2, grade3, and grade4 used to store double-precision numbers

c. temp1, temp2, and temp3 used to store double-precision numbers

d. let1, let2, let3, and let4 used to store characters

5. (Practice) Write a single declaration statement for each set of variables:

a. firstnum and secnum used to store integers

b. price, yield, and coupon used to store double-precision numbers

c. average used to store a double-precision number

C_C7785_02.1c 66C_C7785_02.1c 66 1/18/11 10:44 AM1/18/11 10:44 AM

67Chapter 2
Variables and Declarations

6. (Modify) Rewrite each of these declaration statements as three separate declarations:

a. intƒmonth,ƒdayƒ=ƒ30,ƒyear;

b. doubleƒhours,ƒvolt,ƒpowerƒ=ƒ15.62;

c. doubleƒprice,ƒamount,ƒtaxes;

d. charƒinKey,ƒch,ƒchoiceƒ=ƒ'f';

7. (Desk check) a. Determine what each statement causes to happen in the following program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒnum1,ƒnum2,ƒtotal;

ƒƒnum1ƒ=ƒ25;
ƒƒnum2ƒ=ƒ30;
ƒƒtotalƒ=ƒnum1ƒ+ƒnum2;
ƒƒcoutƒ<<ƒ“Theƒtotalƒofƒ”ƒ<<ƒnum1ƒ<<ƒ“ƒandƒ“
ƒƒƒƒƒƒƒ<<ƒnum2ƒ<<ƒ“ƒisƒ“ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

b. What output will be displayed when the program in Exercise 7a runs?

8. (Program) Write a C++ program that stores the sum of the integer numbers 12 and 33 in a

variable named sum. Have your program display the value stored in sum.

9. (Program) Write a C++ program that stores the integer value 16 in the variable length and

the integer value 18 in the variable width. Have your program calculate the value assigned to

the perimeter variable, using this formula:

perimeter = 2 × (length + width)

 Your program should then display the value stored in perimeter. Be sure to declare all vari-

ables as integers at the beginning of the main() function.

10. (Program) Write a C++ program that stores the integer value 16 in the variable num1 and the

integer value 18 in the variable num2. (Be sure to declare the variables as integers.) Have your

program calculate the total of these numbers and their average. Store the total in an integer

variable named total and the average in an integer variable named average. (Use the state-

ment averageƒ=ƒtotal/2.0; to calculate the average.) Use a cout statement to display the

total and average.

C_C7785_02.1c 67C_C7785_02.1c 67 1/18/11 10:44 AM1/18/11 10:44 AM

68 Data Types, Declarations, and Displays

11. (Debug) Enter, compile, and run the following program. Determine why an incorrect average

is displayed and correct the error.

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒintƒnum1ƒ=ƒ15;
ƒƒintƒnum2ƒ=ƒ18;
ƒƒintƒtotal,ƒaverage;

ƒƒtotalƒ=ƒnum1ƒ+ƒnum2;
ƒƒaverageƒ=ƒtotalƒ/ƒ2.0;
ƒƒcoutƒ<<ƒ“Theƒaverageƒofƒ“ƒ<<ƒnum1
ƒƒƒƒƒƒƒ<<ƒ“ƒandƒ“ƒ<<ƒnum2ƒ<<ƒ“ƒisƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒaverageƒ<<ƒendl;

ƒƒreturnƒ0;
}

12. (Debug) The following program was written to correct the error produced by the program in

Exercise 11. Determine why this program also doesn’t provide the correct result and correct

the error.

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒintƒnum1ƒ=ƒ15;
ƒƒintƒnum2ƒ=ƒ18;
ƒƒintƒtotal;
ƒƒdoubleƒaverage;

ƒƒtotalƒ=ƒnum1ƒ+ƒnum2;
ƒƒaverageƒ=ƒtotalƒ/ƒ2;
ƒƒcoutƒ<<ƒ“Theƒaverageƒofƒ“ƒ<<ƒnum1
ƒƒƒƒƒƒƒ<<ƒ“ƒandƒ“ƒ<<ƒnum2ƒ<<ƒ“ƒisƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒaverageƒ<<ƒendl;

ƒƒreturnƒ0;
}

C_C7785_02.1c 68C_C7785_02.1c 68 1/18/11 10:44 AM1/18/11 10:44 AM

69Chapter 2
Variables and Declarations

13. (Program) Write a C++ program that stores the number 105.62 in the variable firstnum,

89.352 in the variable secnum, and 98.67 in the variable thirdnum. (Be sure to declare the

variables first as float or double.) Have your program calculate the total of the three num-

bers and their average. The total should be stored in the variable total and the average in the

variable average. (Use the statement averageƒ=ƒtotalƒ/3.0; to calculate the average.)

Use a cout statement to display the total and average.

14. (For thought) a. A statement used to clarify the relationship between squares and rectangles

is “All squares are rectangles but not all rectangles are squares.” Write a similar statement that

describes the relationship between definition and declaration statements.

b. Why must a variable be defined before any other C++ statement that uses the variable?

Note for Exercises 15 to 17: Assume that a character requires 1 byte of storage, an integer requires
4 bytes, a single-precision number requires 4 bytes, and a double-precision number requires 8 bytes.
Variables are assigned storage in the order they’re declared. (Review Section 2.6 if you’re unfamiliar
with the concept of a byte.) Refer to Figure 2.7 for these exercises.

Addresses

159 160 161 162 163 164 165 166

167 168 169 170 171 172 173 174

175 176 177 178 179 180 181 182

183 184 185 186 187 188 189 190

Figure 2.7 Memory bytes for Exercises 15 to 17

15. (Practice) a. Using Figure 2.7 and assuming the variable name rate is assigned to the byte

at memory address 159, determine the addresses corresponding to each variable declared in

the following statements. Also, fill in the correct number of bytes with the initialization data

included in the declaration statements. (Use letters for the characters, not the computer codes

that would actually be stored.)

floatƒrate;
charƒch1ƒ=ƒ'M',ƒch2ƒ=ƒ'E',ƒch3ƒ=ƒ'L',ƒch4ƒ=ƒ'T';
doubleƒtaxes;
intƒnum,ƒcountƒ=ƒ0;

b. Repeat Exercise 15a, but substitute the actual byte patterns that a computer using the

ASCII code would use to store characters in the variables ch1, ch2, ch3, and ch4. (Hint : Use

Table 2.2.)

NO
TE

C_C7785_02.1c 69C_C7785_02.1c 69 1/18/11 10:44 AM1/18/11 10:44 AM

70 Data Types, Declarations, and Displays

16. (Practice) a. Using Figure 2.7 and assuming the variable named cn1 is assigned to the byte

at memory address 159, determine the addresses corresponding to each variable declared in

the following statements. Also, fill in the correct number of bytes with the initialization data

included in the declaration statements. (Use letters for the characters, not the computer codes

that would actually be stored.)

charƒcn1ƒ=ƒ'P',ƒcn2ƒ=ƒ'E',ƒcn3ƒ=ƒ'R',ƒcn4ƒ=ƒ'F',ƒcn5ƒ=ƒ'E';
charƒcn6ƒ=ƒ'C',ƒcn7ƒ=ƒ'T',ƒkeyƒ=ƒ'\\',ƒschƒ=ƒ'\'',ƒincƒ=ƒ'A';
charƒinc1ƒ=ƒ'T';

b. Repeat Exercise 16a, but substitute the actual byte patterns a computer using the ASCII

code would use to store characters in each declared variable. (Hint: Use Tables 2.2 and 2.3.)

17. (Practice) Using Figure 2.7 and assuming the variable name miles is assigned to the byte at

memory address 159, determine the addresses corresponding to each variable declared in the

following statements:

floatƒmiles;
intƒcount,ƒnum;
doubleƒdist,ƒtemp;

2.4 Common Programming Errors

The common programming errors associated with the material in this chapter are as follows:

1. Forgetting to declare all variables used in a program. The compiler detects this error,

and an error message is generated for all undeclared variables.

2. Attempting to store one data type in a variable declared for a different type. The com-

piler doesn’t detect this error. The value is converted to the data type of the variable

it’s assigned to.

3. Using a variable in an expression before a value has been assigned to the variable.

Whatever value happens to be in the variable is used when the expression is evaluated

and, therefore, the result of the expression is meaningless.

4. Dividing integer values incorrectly. This error is usually hidden in a larger expression

and can be troublesome to detect. For example, the expression

3.425ƒ+ƒ2/3ƒ+ƒ7.9
 yields the same result as the expression

3.425ƒ+ƒ7.9
 because the integer division of 2/3 is 0.

5. Mixing data types in the same expression without understanding the effect clearly.

Because C++ allows expressions with “mixed” data types, understanding the order of

C_C7785_02.1c 70C_C7785_02.1c 70 1/18/11 10:44 AM1/18/11 10:44 AM

71Chapter 2
Chapter Summary

evaluation and the data type of all intermediate calculations is important. These are

the rules for evaluating the result of each binary operation:

• If both operands are integers, the result is an integer.

• If any operand is a real value, the result is a double-precision value.

 As a general rule, it’s better not to mix data types in an expression unless you want a

specific effect.

6. Forgetting to separate data streams passed to cout with an insertion symbol, <<.

2.5 Chapter Summary
1. The four basic types of data C++ recognizes are integer, floating-point, character, and

Boolean. Each data type is typically stored in a computer by using different amounts of

memory.

2. The cout object can be used to display all C++ data types.

3. Every variable in a C++ program must be declared, and the type of value it can store must

be specified. Declarations in a function can be placed anywhere in the function, although a

variable can be used only after it’s declared. Variables can also be initialized when they’re

declared. Additionally, variables of the same type can be declared with a single declaration

statement. Variable declaration statements have this general form:

dataTypeƒvariableName(s);

4. A simple C++ program containing declaration statements has this typical form:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdeclarationƒstatements;

ƒƒotherƒstatements;

ƒƒreturnƒ0;
}

5. Declaration statements always play the software role of informing the compiler of a func-

tion’s valid variable names. When a variable declaration also causes the computer to set

aside memory locations for the variable, the declaration statement is called a definition

statement. (All declarations used in this chapter have also been definition statements.)

6. The sizeof() operator can be used to determine the amount of storage reserved for

variables.

C_C7785_02.1c 71C_C7785_02.1c 71 1/18/11 10:44 AM1/18/11 10:44 AM

72 Data Types, Declarations, and Displays

2.6 Chapter Supplement: Bits, Bytes, and Binary Number
Representations

This section explains how numbers are stored in a computer’s memory and different means of

representing them.

Bits and Bytes
The physical components used in manufacturing a computer require that numbers and letters

in its memory not be stored with the same symbols people use. For example, the number 126

isn’t stored with the symbols 1, 2, and 6, nor is the letter you recognize as an “A” stored with

this symbol. This section explains the reasons for these storage requirements and how comput-

ers store numbers.

The smallest and most basic data item in a computer is called a bit (derived from the term

“binary digit ”). Physically, a bit is actually a switch that can be open or closed. The convention

followed in this book is that the open position is represented as a 0, and the closed position is

represented as a 1.

A single bit that can represent the values 0 and 1 has limited usefulness. All computers,

therefore, group a set number of bits together for storage and transmission. Grouping 8 bits to

form a larger unit, called a byte, is an almost universal computer standard. A single byte consist-

ing of 8 bits, with each bit being a 0 or 1, can represent any one of 256 distinct patterns. These

patterns consist of 00000000 (all eight switches open) to 11111111 (all eight switches closed)

and all possible combinations of 0s and 1s in between. Each pattern can be used to represent

a letter of the alphabet, a character (such as a dollar sign or comma), a single digit, or a number

containing more than one digit. A collection of patterns used to represent letters, single digits,

and other characters is called a character code. (One character code, called ASCII, was discussed

in Section 2.1.) The patterns used to store numbers are called number codes, one of which,

known as twos complement representation, is explained at the end of this section.

Words and Addresses In a computer’s memory, bytes can be grouped into larger units,

called words, to facilitate storage of larger values and to allow faster and more extensive data

access. For example, retrieving a word consisting of 4 bytes from a computer’s memory results

in more information than retrieving a word consisting of a single byte. This type of retrieval is

also much faster than four separate 1-byte retrievals. Achieving this increase in speed and

capacity, however, requires increasing the computer’s cost and complexity. Desktop and laptop

computers currently use word sizes of 4 and 8 bytes.

The arrangement of words in a computer’s memory can be compared with the arrange-

ment of standard rooms in a large hotel. Just as each room has a unique room number to locate

and identify it, each word has a unique numeric address. (In computers that allow accessing

each byte separately, each byte has its own address.) Like room numbers, word and byte

addresses are always unsigned whole numbers used for location and identification purposes.

In addition, in the same way hotel rooms with connecting doors form larger suites, words can

be combined to form larger units for accommodating data types of different sizes.

C_C7785_02.1c 72C_C7785_02.1c 72 1/18/11 10:44 AM1/18/11 10:44 AM

73Chapter 2
Chapter Supplement: Bits, Bytes, and Binary
Number Representations

You can check the storage allocated for each integer data type discussed in this chapter and

the range of values your compiler provides by using the identifier names listed in Table 2.9. To

do this, you can inspect the limits header file for the definition of these identifiers or con-

struct a C++ program to display these values. Program 2.5 shows how this storage check is

accomplished.

Table 2.9 Integer Data Type Storage

Data Type Range of Values Identifier (in limits
header file)

Storage
Size (in
bytes)

char -128 to +127 SCHAR_MIN,
SCHAR_MAX

1

shortƒint -32,768 to +32,767 SHRT_MIN,
SHRT_MAX

2

int -2,147,483,648 to
+2,147,483,647

INT_MIN, INT_MAX 4

longƒint -2,147,483,648 to
+2,147,483,647

LONG_MIN,
LONG_MAX

4

unsignedƒshortƒint 0 to 65,535 USHRT_MAX 2
unsignedƒint 0 to 4,294,967,295 UINT_MAX 4
unsignedƒlongƒint 0 to 4,294,967,295 ULONG_MAX 4

 Program 2.5

#includeƒ<iostream>
#includeƒ<limits>ƒ//containsƒtheƒmaximumƒandƒminimumƒspecifications
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒcoutƒ<<ƒ“Theƒsmallestƒcharacterƒcodeƒisƒ“ƒ<<ƒSCHAR_MINƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒlargestƒcharacterƒcodeƒisƒ“ƒ<<ƒSCHAR_MAXƒ<<ƒendl;
ƒƒcoutƒ<<ƒƒsizeof(char)ƒ<<ƒ“ƒbyte(s)ƒareƒusedƒtoƒstoreƒcharacters\n”;

ƒƒcoutƒ<<ƒ“\nTheƒsmallestƒintegerƒvalueƒisƒ“ƒ<<ƒINT_MINƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒlargestƒintegerƒvalueƒisƒ“ƒ<<ƒINT_MAXƒ<<ƒendl;
ƒƒcoutƒ<<ƒƒsizeof(int)ƒ<<ƒ“ƒbyte(s)ƒareƒusedƒtoƒstoreƒintegers\n”;

ƒƒcoutƒ<<ƒ“\nTheƒsmallestƒshortƒintegerƒvalueƒisƒ“ƒ<<ƒSHRT_MINƒ<<endl;
ƒƒcoutƒ<<ƒ“Theƒlargestƒshortƒintegerƒvalueƒisƒ“ƒ<<ƒSHRT_MAXƒ<<ƒendl;
ƒƒcoutƒ<<ƒƒsizeof(short)ƒ<<ƒ“ƒbyte(s)ƒareƒusedƒtoƒstoreƒshortƒintegers\n”;

☞

C_C7785_02.1c 73C_C7785_02.1c 73 1/19/11 8:09 AM1/19/11 8:09 AM

74 Data Types, Declarations, and Displays

ƒƒcoutƒ<<ƒ“Theƒsmallestƒlongƒintegerƒvalueƒisƒ“ƒ<<ƒLONG_MINƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒlargestƒlongƒintegerƒvalueƒisƒ“ƒ<<ƒLONG_MAXƒ<<ƒendl;
ƒƒcoutƒ<<ƒƒsizeof(long)ƒ<<ƒ“ƒbyte(s)ƒareƒusedƒtoƒstoreƒlongƒintegers\n”;

ƒƒreturnƒ0;
}

Program 2.5 produces the following output:

Theƒsmallestƒcharacterƒcodeƒisƒ-128
Theƒlargestƒcharacterƒcodeƒisƒ127
ƒƒ1ƒbyte(s)ƒareƒusedƒtoƒstoreƒcharacters

Theƒsmallestƒintegerƒvalueƒisƒ-2147483648
Theƒlargestƒintegerƒvalueƒisƒ2147483647
ƒƒ4ƒbyte(s)ƒareƒusedƒtoƒstoreƒintegers

Theƒsmallestƒshortƒintegerƒvalueƒisƒ-32768
Theƒlargestƒshortƒintegerƒvalueƒisƒ32767
ƒƒ2ƒbyte(s)ƒareƒusedƒtoƒstoreƒshortƒintegers

Theƒsmallestƒlongƒintegerƒvalueƒisƒ-2147483648
Theƒlargestƒlongƒintegerƒvalueƒisƒ2147483647
ƒƒ4ƒbyte(s)ƒareƒusedƒtoƒstoreƒlongƒintegers

Notice that the displayed values correspond with those listed previously in Table 2.9.

Binary, Hexadecimal, and Octal Numbers
The most common binary number code for storing integer values in a computer is called the

twos complement representation. With this code, the integer decimal equivalent of any bit pat-

tern, such as 10001101, is easy to determine and can be found for positive or negative integers

with no change in the conversion method. For convenience, assume byte-sized bit patterns

consisting of 8 bits each, although the procedure carries over to larger bit patterns.

The easiest way to determine the decimal integer each bit pattern represents is to con-

struct a simple device called a value box. Figure 2.8 shows a value box for a single byte.

Mathematically, each value in this box represents an increasing power of 2. Because twos

complement numbers must be capable of representing both positive and negative integers, the

leftmost position, in addition to having the largest absolute magnitude, has a negative sign.

-128	ƒ64ƒ	ƒ32ƒ	ƒ16ƒ	ƒƒ8ƒ	ƒƒ4ƒ	ƒƒ2ƒ	ƒƒ1
ƒ |ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|

Figure 2.8 An 8-bit value box

C_C7785_02.1c 74C_C7785_02.1c 74 1/18/11 10:44 AM1/18/11 10:44 AM

75Chapter 2
Chapter Supplement: Bits, Bytes, and Binary
Number Representations

To convert any binary number, such as 10001101, into its decimal integer value, simply

insert the bit pattern into the value box and add the values having 1s under them. Therefore,

as shown in Figure 2.9, the bit pattern 10001101 represents the decimal integer number -115.

-128ƒ|ƒ64ƒ|ƒ32ƒ|ƒ16ƒ|ƒƒ8ƒ|ƒƒ4ƒ|ƒƒ2ƒ|ƒƒ1
ƒ----|----|----|----|----|----|----|---
 ƒ1ƒ|ƒƒ0ƒ|ƒƒ0ƒ|ƒƒ0ƒ|ƒƒ1ƒ|ƒƒ1ƒ|ƒƒ0ƒ|ƒƒ1
-128ƒ+ƒƒ0ƒ+ƒƒ0ƒ+ƒƒ0ƒ+ƒƒ8ƒ+ƒƒ4ƒ+ƒƒ0ƒ+ƒƒ1ƒ=ƒ-115

Figure 2.9 Converting 10001101 to a decimal number

The value box can also be used in reverse to convert a decimal integer number into its

equivalent binary bit pattern. Some conversions, in fact, can be made by inspection. For

example, the decimal integer -125 is obtained by adding 3 to -128. Therefore, the binary rep-

resentation of -125 is 10000011, which equals -128 + 2 + 1. Similarly, the twos complement

representation of the number 40 is 00101000, which is 32 + 8.

Although the value box conversion method is deceptively simple, it’s related to the under-

lying mathematical basis of twos complement binary numbers. The original name of the twos

complement code was the weighted-sign code, which correlates to the value box. As the name

“weighted sign” implies, each bit position has a weight, or value, of 2 raised to a power and a

sign. The signs of all bits except the leftmost bit are positive, and the sign of the leftmost bit

is negative.

In reviewing the value box, you can see that any twos complement binary number with a

leading 1 represents a negative number, and any bit pattern with a leading 0 represents a

positive number. Using the value box, it’s easy to determine the most positive and most nega-

tive values capable of being stored. The most negative value that can be stored in a single byte

is the decimal number -128, which has the bit pattern 10000000. Any other non-zero bit simply

adds a positive amount to the number. Additionally, a positive number must have a 0 as its

leftmost bit. From this, you can see that the largest positive 8-bit twos complement number is

01111111, or 127.

In addition to representing integer values, computers must store and transmit numbers

containing decimal points, which are mathematically referred to as “real numbers.” Appendix D

(available online) lists the binary codes used to represent real numbers.

Hexadecimal Representation Because binary numbers tend to be lengthy, the more com-

pact hexadecimal representation is often used. For example, the hexadecimal representation

of the 16-bit binary number 11110000101011001110001101111011 is F0ACE37B.

Each hexadecimal symbol represents a specific 4-bit binary pattern. The correspondence

between each hexadecimal symbol and its 4-bit binary pattern is listed in the first two columns

of Table 2.10. For convenience, the equivalent decimal value of each hexadecimal symbol and

the binary number it represents are also provided. Using this table, you can convert any hexa-

decimal number to its binary equivalent by substituting the correct 4-bit binary sequence for

C_C7785_02.1c 75C_C7785_02.1c 75 1/18/11 10:44 AM1/18/11 10:44 AM

76 Data Types, Declarations, and Displays

each hexadecimal symbol in the hexadecimal number. For example, Figure 2.10 shows how

the hexadecimal number 2D1F is converted to its binary equivalent by using the correspond-

ing values from Table 2.10.

Table 2.10 Hexadecimal to Binary Conversion

Hexadecimal Symbol Binary Pattern Decimal Symbol
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

2D1F

0010 1101 0001 1111
Figure 2.10 Converting a hexadecimal number to binary

To do the reverse conversion, from binary to hexadecimal, first group the binary digits in

units of four, starting from the right of the binary number. Next, using Table 2.10, assign each

group of four binary digits its corresponding hexadecimal symbol. Figure 2.11 shows an example

of converting the 16-bit binary number 0111111100001010 to its hexadecimal representation.

7F0A

0111 1111 0000 1010

Figure 2.11 Converting a binary number to hexadecimal

C_C7785_02.1c 76C_C7785_02.1c 76 1/18/11 10:44 AM1/18/11 10:44 AM

77Chapter 2
Chapter Supplement: Bits, Bytes, and Binary
Number Representations

Hexadecimal symbols work well for representing the 8 bits in a byte because each byte

consists of two groups of 4 bits. (Sometimes 4-bit patterns are referred to as nibbles.) Therefore,

a byte’s binary code can be represented conveniently with two hexadecimal symbols.

In reviewing the hexadecimal symbols in Table 2.10, notice that the first 10 are the same

as those used in the decimal system. After using the familiar 0 to 9 symbols, however, unique

symbols are needed for the last six binary patterns in the table. The symbols you recognize as

10 through 15 can’t be used because they consist of two symbols, so the letters A through F

are used for these six additional symbols. To indicate clearly that hexadecimal numbers are

being used, often they’re preceded by 0X or 0x, as in 0xF0ACE37B.

Octal Representation Although they have almost been superseded by hexadecimal num-

bers, you might still encounter binary numbers represented in their octal form. Octal numbers

group binary numbers in units of three. Table 2.11 shows the correspondence between octal

symbols and their 3-bit binary values.

Table 2.11 Octal to Binary Conversion

Octal Symbol Binary Value
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Using the values listed in Table 2.11, the octal number 541 represents the binary number

101100001. This is done by replacing the octal value 5 with its equivalent 101 binary bit pat-

tern, replacing the 4 with its corresponding 100 binary bit pattern, and replacing the 1 with its

corresponding 001 binary bit pattern.

To convert from binary to octal, first group the binary digits in units of three, proceeding

from right to left. In doing this, you might have to add one or two leading zeros to the binary

number to pad out the leftmost bit pattern to three binary digits. For example, the 8-bit

binary number 11111010 is padded out to nine binary digits by adding a leading zero. The

resulting number, 011111010, is then grouped in units of three, as |011|111|010|. The bar sym-

bol, |, has been used to separate each group of three binary digits clearly. Using the correspon-

dence between 3-bit patterns and octal symbols in Table 2.11, this binary number becomes the

octal number 372.

Before a byte was standardized to consist of 8 bits, octal numbers were typically used to

represent binary values. This method had the added advantage of using numeric symbols that

were familiar to people used to dealing with decimal numbers. With the standardization of

8-bit bytes, however, the use of hexadecimal symbols and their correspondence with 4-bit

binary numbers became the numbering system of choice for representing binary numbers.

C_C7785_02.1c 77C_C7785_02.1c 77 1/18/11 10:44 AM1/18/11 10:44 AM

3 3.1 Assignment Operators

 3.2 Formatted Output

 3.3 Mathematical Library Functions

 3.4 Interactive Keyboard Input

 3.5 Symbolic Constants

 3.6 Common Programming Errors

 3.7 Chapter Summary

 3.8 Chapter Supplement: Errors,
Testing, and Debugging

In Chapter 2, you were introduced to the concepts of data storage, variables, and their associated declara-
tion statements. You also saw how the cout object is used to display output data. This chapter continues
your introduction to C++ by explaining how data is processed with both assignment statements and
mathematical functions. Additionally, it discusses the cin object, which makes it possible for a user to
enter data while a program is running. You also learn more about the cout object, which can be used
for precise formatting of output data.

3.1 Assignment Operators

You learned about simple assignment statements in Chapter 2. An assignment statement is the

most basic C++ statement for assigning values to variables and performing computations. This

statement has the following syntax:

variableƒ=ƒexpression;

Chapter

Assignment and
Interactive Input

D_C7785_03.1c 79D_C7785_03.1c 79 1/18/11 11:59 AM1/18/11 11:59 AM

80 Assignment and Interactive Input

The simplest expression in C++ is a single constant. In the following assignment state-

ments, the operand to the right of the equals sign is a constant:

lengthƒ=ƒ25;
widthƒ=ƒ17.5;

In these assignment statements, the value of the constant to the right of the equals sign is

assigned to the variable on the left of the equals sign. Note that the equals sign in C++ doesn’t

have the same meaning as an equals sign in algebra. The equals sign in an assignment state-

ment tells the computer first to determine the value of the operand to its right, and then to

store (or assign) this value in the locations associated with the variable on its left. For example,

the C++ statement lengthƒ=ƒ25; formally means “length is assigned the value 25.” The

blank spaces in the assignment statement are inserted for readability only.

Recall that a variable can be initialized when it’s declared. If an initialization isn’t done in

the declaration statement, the variable should be assigned a value with an assignment state-

ment or input operation before it’s used in any computation. Subsequent assignment state-

ments can, of course, be used to change the value assigned to a variable. For example, assume

the following statements are executed one after another, and slope wasn’t initialized when it

was declared:

slopeƒ=ƒ3.7;
slopeƒ=ƒ6.28;

The first assignment statement assigns the value of 3.7 to the variable named slope.1 The

next assignment statement causes the computer to assign a value of 6.28 to slope. The 3.7

that was in slope is overwritten with the new value of 6.28 because a variable can store only

one value at a time. Sometimes it’s useful to think of the variable to the left of the equals sign

as a temporary parking spot in a huge parking lot. Just as a parking spot can be used by only

one car at a time, each variable can store only one value at a time. “Parking” a new value in a

variable automatically causes the program to remove any value parked there previously.

In addition to being a constant, the operand to the right of the equals sign in an assign-

ment statement can be a variable or any other valid C++ expression. An expression is any

combination of constants, variables, and function calls that can be evaluated to yield a result.

Therefore, the expression in an assignment statement can be used to perform calculations by

using the arithmetic operators introduced in Section 2.2. The following are examples of assign-

ment statements using expressions containing these operators:

sumƒ=ƒ3ƒ+ƒ7;
diffƒ=ƒ15ƒ–ƒ6;
productƒ=ƒ.05ƒ*ƒ14.6;
tallyƒ=ƒcountƒ+ƒ1;
newtotalƒ=ƒ18.3ƒ+ƒtotal;
taxesƒ=ƒ.06ƒ*ƒamount;

1Because it’s the first time a value is explicitly assigned to this variable, it’s often referred to as an “initialization.” This term stems from

historical usage that said a variable was initialized the first time a value was assigned to it. Under this usage, it’s correct to say that “slope

is initialized to 3.7.” From an implementation viewpoint, however, this statement is incorrect because the C++ compiler handles an

assignment operation differently from an initialization; an initialization can happen only when a variable is created by a declaration

statement. This difference is important only when using C++’s class features and is explained in detail in Section 10.1.

D_C7785_03.1c 80D_C7785_03.1c 80 1/18/11 11:59 AM1/18/11 11:59 AM

81Chapter 3
Assignment Operators

totalWeightƒ=ƒfactorƒ*ƒweight;
averageƒ=ƒsumƒ/ƒitems;
slopeƒ=ƒ(y2ƒ-ƒy1)ƒ/ƒ(x2ƒ-ƒx1);

As always in an assignment statement, the program first calculates the value of the expres-

sion to the right of the equals sign and then stores this value in the variable to the left of the

equals sign. For example, in the assignment statement totalWeightƒ=ƒfactorƒ*ƒweight;,

the arithmetic expression factorƒ*ƒweight is evaluated first to yield a result. This result,

which is a number, is then stored in the variable totalWeight.

In writing assignment statements, you must be aware of two important considerations.

Because the expression to the right of the equals sign is evaluated first, all variables used in

the expression must have been given valid values previously if the result is to make sense. For

example, the assignment statement totalWeightƒ=ƒfactorƒ*ƒweight; causes a valid

number to be stored in totalWeight only if the programmer takes care to assign valid num-

bers first to both factor and weight. Therefore, the following sequence of statements tells

you the values used to obtain the result to be stored in totalWeight:

factorƒ=ƒ1.06;
weightƒ=ƒ155.0;
totalWeightƒ=ƒfactorƒ*ƒweight;

Figure 3.1 shows the values stored in the variables factor, weight, and totalWeight.

1.06 155.0 164.30

factor weight totalWeight

Figure 3.1 Values stored in variables

The second consideration is that because the value of an expression is stored in the vari-

able to the left of the equals sign, only one variable can be listed in this position. For example,

this assignment statement is invalid:

amountƒ+ƒ1892ƒ=ƒ1000ƒ+ƒ10ƒ*ƒ5;

The expression on the right evaluates to the integer 1050, which can only be stored in a

variable. Because amountƒ+ƒ1892 isn’t a valid variable name, the compiler has no means of

knowing where to store the calculated value and issues a syntax error message.

Program 3.1 shows using assignment statements to calculate the area of a rectangle.

D_C7785_03.1c 81D_C7785_03.1c 81 1/18/11 11:59 AM1/18/11 11:59 AM

82 Assignment and Interactive Input

 Program 3.1

//ƒthisƒprogramƒcalculatesƒtheƒareaƒofƒaƒrectangle,
//ƒgivenƒitsƒlengthƒandƒwidth

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒlength,ƒwidth,ƒarea;

ƒƒlengthƒ=ƒ27.2;
ƒƒwidthƒ=ƒ13.6;
ƒƒareaƒ=ƒlengthƒ*ƒwidth;
ƒƒcoutƒ<<ƒ“Theƒlengthƒofƒtheƒrectangleƒisƒ“ƒ<<ƒlengthƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒwidthƒofƒtheƒrectangleƒisƒ“ƒ<<ƒwidthƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒareaƒofƒtheƒrectangleƒisƒ“ƒ<<ƒareaƒ<<ƒendl;

ƒƒreturnƒ0;
}

When Program 3.1 is run, this is the output:

Theƒlengthƒofƒtheƒrectangleƒisƒ27.2
Theƒwidthƒofƒtheƒrectangleƒisƒ13.6
Theƒareaƒofƒtheƒrectangleƒisƒ369.92

Take a look at the flow of control the computer uses in executing Program 3.1. Program

execution begins with the first statement and continues sequentially, statement by statement,

until the closing brace of main() is encountered. This flow of control is true for all programs.

The computer works on one statement at a time, executing the statement with no knowledge

of what the next statement will be. This sequential execution explains why all operands used

in an expression must have values assigned to them before the expression is evaluated.

When the computer executes the statement areaƒ=ƒlengthƒ*ƒwidth; in Program 3.1,

it uses whatever values are stored in the variables length and width at the time the assign-

ment is executed. If no values have been specifically assigned to these variables before they’re

used in the expression lengthƒ*ƒwidth, the computer uses whatever values happen to

occupy these variables when they’re referenced. (Most C++ compilers initialize all variables to

zero automatically; most also give you a warning that the variable hasn’t been explicitly initial-

ized.) The computer doesn’t “look ahead” to see whether you assign values to these variables

later in the program.

It’s important to realize that in C++, the equals sign (=) used in assignment statements is

an operator, which differs from the way most other high-level languages process this symbol.

In C++, the = symbol is called the assignment operator, and an expression using this operator,

D_C7785_03.1c 82D_C7785_03.1c 82 1/18/11 11:59 AM1/18/11 11:59 AM

83Chapter 3
Assignment Operators

such as interestƒ=ƒprincipalƒ*ƒrate, is an assignment expression. Because the assign-

ment operator has a lower precedence than any other arithmetic operator, the value of any

expression to the right of the equals sign is evaluated first, before the assignment.

Like all expressions, an assignment expression has a value, which is the value assigned to

the variable on the left of the assignment operator. For example, the expression aƒ=ƒ5 assigns

a value of 5 to the variable a and results in the expression also having a value of 5. The expres-

sion’s value can always be verified by using a statement such as the following:

coutƒ<<ƒ“Theƒvalueƒofƒtheƒexpressionƒisƒ“ƒ<<ƒ(aƒ=ƒ5);

This statement displays the expression’s value, not the contents of the variable a.

Although both the variable’s contents and the expression have the same value, you should

realize that you’re dealing with two distinct entities.

From a programming perspective, it’s the actual assignment of a value to a variable that’s

important in an assignment expression; the final value of the assignment expression is of little

consequence. However, the fact that assignment expressions have a value has implications that

must be considered when you learn about C++’s relational operators in Chapter 4.

Any expression terminated by a semicolon becomes a C++ statement. The most common

example is the assignment statement, which is simply an assignment expression terminated

with a semicolon. For example, terminating the assignment expression aƒ=ƒ33 with a semico-

lon results in the assignment statement aƒ=ƒ33;, which can be used in a program on a line by

itself.

Because the equals sign is an operator in C++, multiple assignments are possible in the

same expression or in its equivalent statement. For example, in the expression

aƒ=ƒbƒ=ƒcƒ=ƒ25, all the assignment operators have the same precedence. The assignment

operator has a right-to-left associativity, so the final evaluation proceeds in this sequence:

cƒ=ƒ25
bƒ=ƒc
aƒ=ƒb

In this example, this sequence of expressions has the effect of assigning the number 25 to

each variable and can be represented as follows:

aƒ=ƒ(bƒ=ƒ(cƒ=ƒ25))

Appending a semicolon to the original expression results in this multiple assignment

statement:

aƒ=ƒbƒ=ƒcƒ=ƒ25;

This statement assigns the value 25 to the three variables, equivalent to the following

order:

cƒ=ƒ25;
bƒ=ƒ25;
aƒ=ƒ25;

D_C7785_03.1c 83D_C7785_03.1c 83 1/18/11 11:59 AM1/18/11 11:59 AM

84 Assignment and Interactive Input

Coercion
When working with assignment statements, keep in mind the data type assigned to the values

on both sides of the expression because data type conversions take place across assignment

operators. In other words, the value of the expression to the right of the assignment operator

is converted to the data type of the variable to the left of the assignment operator. This type

of conversion is referred to as a coercion because the value assigned to the variable on the left

of the assignment operator is forced into the data type of the variable it’s assigned to.

An example of a coercion occurs when an integer value is assigned to a real variable; this

assignment causes the integer to be converted to a real value. Similarly, assigning a real value

to an integer variable forces conversion of the real value to an integer. This conversion always

results in losing the fractional part of the number because of truncation. For example, if temp

is an integer variable, the assignment tempƒ=ƒ25.89 causes the integer value 25 to be stored

in the integer variable temp.2

Another example of data type conversions, which includes both mixed-mode and assign-

ment conversions, is evaluation of the expression

aƒ=ƒbƒ*ƒd

where a and b are integer variables and d is a double-precision variable. When the mixed-

mode expression bƒ*ƒd is evaluated,3 the value of b used in the expression is converted to a

double-precision number for purposes of computation. (Note that the value stored in b

remains an integer number, and the resulting value of the expression bƒ*ƒd is a double-

precision number.) Finally, data type conversion across the assignment operator comes into

play. The left side of the assignment operator is an integer variable, so the double-precision

value of the expression bƒ*ƒd is truncated to an integer value and stored in the variable a.

2The correct integer portion is retained only when it’s within the range of integer values allowed by the compiler.
3Review the rules in Table 2.8, Section 2.2, for evaluating mixed-mode expressions, if necessary.

Point of Information
lvalues and rvalues

The terms lvalue and rvalue are used often in almost all programming languages that
define assignment with an operator that permits multiple assignments in the same statement.
An lvalue refers to any quantity that’s valid on the left side of an assignment operator, and
an rvalue refers to any quantity that’s valid on the right side of an assignment operator.

For example, each variable you’ve encountered so far can be an lvalue or rvalue
(that is, a variable, by itself, can appear on both sides of an assignment operator), but a
number can be only an rvalue. More generally, an expression is an rvalue. Not all vari-
ables, however, can be used as lvalues or rvalues. For example, an array type, intro-
duced in Chapter 7, can’t be an lvalue or rvalue, but elements in an array can be both.

D_C7785_03.1c 84D_C7785_03.1c 84 1/18/11 11:59 AM1/18/11 11:59 AM

85Chapter 3
Assignment Operators

Assignment Variations
Although only one variable is allowed immediately to the left of the equals sign in an assign-

ment expression, the variable to the left of the equals sign can also be used to the right of the

equals sign. For example, the assignment expression sumƒ=ƒsumƒ+ƒ10 is valid. Clearly, as an

algebraic equation, sum could never be equal to itself plus 10. In C++, however, sumƒ=ƒsumƒ+ƒ10

is not an equation—it’s an expression evaluated in two major steps: First, the value of

sumƒ+ƒ10 is calculated, and second, the computed value is stored in sum. See whether you can

determine the output of Program 3.2.

 Program 3.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒsum;

ƒƒsumƒ=ƒ25;
ƒƒcoutƒ<<ƒ“Theƒnumberƒstoredƒinƒsumƒisƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒsumƒ=ƒsumƒ+ƒ10;
ƒƒcoutƒ<<ƒ“Theƒnumberƒnowƒstoredƒinƒsumƒisƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒsumƒ<<ƒendl;

ƒƒreturnƒ0;
}

In Program 3.2, the assignment statement sumƒ=ƒ25; tells the computer to store the

number 25 in sum, as shown in Figure 3.2.

25

sum

Figure 3.2 The integer 25 is stored in sum

The first cout statement displays the value stored in sum with the message

Theƒnumberƒstoredƒinƒsumƒisƒ25. The second assignment statement, sumƒ=ƒsumƒ+ƒ10;,

causes the program to retrieve the 25 stored in sum and add 10 to this number, yielding 35. The

number 35 is then stored in the variable to the left of the equals sign, which is the variable sum.

The 25 that was in sum is simply overwritten with the new value of 35 (see Figure 3.3).

D_C7785_03.1c 85D_C7785_03.1c 85 1/18/11 11:59 AM1/18/11 11:59 AM

86 Assignment and Interactive Input

25

sum New value
(35)

is stored
Old value is
overwritten

Figure 3.3 sum = sum + 10; causes a new value to be stored in sum

Assignment expressions such as sumƒ=ƒsumƒ+ƒ10, which use the same variable on both

sides of the assignment operator, can be written by using the following shortcut assignment
operators:

+=ƒƒƒƒ–=ƒƒƒƒ*=ƒƒƒƒ/=ƒƒƒƒ%=

For example, the expression sumƒ=ƒsumƒ+ƒ10 can be written as sumƒ+=ƒ10. Similarly,

the expression priceƒ*=ƒrate is equivalent to the expression priceƒ=ƒpriceƒ*ƒrate. In

using shortcut assignment operators, note that the variable to the left of the assignment

operator is applied to the complete expression on the right. For example, the expression

priceƒ*=ƒrateƒ+ƒ1 is equivalent to the expression priceƒ=ƒpriceƒ*ƒ(rateƒ+ƒ1), not

priceƒ=ƒpriceƒ*ƒrateƒ+ƒ1.

Accumulating
Assignment expressions, such as sumƒ+=ƒ10 or its equivalent, sumƒ=ƒsumƒ+ƒ10, are common

in programming. These expressions are required in accumulating subtotals when data is

entered one number at a time. For example, if you want to add the numbers 96, 70, 85, and 60

in calculator fashion, the following statements could be used:

Statement Value in sum
sum = 0; 0
sum = sum + 96; 96
sum = sum + 70; 166
sum = sum + 85; 251
sum = sum + 60; 311

The first statement initializes sum to 0, which removes any number stored in sum that

would invalidate the final total (a “garbage value”). As each number is added, the value stored

in sum is increased accordingly. After completion of the last statement, sum contains the total

of all the added numbers. Program 3.3 shows the effect of these statements by displaying sum’s

contents after each addition.

D_C7785_03.1c 86D_C7785_03.1c 86 1/18/11 11:59 AM1/18/11 11:59 AM

87Chapter 3
Assignment Operators

 Program 3.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒsum;

ƒƒsumƒ=ƒ0;
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒsumƒisƒinitiallyƒsetƒtoƒ“
ƒƒƒƒƒƒƒ<<ƒsumƒ<<ƒendl;
ƒƒsumƒ=ƒsumƒ+ƒ96;
ƒƒcoutƒ<<ƒ“ƒƒsumƒisƒnowƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒsumƒ=ƒsumƒ+ƒ70;
ƒƒcoutƒ<<ƒ“ƒƒsumƒisƒnowƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒsumƒ=ƒsumƒ+ƒ85;
ƒƒcoutƒ<<ƒ“ƒƒsumƒisƒnowƒ“ƒ<<ƒsumƒƒ<<ƒendl;
ƒƒsumƒ=ƒsumƒ+ƒ60;
ƒƒcoutƒ<<ƒ“ƒƒTheƒfinalƒsumƒisƒ“ƒ<<ƒsumƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 3.3 displays this output:

Theƒvalueƒofƒsumƒisƒinitiallyƒsetƒtoƒ0
ƒƒsumƒisƒnowƒ96
ƒƒsumƒisƒnowƒ166
ƒƒsumƒisƒnowƒ251
ƒƒTheƒfinalƒsumƒisƒ311

Although Program 3.3 isn’t a practical program (because adding the numbers by hand is

easier), it does illustrate the subtotaling effect of repeated use of statements having this form:

variableƒ=ƒvariableƒ+ƒnewValue;

This type of statement is called an accumulation statement. You’ll find many uses for accu-

mulation statements when you become more familiar with the repetition statements intro-

duced in Chapter 5.

D_C7785_03.1c 87D_C7785_03.1c 87 1/18/11 11:59 AM1/18/11 11:59 AM

88 Assignment and Interactive Input

Counting
The counting statement, which is an assignment statement similar to the accumulating state-

ment, has the following form:

variableƒ=ƒvariableƒ+ƒfixedNumber;

Examples of counting statements are as follows:

iƒ=ƒiƒ+ƒ1;
nƒ=ƒnƒ+ƒ1;
countƒ=ƒcountƒ+ƒ1;
jƒ=ƒjƒ+ƒ2;
mƒ=ƒmƒ+ƒ2;
kkƒ=ƒkkƒ+ƒ3;

In these examples, the same variable is used on both sides of the equals sign. After the

statement is executed, the variable’s value is increased by a fixed amount. In the first three

examples, the variables i, n, and count have been increased by 1. In the next two examples,

the variables have been increased by 2, and in the final example, the variable kk has been

increased by 3.

For a variable that’s increased or decreased by only 1, C++ provides two unary opera-

tors: increment and decrement operators. Using the increment operator,4 ++, the expression

variableƒ=ƒvariableƒ+ƒ1 can be replaced by the expression variable++ or the

expression ++variable. Here are examples of the increment operator:

Expression Alternative
i = i + 1 i++ or ++i
n = n + 1 n++ or ++n
count = count + 1 count++ or ++count

Program 3.4 illustrates the use of the increment operator. It displays the following output:

Theƒinitialƒvalueƒofƒcountƒisƒ0
ƒƒƒcountƒisƒnowƒ1
ƒƒƒcountƒisƒnowƒ2
ƒƒƒcountƒisƒnowƒ3
ƒƒƒcountƒisƒnowƒ4

4As a historical note, the ++ in C++’s name was inspired by the increment operator symbol. It was used to indicate that C++ was the

next increment to the C language.

D_C7785_03.1c 88D_C7785_03.1c 88 1/18/11 11:59 AM1/18/11 11:59 AM

89Chapter 3
Assignment Operators

 Program 3.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒcount;

ƒƒcountƒ=ƒ0;
ƒƒcoutƒ<<ƒ“Theƒinitialƒvalueƒofƒcountƒisƒ“ƒ<<ƒcountƒ<<ƒendl;
ƒƒcount++;
ƒƒcoutƒ<<ƒ“ƒƒƒcountƒisƒnowƒ“ƒ<<ƒcountƒ<<ƒendl;
ƒƒcount++;
ƒƒcoutƒ<<ƒ“ƒƒƒcountƒisƒnowƒ“ƒ<<ƒcountƒ<<ƒendl;
ƒƒcount++;
ƒƒcoutƒ<<ƒ“ƒƒƒcountƒisƒnowƒ“ƒ<<ƒcountƒ<<ƒendl;
ƒƒcount++;
ƒƒcoutƒ<<ƒ“ƒƒƒcountƒisƒnowƒ“ƒ<<ƒcountƒ<<ƒendl;

ƒƒreturnƒ0;
}

When the ++ operator appears before a variable, it’s called a prefix increment operator;
when it appears after a variable, it’s called a postfix increment operator. The distinction between

a prefix and postfix increment operator is important when the variable being incremented is

used in an assignment expression. For example, kƒ=ƒ++n, which uses a prefix increment

operator, does two things in one expression: The value of n is incremented by 1, and then the

new value of n is assigned to the variable k. Therefore, the statement kƒ=ƒ++n; is equivalent

to these two statements:

nƒ=ƒnƒ+ƒ1;ƒƒƒ//ƒincrementƒnƒfirst
kƒ=ƒn;ƒƒƒƒƒƒƒ//ƒassignƒn'sƒvalueƒtoƒk

The assignment expression kƒ=ƒn++, which uses a postfix increment operator, reverses

this procedure. A postfix increment operator works after the assignment is completed.

Therefore, the statement kƒ=ƒn++; first assigns the current value of n to k, and then incre-

ments the value of n by 1. This process is equivalent to these two statements:

kƒ=ƒn;ƒƒƒƒƒƒƒƒ//ƒassignƒn'sƒvalueƒtoƒk
nƒ=ƒnƒ+ƒ1;ƒƒƒƒ//ƒandƒthenƒincrementƒn

D_C7785_03.1c 89D_C7785_03.1c 89 1/18/11 11:59 AM1/18/11 11:59 AM

90 Assignment and Interactive Input

C++ also provides the decrement operator, --, in prefix and postfix variations. As you

might expect, both the expressions variable--ƒandƒ--variable are equivalent to the

expression variableƒ=ƒvariableƒ-ƒ1. Here are examples of the decrement operator:

Expression Alternative
i = i - 1 i-- or --i
n = n - 1 n-- or --n
count = count - 1 count-- or –-count

When the -- operator appears before a variable, it’s called a prefix decrement operator.
When this operator appears after a variable, it’s called a postfix decrement operator. For exam-

ple, both the expressions n-- and --n reduce the value of n by 1 and are equivalent to the

longer expression nƒ=ƒnƒ-ƒ1.

As with the increment operators, however, the prefix and postfix decrement operators pro-

duce different results when used in assignment expressions. For example, the expression

kƒ=ƒ--n first decrements the value of n by 1 before assigning the value of n to k, and the expres-

sion kƒ=ƒn-- first assigns the current value of n to k, and then reduces the value of n by 1.

 EXERCISES 3.1

1. (Practice) Write an assignment statement to calculate the circumference of a circle having a

radius of 3.3 inches. The formula for determining the circumference, c, of a circle is c = 2πr,

where r is the radius and π equals 3.1416.

2. (Practice) Write an assignment statement to calculate the area of a circle. The formula for

determining the area, a, of a circle is a = πr2, where r is the radius and π = 3.1416.

3. (Practice) Write an assignment statement to convert temperature in degrees Fahrenheit to

degrees Celsius. The formula for this conversion is Celsius = 5.0 / 9.0 (Fahrenheit - 32).

4. (Practice) Write an assignment statement to calculate the round-trip distance, d, in feet, of a

trip that’s s miles long one way.

5. (Practice) Write an assignment statement to calculate the elapsed time, in minutes, it takes

to make a trip. The formula for computing elapsed time is elapsed time = total distance / average
speed. Assume the distance is in miles and the average speed is in miles per hour (mph).

6. (Practice) Write an assignment statement to calculate the value, v, of the nth term in an arith-

metic sequence. The formula for calculating this value is as follows:

v = a + (n - 1)d

a is the first number in the sequence.

d is the difference between any two numbers in the sequence.

D_C7785_03.1c 90D_C7785_03.1c 90 1/18/11 11:59 AM1/18/11 11:59 AM

91Chapter 3
Assignment Operators

7. (Practice) Write an assignment statement to determine the maximum bending moment, M,

of a beam, given this formula:

M = X W (L - X) / L

X is the distance from the end of the beam that a weight, W, is placed.

L is the length of the beam.

8. (Debug) Determine and correct the errors in the following programs.

a. #includeƒ<iostream>
ƒƒusingƒnamespaceƒstd;
ƒƒintƒmain()
ƒƒ{
ƒƒƒƒwidthƒ=ƒ15
ƒƒƒƒareaƒ=ƒlengthƒ*ƒwidth;
ƒƒƒƒcoutƒ<<ƒ“Theƒareaƒisƒ“ƒ<<ƒarea

ƒƒ}

b. #includeƒ<iostream>
ƒƒusingƒnamespaceƒstd;
ƒƒintƒmain()
ƒƒ{
ƒƒƒƒintƒlength,ƒwidth,ƒarea;
ƒƒƒƒareaƒ=ƒlengthƒ*ƒwidth;
ƒƒƒƒlengthƒ=ƒ20;
ƒƒƒƒwidthƒ=ƒ15;
ƒƒƒƒcoutƒ<<ƒ“Theƒareaƒisƒ“ƒ<<ƒarea;

ƒƒƒƒreturnƒ0;

c. #includeƒ<iostream>

ƒƒƒintƒmain()
ƒƒƒ{
ƒƒƒƒƒintƒlengthƒ=ƒ20;ƒwidthƒ=ƒ15,ƒarea;
ƒƒƒƒƒlengthƒ*ƒwidthƒ=ƒarea;
ƒƒƒƒƒcoutƒ<<ƒ“Theƒareaƒisƒ“ƒ,ƒarea;

ƒƒƒƒƒreturnƒ0;
ƒƒƒ}

9. (Debug) By mistake, a student reordered the statements in Program 3.3 as follows:

#includeƒ<iostream>
usingƒnamespaceƒstd;

D_C7785_03.1c 91D_C7785_03.1c 91 1/18/11 11:59 AM1/18/11 11:59 AM

92 Assignment and Interactive Input

intƒmain()
{
ƒƒintƒsum;
ƒƒsumƒ=ƒ0;
ƒƒsumƒ=ƒsumƒ+ƒ96;
ƒƒsumƒ=ƒsumƒ+ƒ70;
ƒƒsumƒ=ƒsumƒ+ƒ85;
ƒƒsumƒ=ƒsumƒ+ƒ60;
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒsumƒisƒinitiallyƒsetƒtoƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒsumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“ƒƒsumƒisƒnowƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“ƒƒsumƒisƒnowƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“ƒƒsumƒisƒnowƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“ƒƒTheƒfinalƒsumƒisƒ“ƒ<<ƒsumƒ<<ƒendl;

ƒƒreturnƒ0;
}

 Determine the output this program produces.

10. (Practice) Using Program 3.1, complete the following chart by determining the area of a rect-

angle having these lengths and widths:

Length (in.) Width (in.) Area
1.62 6.23
2.86 7.52
4.26 8.95
8.52 10.86
12.29 15.35

11. (Program) The area of an ellipse (see Figure 3.4) is given by this formula:

Area = π a b

 Using this formula, write a C++ program to calculate the area of an ellipse having a minor axis,

a, of 2.5 inches and a major axis, b, of 6.4 inches.

a

b

Figure 3.4 The minor axis, a, and the major axis, b, of an ellipse

12. (Program) a. Write a C++ program to calculate the dollar amount contained in a piggybank.

The bank currently contains 12 half-dollars, 20 quarters, 32 dimes, 45 nickels, and 27 pennies.

b. Run the program written for Exercise 12a on a computer.

D_C7785_03.1c 92D_C7785_03.1c 92 1/18/11 11:59 AM1/18/11 11:59 AM

93Chapter 3
Formatted Output

13. (Program) a. Write a C++ program to calculate the distance, in feet, of a trip that’s 2.36 miles

long. One mile is equal to 5280 feet.

b. Run the program written for Exercise 13a on a computer.

14. (Program) a. Write a C++ program to calculate the elapsed time it takes to make a 183.67-mile

trip. The equation for computing elapsed time is elapsed time = total distance / average speed.

Assume that the average speed during the trip is 58 miles per hour.

b. Run the program written for Exercise 14a on a computer.

15. (Program) a. Write a C++ program to calculate the sum of the numbers from 1 to 100. The

formula for calculating this sum is sum = (n / 2) × (2 × a + (n - 1) × d), where n = number of

terms to be added, a = the first number, and d = the difference between each number and the

next number (d = 1).

b. Run the program written for Exercise 15a on a computer.

16. (For thought) Determine why the expression aƒ-ƒbƒ=ƒ25 is invalid but the expression

aƒ-ƒ(bƒ=ƒ25) is valid.

3.2 Formatted Output

Besides displaying correct results, a program should present its results attractively. In fact, most

programs are judged on the perceived ease of data entry and the style and presentation of the

output. For example, displaying a monetary result as 1.897 isn’t in keeping with accepted

report conventions. The display should be $1.90 or $1.89, depending on whether rounding or

truncation is used.

To control the format of numbers displayed by cout, you can include field width manipulators

in an output stream. Table 3.1 lists the most common stream manipulators for this purpose.5

Table 3.1 Commonly Used Stream Manipulators

Manipulator Action
setw(n) Set the field width to n.
setprecision(n) Set the floating-point precision to n places. If the fixed manipula-

tor is designated, n specifies the total number of displayed digits
after the decimal point; otherwise, n specifies the total number of
significant digits displayed (integer plus fractional digits).

setfill('x') Set the default leading fill character to x. (The default leading fill
character is a space, which is used to fill the beginning of an output
field when the field width is larger than the value being displayed.)

setiosflags(flags) Set the format flags. (See Table 3.3 for flag settings.)
scientific Set the output to display real numbers in scientific notation.
showbase Display the base used for numbers. A leading 0 is displayed for octal

numbers and a leading 0x for hexadecimal numbers.

5As noted in Chapter 2, the endl manipulator inserts a new line and then forces all current insertions to be displayed immediately,

called “flushing the stream.”

D_C7785_03.1c 93D_C7785_03.1c 93 1/18/11 11:59 AM1/18/11 11:59 AM

94 Assignment and Interactive Input

Manipulator Action
showpoint Always display six digits total (combination of integer and fractional

parts). Fill with trailing zeros, if necessary. For larger integer values,
revert to scientific notation.

showpos Display all positive numbers with a leading + sign.
boolalpha Display Boolean values as true and false rather than 1 and 0.
dec Set the output for decimal display, which is the default.
endl Output a newline character and display all characters in the buffer.
fixed Always show a decimal point and use a default of six digits after the

decimal point. Fill with trailing zeros, if necessary.
flush Display all characters in the buffer.
left Left-justify all numbers.
hex Set the output for hexadecimal display.
oct Set the output for octal display.
uppercase Display hexadecimal digits and the exponent in scientific notation in

uppercase.
right Right-justify all numbers (the default).
noboolalpha Display Boolean values as 1 and 0 rather than true and false.
noshowbase Don’t display octal numbers with a leading 0 and hexadecimal num-

bers with a leading 0x.
noshowpoint Don’t use a decimal point for real numbers with no fractional parts,

don’t display trailing zeros in the fractional part of a number, and
display a maximum of six decimal digits only.

noshowpos Don’t display leading + signs (the default).
nouppercase Display hexadecimal digits and the exponent in scientific notation in

lowercase.

For example, the statement

coutƒ<<ƒ“Theƒsumƒofƒ6ƒandƒ15ƒis”ƒ<<ƒsetw(3)ƒ<<ƒ21;

creates this printout:

Theƒsumƒofƒ6ƒandƒ15ƒisƒ21

The setw(3) field width manipulator included in the data stream sent to cout is used to

set the displayed field width. The 3 in this manipulator sets the default field width for the next

number in the stream to be three spaces. This field width setting causes the 21 to be printed

in a field of three spaces, which includes one blank and the number 21. As shown in this out-

put, integers are right-justified in the specified field.

Field width manipulators are useful in printing columns of numbers so that the numbers

align correctly in each column. For example, Program 3.5 shows how a column of integers

aligns in the absence of field width manipulators.

Table 3.1 Commonly Used Stream Manipulators (continued)

D_C7785_03.1c 94D_C7785_03.1c 94 1/18/11 11:59 AM1/18/11 11:59 AM

95Chapter 3
Formatted Output

 Program 3.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ6ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ18ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ124ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“---\n”
ƒƒƒƒƒƒƒ<<ƒ(6+18+124)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

The output of Program 3.5 is the following:

6
18
124

148

Because no field width manipulators are used in Program 3.5, the cout object allocates

enough space for each number as it’s received. Forcing numbers to align on the units digit

requires a field width wide enough for the largest displayed number, which is three for the

numbers in Program 3.5. Program 3.6 shows the use of this field width.

 Program 3.6

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒsetw(3)ƒ<<ƒ6ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒsetw(3)ƒ<<ƒ18ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒsetw(3)ƒ<<ƒ124ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“---\n”
ƒƒƒƒƒƒƒ<<ƒ(6+18+124)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

D_C7785_03.1c 95D_C7785_03.1c 95 1/18/11 11:59 AM1/18/11 11:59 AM

96 Assignment and Interactive Input

The output of Program 3.6 is as follows:

ƒƒ6
ƒ18
124

148

The field width manipulator must be included for each occurrence of a number inserted

in the data stream sent to cout. This manipulator applies only to the next insertion of data

immediately following it.

When a manipulator requiring an argument is used, the iomanip header file must be

included as part of the program. To do this, you use the preprocessor command

#includeƒ<iomanip>, which is the second line in Program 3.6.

Formatting floating-point numbers requires using three field width manipulators. The

first manipulator sets the total width of the display, the second manipulator forces the display

of a decimal point, and the third manipulator determines how many significant digits are dis-

played to the right of the decimal point. (See the “Point of Information” box in Chapter 2 for

a review of significant digits.) For example, examine the following statement:

coutƒ<<ƒ“|”ƒ<<ƒsetw(10)ƒ<<ƒfixedƒ<<ƒsetprecision(3)ƒ<<ƒ25.67ƒ<<ƒ“|”;

It causes the following printout:

|ƒƒƒƒ25.670|

The bar symbol, |, in this example is used to delimit (mark) the beginning and end of the

display field. The setw manipulator tells cout to display the number in a total field of 10.

(With real numbers, the decimal point takes up one of these field locations.) The fixed

manipulator forces the display of a decimal point, and the setprecision manipulator desig-

nates the number of digits displayed after the decimal point. In this case, setprecision

specifies a display of three digits after the decimal point. Without the explicit designation of a

decimal point (which can also be designated as setiosflags(ios::fixed), explained

shortly), the setprecision manipulator specifies the total number of displayed digits, which

includes the integer and fractional parts of the number.

For all numbers (integers, single-precision, and double-precision), cout ignores the setw

manipulator specification if the total specified field width is too small, and it allocates enough

space for printing the integer part of the number. The fractional part of single-precision and

double-precision numbers is displayed up to the precision set with the setprecision manip-

ulator. (In the absence of setprecision, the default precision is set to six decimal places.) If

the fractional part of the number to be displayed contains more digits than are called for in the

setprecision manipulator, the number is rounded to the indicated number of decimal

places; if the fractional part contains fewer digits than specified, the number is displayed with

fewer digits. Table 3.2 shows the effect of several format manipulator combinations. For clar-

ity, the bar symbol delimits the beginning and end of output fields.

D_C7785_03.1c 96D_C7785_03.1c 96 1/18/11 11:59 AM1/18/11 11:59 AM

97Chapter 3
Formatted Output

Table 3.2 Effect of Format Manipulators

Manipulators Number Display Comments
setw(2) 3 | 3| Number fits in the field.
setw(2) 43 |43| Number fits in the field.
setw(2) 143 |143| Field width is ignored.
setw(2) 2.3 |2.3| Field width is ignored.
setw(5)
fixed
setprecision(2)

2.366 | 2.37| Field width of five with two
decimal digits.

setw(5)
fixed
setprecision(2)

42.3 |42.30| Number fits in the field with the specified
precision. Note that the decimal point
takes up one location in the field width.

setw(5)
setprecision(2)

142.364 |1.4e+002| Field width is ignored, and scientific
notation is used with the
setprecision manipulator.

setw(5)
fixed
setprecision(2)

142.364 |142.36| Field width is ignored, but
precision specification is used. The
setprecision manipulator specifies
the number of fractional digits.

setw(5)
fixed
setprecision(2)

142.366 |142.37| Field width is ignored, but precision
specification is used. The
setprecision manipulator specifies
the number of fractional digits. (Note the
rounding of the last decimal digit.)

setw(5)
fixed
setprecision(2)

142 | 142| Field width is used; fixed and
setprecision manipulators are irrel-
evant because the number is an integer
that specifies the total number of signifi-
cant digits (integer plus fractional digits).

The setiosflags() Manipulator6

In addition to the setw and setprecision manipulators, a field justification manipulator is

available. As you have seen, numbers sent to cout are normally right-justified in the display

field, and strings are left-justified. To alter the default justification for a stream of data, you use

the setiosflags manipulator. For example, the statement

coutƒ<<ƒ“|”ƒ<<ƒsetw(10)ƒ<<ƒsetiosflags(ios::left)ƒ<<ƒ142ƒ<<ƒ“|”;

causes the following left-justified display:

|142ƒƒƒƒƒƒƒ|

6This topic can be omitted on first reading without loss of subject continuity.

D_C7785_03.1c 97D_C7785_03.1c 97 1/18/11 11:59 AM1/18/11 11:59 AM

98 Assignment and Interactive Input

Because data passed to cout can be continued across multiple lines, the previous display

is also produced by this statement:

coutƒ<<ƒ“|”ƒ<<ƒsetw(10)
ƒƒƒƒƒ<<ƒsetiosflags(ios::left)
ƒƒƒƒƒ<<ƒ142ƒ<<ƒ“|”;

To right-justify strings in a stream, you use the setiosflags(ios::right) manipulator.

The letters “ios” in the function name and the ios::right argument come from the first let-

ters of the words “input output stream.”

In addition to the left and right flags that can be used with setiosflags(), other

flags can be used to affect output. Table 3.3 lists the most commonly used flags for this

manipulator function. The flags in this table provide another way of setting the manipulators

listed in Table 3.1.

Table 3.3 Format Flags for Use with setiosflags()

Flag Meaning
ios::fixed Always show the decimal point with six digits following it. Fill with

trailing zeros after the decimal point, if necessary. This flag takes
precedence if it’s set with the ios::showpoint flag.

ios::scientific Use exponential display in the output.
ios::showpoint Always display a decimal point and six significant digits total (com-

bination of integer and fractional parts). For larger integer values,
revert to scientific notation unless the ios::fixed flag is set.

ios::showpos Display a leading + sign when the number is positive.

Point of Information
What Is a Flag?

In current programming usage, the term flag refers to an item, such as a variable or an
argument, that sets a condition usually considered active or nonactive. Although the
exact origin of this term in programming is unknown, it probably came from using real
flags to signal a condition, such as the Stop, Go, Caution, and Winner flags commonly
used at car races.

In a similar manner, each flag argument for the setiosflags() manipulator func-
tion activates a specific condition. For example, the ios::dec flag sets the display for-
mat to decimal, and the ios::oct flag activates the octal display format. Because
these conditions are mutually exclusive (only one can be active at a time), activating this
type of flag deactivates the other flags automatically.

Flags that aren’t mutually exclusive, such as ios::dec, ios::showpoint, and
ios::fixed, can be set simultaneously. You can do this by using three separate
setiosflag() calls or combining all arguments into one call as follows:

coutƒ<<ƒsetiosflags(ios::decƒ|ƒios::fixedƒ|ƒios::showpoint);

D_C7785_03.1c 98D_C7785_03.1c 98 1/18/11 11:59 AM1/18/11 11:59 AM

99Chapter 3
Formatted Output

Flag Meaning
ios::left Left-justify the output.
ios::right Right-justify the output.

Because the flags in Table 3.3 are used as arguments to setiosflags() and the terms

“argument” and “parameter” are synonymous, another name for a manipulator method that

uses arguments is a parameterized manipulator. The following is an example of a parameterized

manipulator method:

coutƒ<<ƒsetiosflags(ios::fixed)ƒ<<ƒsetprecision(4);

This statement forces all subsequent floating-point numbers sent to the output stream to

be displayed with a decimal point and four decimal digits. If the number has fewer than four

decimal digits, it’s padded with trailing zeros.

Hexadecimal and Octal I/O7

In addition to outputting integers in decimal notation, the oct and hex manipulators are used

for conversions to octal and hexadecimal. (Review Section 2.6 if you’re unfamiliar with hexa-

decimal or octal numbers.) Program 3.7 uses these flags in an example of converting a decimal

number to its equivalent hexadecimal and octal values. Because decimal is the default display,

the dec manipulator isn’t required in the first output stream.

 Program 3.7

//ƒaƒprogramƒthatƒillustratesƒoutputƒconversions
#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“Theƒdecimalƒ(baseƒ10)ƒvalueƒofƒ15ƒisƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒ15ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒoctalƒ(baseƒ8)ƒvalueƒofƒ15ƒisƒ“
ƒƒƒƒƒƒƒ<<ƒshowbaseƒ<<ƒoctƒ<<ƒ15ƒ<<endl;
ƒƒcoutƒ<<ƒ“Theƒhexadecimalƒ(baseƒ16)ƒvalueƒofƒ15ƒisƒ“
ƒƒƒƒƒƒƒ<<ƒshowbaseƒ<<ƒhexƒ<<ƒ15ƒ<<ƒendl;

ƒƒreturnƒ0;
}

7This topic can be omitted on first reading without loss of subject continuity.

Table 3.3 Format Flags for Use with setiosflags() (continued)

D_C7785_03.1c 99D_C7785_03.1c 99 1/18/11 11:59 AM1/18/11 11:59 AM

100 Assignment and Interactive Input

This is the output produced by Program 3.7:

Theƒdecimalƒ(baseƒ10)ƒvalueƒofƒ15ƒisƒ15
Theƒoctalƒ(baseƒ8)ƒvalueƒofƒ15ƒisƒ017
Theƒhexadecimalƒ(baseƒ16)ƒvalueƒofƒ15ƒisƒ0xf

Point of Information
Formatting cout Stream Data

Floating-point data in a cout output stream can be formatted in precise ways. For
example, a common format requirement is to display monetary amounts with two digits
after the decimal point, such as 123.45. You can do this with the following statement:

coutƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒ<<ƒsetprecision(2);

The first manipulator flag, ios::fixed, forces all floating-point numbers in the cout
stream to be displayed in decimal notation. This flag also prevents using scientific notation.
The next flag, ios::showpoint, tells the stream to always display a decimal point. Finally,
the setprecision manipulator tells the stream to always display two digits after the dec-
imal point. Instead of using manipulators, you can use the cout stream methods setf()
and precision(). For example, the previous formatting can also be accomplished with
this code:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

Note the syntax: The name of the object, cout, is separated from the method with a
period. This format is the standard way of specifying a method and connecting it to a
specific object.

Additionally, the flags used in both the setf() method and the setiosflags()
manipulator method can be combined by using the bitwise OR operator, | (explained in
Appendix C, available online). Using this operator, the following two statements are
equivalent:

coutƒ<<ƒƒsetiosflags(ios::fixedƒ|ƒios::showpoint);
cout.setf(ios::fixedƒ|ƒios::showpoint);

The statement you select is a matter of personal preference or a predefined standard.

D_C7785_03.1c 100D_C7785_03.1c 100 1/18/11 11:59 AM1/18/11 11:59 AM

101Chapter 3
Formatted Output

The display of integer values in one of three possible numbering systems (decimal, octal,

and hexadecimal) doesn’t affect how the number is stored in a computer. All numbers are

stored by using the computer’s internal codes. The manipulators sent to cout tell the object

how to convert the internal code for output display purposes.

Besides integers being displayed in octal or hexadecimal form, they can also be written in

a program in these forms. To designate an octal integer, the number must have a leading zero.

The number 023, for example, is an octal number in C++. Hexadecimal numbers are denoted

with a leading 0x. Program 3.8 shows how octal and hexadecimal integer numbers are used.

 Program 3.8

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcoutƒ<<ƒ“Theƒdecimalƒvalueƒofƒ025ƒisƒ“ƒ<<ƒ025ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“Theƒdecimalƒvalueƒofƒ0x37ƒisƒ“<<ƒ0x37ƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 3.8 produces the following output:

Theƒdecimalƒvalueƒofƒ025ƒisƒ21
Theƒdecimalƒvalueƒofƒ0x37ƒisƒ55

Figure 3.5 shows the relationship between input, storage, and display of integers.

D_C7785_03.1c 101D_C7785_03.1c 101 1/18/11 11:59 AM1/18/11 11:59 AM

102 Assignment and Interactive Input

internal
number

code

convert an
octal number

convert a
decimal
number

convert a
hexadecimal

number

convert to
octal

representation

convert to
decimal

representation

convert to
hexadecimal

representation

cout << dec

cout << oct

cout << hex

Display is octal, decimal,
or hexadecimal

Storage is always
in binary

Input is octal, decimal,
or hexadecimal

Integer
with a

leading 0

Integer
with no

leading 0
or 0X

Integer
with a

leading 0X

Octal
display

Decimal
display

Hexadecimal
display

Figure 3.5 Input, storage, and display of integers

Finally, you can set the manipulators listed in Tables 3.1 and 3.2 by using the ostream

class methods listed in Table 3.4.

D_C7785_03.1c 102D_C7785_03.1c 102 1/18/11 11:59 AM1/18/11 11:59 AM

103Chapter 3
Formatted Output

Table 3.4 ostream Class Methods

Method Comment Example
precision(n) Equivalent to setprecision() cout.precision(2)

fill('x') Equivalent to setfill() cout.fill('*')

setf(ios::fixed) Equivalent to
cout.setf(ios::fixed)

setiosflags(ios::fixed)

setf(ios::showpoint) Equivalent to
cout.setf(ios::showpoint)

setiosflags(ios::showpoint)

setf(iof::left) Equivalent to left cout.setf(ios::left)

setf(ios::right) Equivalent to right cout.setf(ios::right)

setf(ios::flush) Equivalent to endl cout.setf(ios::flush)

In the Example column of Table 3.4, notice that the name of the object, cout, is sepa-

rated from the method with a period. As mentioned, this format is the standard way of calling

a class method and providing an object for it to operate on.

 EXERCISES 3.2

1. (Debug) Determine the errors in the following statements:

a. coutƒ<<ƒ“\nƒ<<ƒ“ƒ15)
b. coutƒ<<ƒ“setw(4)”ƒ<<ƒƒ33;
c. coutƒ<<ƒ“setprecision(5)”ƒ<<ƒƒ526.768;
d. “HelloƒWorld!”ƒ>>ƒcout;
e. coutƒ<<ƒ47ƒ<<ƒsetw(6);
f. coutƒ<<ƒset(10)ƒ<<ƒ526.768ƒ<<ƒsetprecision(2);

2. (Desk check) Determine and write out the display produced by the following statements:

a. coutƒ<<ƒ“|”ƒ<<ƒ5ƒ<<”|”;

b. coutƒ<<ƒ“|”ƒ<<ƒsetw(4)ƒ<<ƒ5ƒ<<ƒ“|”;

c. coutƒ<<ƒ“|”ƒ<<ƒsetw(4)ƒ<<ƒ56829ƒ<<ƒ“|”;

d. coutƒ<<ƒ“|”ƒ<<ƒsetw(5)ƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ5.26ƒ<<ƒ“|”;

e. coutƒ<<ƒ“|”ƒ<<ƒsetw(5)ƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ5.267ƒ<<ƒ“|”;

f. coutƒ<<ƒ“|”ƒ<<ƒsetw(5)ƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ53.264ƒ<<ƒ“|”;

g. coutƒ<<ƒ“|”ƒ<<ƒsetw(5)ƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ534.264ƒ<<ƒ“|”;

h. coutƒ<<ƒ“|”ƒ<<ƒsetw(5)ƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ534.ƒ<<ƒ“|”;

D_C7785_03.1c 103D_C7785_03.1c 103 1/18/11 11:59 AM1/18/11 11:59 AM

104 Assignment and Interactive Input

3. (Desk check) Write out the display produced by the following statements:

a. coutƒ<<ƒ“Theƒnumberƒisƒ“ƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒƒ<<ƒ26.27ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒnumberƒisƒ“ƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒƒ<<ƒ682.3ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒnumberƒisƒ“ƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒƒ<<ƒ1.968ƒ<<ƒendl;

b. coutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ26.27ƒ<<ƒendl;
ƒƒcoutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ682.3ƒ<<ƒendl;
ƒƒcoutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ1.968ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“------\n”;
ƒƒcoutƒ<<ƒsetw(6)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)
ƒƒƒƒƒƒƒƒ<<ƒ26.27ƒ+ƒ682.3ƒ+ƒ1.968ƒ<<ƒendl;

c. coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ26.27ƒ<<ƒendl;
ƒƒcoutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ682.3ƒ<<ƒendl;
ƒƒcoutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ1.968ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“-----\n”;
ƒƒcoutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)
ƒƒƒƒƒƒƒƒ<<ƒ26.27ƒ+ƒ682.3ƒ+ƒ1.968ƒ<<ƒendl;

d. coutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ36.164ƒ<<ƒendl;
ƒƒcoutƒ<<ƒsetw(5)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)ƒ<<ƒ10.003ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“-----”ƒ<<ƒendl;

4. (Desk check) The following chart lists the equivalent octal and hexadecimal representations

for the decimal numbers 1 through 15:

ƒƒƒƒDecimal:ƒ1ƒƒ2ƒƒ3ƒƒ4ƒƒ5ƒƒ6ƒƒ7ƒƒƒ8ƒƒƒ9ƒƒ10ƒƒ11ƒƒ12ƒƒ13ƒƒ14ƒƒ15
ƒƒƒƒƒƒOctal:ƒ1ƒƒ2ƒƒ3ƒƒ4ƒƒ5ƒƒ6ƒƒ7ƒƒ10ƒƒ11ƒƒ12ƒƒ13ƒƒ14ƒƒ15ƒƒ16ƒƒ17
Hexadecimal:ƒ1ƒƒ2ƒƒ3ƒƒ4ƒƒ5ƒƒ6ƒƒ7ƒƒƒ8ƒƒƒ9ƒƒƒaƒƒƒbƒƒƒcƒƒƒdƒƒƒeƒƒƒf

 Using this chart, determine the output of the following program:

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{

D_C7785_03.1c 104D_C7785_03.1c 104 1/18/11 11:59 AM1/18/11 11:59 AM

105Chapter 3
Formatted Output

ƒƒcoutƒ<<ƒ“\nTheƒvalueƒofƒ14ƒinƒoctalƒisƒ“ƒ<<ƒoctƒ<<ƒ14
ƒƒƒƒƒƒƒ<<ƒ“\nTheƒvalueƒofƒ14ƒinƒhexadecimalƒisƒ“ƒ<<ƒhexƒ<<ƒ14
ƒƒƒƒƒƒƒ<<ƒ“\nTheƒvalueƒofƒ0xAƒinƒdecimalƒisƒ“ƒ<<ƒdecƒ<<ƒ0xA
ƒƒƒƒƒƒƒ<<ƒ“\nTheƒvalueƒofƒ0xAƒinƒoctalƒisƒ“ƒ<<ƒoctƒ<<ƒ0xA
ƒƒƒƒƒƒƒ<<ƒendl;

ƒƒreturnƒ0;
}

5. (Program) Write a C++ program to calculate and display the value of the slope of the line

connecting two points with the coordinates (3,7) and (8,12). Use the fact that the slope

between two points at the coordinates (x1,y1) and (x2,y2) is slope = (y2 - y1) / (x2 - x1). Your

program should produce this display:

Theƒvalueƒofƒtheƒslopeƒisƒxxx.xx

 The xxx.xx denotes placing the calculated value in a field wide enough for three places to

the left of the decimal point and two places to the right of it.

6. (Program) Write a C++ program to calculate and display the midpoint coordinates of the line

connecting the two points with coordinates of (3,7) and (8,12). Use the fact that the midpoint

coordinates between two points with the coordinates (x1,y1) and (x2,y2) are ((x2 + x1) / 2,

(y2 + y1) / 2). Your program should produce this display:

Theƒxƒcoordinateƒofƒtheƒmidpointƒisƒxxx.xx
Theƒyƒcoordinateƒofƒtheƒmidpointƒisƒxxx.xx

 The xxx.xx denotes placing the calculated value in a field wide enough for three places to

the left of the decimal point and two places to the right of it.

 Verify your program using the following test data:

Test data set 1: Point 1 = (0,0) and Point 2 = (16,0)

Test data set 2: Point 1 = (0,0) and Point 2 = (0,16)

Test data set 3: Point 1 = (0,0) and Point 2 = (-16,0)

Test data set 4: Point 1 = (0,0) and Point 2 = (0,-16)

Test data set 5: Point 1 = (-5,-5) and Point 2 = (5,5)

 When you have completed your verification, use your program to complete the following table.

Pointƒ1ƒƒƒƒƒƒPointƒ2ƒƒƒƒƒƒMidpoint
-------ƒƒƒƒƒƒ-------ƒƒƒƒƒƒ--------
(4,6)ƒƒƒƒƒƒƒƒ(16,18)
(22,3)ƒƒƒƒƒƒƒ(8,12)
(-10,8)ƒƒƒƒƒƒ(14,4)
(-12,2)ƒƒƒƒƒƒ(14,3.1)
(3.1,-6)ƒƒƒƒƒ(20,16)
(3.1,-6)ƒƒƒƒƒ(-16,-18)

D_C7785_03.1c 105D_C7785_03.1c 105 1/18/11 11:59 AM1/18/11 11:59 AM

106 Assignment and Interactive Input

7. (Program) The change remaining after an amount is used to pay a restaurant bill of amount

check can be calculated by using the following C++ statements:

//ƒdetermineƒtheƒnumberƒofƒpenniesƒinƒtheƒchange
ƒƒƒƒchangeƒ=ƒ(paidƒ-ƒcheck)ƒ*ƒ100;
//ƒdetermineƒtheƒnumberƒofƒdollarsƒinƒtheƒchange
ƒƒƒƒdollarsƒ=ƒ(int)ƒ(change/100);

a. Using the previous statements as a starting point, write a C++ program that calculates the

number of dollar bills, quarters, dimes, nickels, and pennies in the change when $10 is used

to pay a bill of $6.07.

b. Without compiling or running your program, check the effect, by hand, of each statement in

the program and determine what’s stored in each variable as each statement is encountered.

c. When you have verified that your algorithm works correctly, compile and run your program.

Verify that the result produced by your program is correct, and then use your program to

determine the change when a check of $12.36 is paid with a 20-dollar bill.

8. (Program) Write a C++ program to calculate and display the maximum bending moment, M,

of a beam that’s supported on both ends (see Figure 3.6). The formula is M = XW (L - X) / L,

where X is the distance from the end of the beam that a weight, W, is placed, and L is the

length of the beam. Your program should produce this display:

Theƒmaximumƒbendingƒmomentƒisƒxxxx.xxxx

 The xxxx.xxxx denotes placing the calculated value in a field wide enough for four places to

both the right and left of the decimal point.

W
L

X

Figure 3.6 Calculating the maximum bending moment

3.3 Mathematical Library Functions

As you have seen, assignment statements can be used to perform arithmetic computations. For

example, the following assignment statement multiplies the value in unitPrice times the

value in amount and assigns the resulting value to totalPrice:

totalPriceƒ=ƒunitPriceƒ*ƒamount;

Although addition, subtraction, multiplication, and division are easily accomplished with

C++’s arithmetic operators, no operators exist for raising a number to a power, finding a num-

ber’s square root, or determining trigonometric values. To perform these calculations, C++

provides standard preprogrammed functions that can be included in a program. Before using

one of these mathematical functions, you need to know the following:

• The name of the mathematical function

• What the mathematical function does

D_C7785_03.1c 106D_C7785_03.1c 106 1/18/11 11:59 AM1/18/11 11:59 AM

107Chapter 3
Mathematical Library Functions

• The type of data the mathematical function requires

• The data type of the result the mathematical function returns

• How to include the mathematical library

To illustrate the use of C++’s mathematical functions, take a look at the mathematical

function sqrt(), which calculates a number’s square root and uses this form:

sqrt(number)

The function’s name—in this case, sqrt—is followed by parentheses containing the num-

ber for which the square root should be calculated. The purpose of the parentheses after the

function name is to provide a funnel through which data can be passed to the function (see

Figure 3.7). The items passed to the function through the parentheses are called arguments of

the function, as you learned in Chapter 1, and constitute its input data. For example, the fol-

lowing expressions are used to compute the square root of the arguments 4., 17.0, 25., 1043.29,

and 6.4516:

sqrt(4.)
sqrt(17.0)
sqrt(25.)
sqrt(1043.29)
sqrt(6.4516)

sqrt() function

sqrt (a value)

Figure 3.7 Passing data to the sqrt() function

Notice that the argument to the sqrt() function must be a real value, which is an exam-

ple of C++’s function-overloading capabilities. Function overloading permits using the same

function name for arguments of different data types.8 C++ has three functions named

sqrt()—defined for float, double, and longƒdouble arguments. The correct sqrt() func-

tion is called depending on the type of value passed to the function when the call is made.

When one of the functions named sqrt() is called (again, the selection is automatic, based on

8If overloading wasn’t supported, three separate square root functions, each with a different name, would have to be defined—one for

each type of argument.

D_C7785_03.1c 107D_C7785_03.1c 107 1/18/11 11:59 AM1/18/11 11:59 AM

108 Assignment and Interactive Input

the passed argument), the function determines the square root of its argument and returns the

result as a double. The previous expressions return these values:

Expression Value Returned
sqrt(4.) 2.
sqrt(17.0) 4.12311
sqrt(25.) 5.
sqrt(1043.29) 32.3
sqrt(6.4516) 2.54

In addition to the sqrt() function, Table 3.5 lists commonly used mathematical functions

provided in C++. Accessing these functions in a program requires including the mathematical

header file cmath, which contains declarations for the mathematical function. To use this

header file, place the following preprocessor statement at the top of any program using a math-

ematical function:

#includeƒ<cmath>

Although some mathematical functions in Table 3.5 require more than one argument, all

functions, by definition, can return at most one value. Additionally, all the functions listed are

overloaded, which means the same function name can be used with different argument data

types. Table 3.6 shows the value returned by selected functions, using sample arguments.

Table 3.5 Common C++ Functions

Function Name Description Returned Value
abs(a) Absolute value Same data type as argument
pow(a1,a2) a1 raised to the a2 power Same data type as argument a1
sqrt(a) Square root of a real number

(Note: An integer argument
results in a compiler error.)

Double-precision

sin(a) Sine of a (a in radians) Double-precision
cos(a) Cosine of a (a in radians) Double-precision
tan(a) Tangent of a (a in radians) Double-precision
log(a) Natural logarithm of a Double-precision
log10(a) Common log (base 10) of a Double-precision
exp(a) e raised to the a power Double-precision

D_C7785_03.1c 108D_C7785_03.1c 108 1/18/11 11:59 AM1/18/11 11:59 AM

109Chapter 3
Mathematical Library Functions

Table 3.6 Selected Function Examples

Example Returned Value
abs(-7.362) 7.362
abs(-3) 3
pow(2.0,5.0) 32.
pow(10,3) 1000
log(18.697) 2.92836
log10(18.697) 1.27177
exp(-3.2) 0.040762

Each time a mathematical function is used, it’s called into action (referred to as invoking

or calling the function) by giving the name of the function and passing to it any data in the

parentheses following the function’s name (see Figure 3.8).

function-name (data passed to the function);

This passes data to
the function

This identifies
the called
function

Figure 3.8 Using and passing data to a function

The arguments passed to a function need not be single constants. Expressions can also be

arguments, provided the expression can be computed to yield a value of the required data

type. For example, the following arguments are valid for the given functions:

sqrt(4.0ƒ+ƒ5.3ƒ*ƒ4.0)ƒƒƒƒƒƒƒƒƒƒƒƒabs(2.3ƒ*ƒ4.6)
sqrt(16.0ƒ*ƒ2.0ƒ-ƒ6.7)ƒƒƒƒƒƒƒƒƒƒƒsin(thetaƒ-ƒphi)
sqrt(xƒ*ƒyƒ-ƒz/3.2)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒcos(2.0ƒ*ƒomega)

The expressions in parentheses are evaluated first to yield a specific value. Therefore, val-

ues have to be assigned to the variables theta, phi, x, y, z, and omega before their use in the

preceding expressions. After the value of the argument is calculated, it’s passed to the function.

Functions can also be included as part of larger expressions, as shown in this example:

4ƒ*ƒsqrt(4.5ƒ*ƒ10.0ƒ-ƒ9.0)ƒ-ƒ2.0
=ƒƒ4ƒ*ƒsqrt(36.0)ƒ-ƒ2.0
=ƒƒ4ƒ*ƒ6.0ƒ-ƒ2.0
=ƒƒ24.0ƒ-ƒ2.0
=ƒƒ22.0

D_C7785_03.1c 109D_C7785_03.1c 109 1/18/11 11:59 AM1/18/11 11:59 AM

110 Assignment and Interactive Input

The step-by-step evaluation of an expression such as

3.0ƒ*ƒsqrt(5ƒ*ƒ33ƒ-ƒ13.71)ƒ/ƒ5

is as follows:

Step Result
1. Perform multiplication in the argument. 3.0 * sqrt(165 - 13.71) / 5
2. Complete the argument calculation. 3.0 * sqrt(151.29) / 5
3. Return a function value. 3.0 * 12.3 / 5
4. Perform the multiplication. 36.9 / 5
5. Perform the division. 7.38

Program 3.9 shows using the sqrt() function to determine the time it takes a ball to hit

the ground after it has been dropped from an 800-foot tower. The mathematical formula for

calculating the time in seconds it takes for the ball to fall a given distance in feet is as follows,

where g is the gravitational constant equal to 32.2 ft/sec2:

time = sqrt(2 × distance / g)

 Program 3.9

#includeƒ<iostream>ƒ//ƒthisƒlineƒcanƒbeƒplacedƒsecondƒinsteadƒofƒfirst
#includeƒ<cmath>ƒƒƒƒ//ƒthisƒlineƒcanƒbeƒplacedƒfirstƒinsteadƒofƒsecond
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒheight;
ƒƒdoubleƒtime;

ƒƒheightƒ=ƒ800;
ƒƒtimeƒ=ƒsqrt(2ƒ*ƒheightƒ/ƒ32.2);
ƒƒcoutƒ<<ƒ“Itƒwillƒtakeƒ“ƒ<<ƒtimeƒ<<ƒ“ƒsecondsƒtoƒfallƒ“
ƒƒƒƒƒƒƒ<<ƒheightƒ<<ƒ“ƒfeet.\n”;

ƒƒreturnƒ0;
}

D_C7785_03.1c 110D_C7785_03.1c 110 1/18/11 11:59 AM1/18/11 11:59 AM

111Chapter 3
Mathematical Library Functions

Program 3.9 produces this output:

Itƒwillƒtakeƒ7.04907ƒsecondsƒtoƒfallƒ800ƒfeet.

As used in Program 3.9, the value that the sqrt() function returns is assigned to the vari-

able time. In addition to assigning a function’s returned value to a variable, the returned value

can be included in a larger expression or even used as an argument to another function. For

example, the following expression is valid:

sqrt(ƒsin(ƒabs(theta)ƒ)ƒ)

Because parentheses are present, the computation proceeds from the inner to outer pairs

of parentheses. Therefore, the absolute value of theta is computed first and used as an argu-

ment to the sin() function. The value the sin() function returns is then used as an argument

to the sqrt() function.

Note that the arguments of all trigonometric functions (sin(), cos(), and so forth) must

be in radians. Therefore, to calculate the sine of an angle given in degrees, the angle must be

converted to radians first. You can do this easily by multiplying the angle by the term

(3.1416/180.). For example, to obtain the sine of 30 degrees, use the expression sin

(30ƒ*ƒ3.1416/180.).

Casts
You have already seen the conversion of an operand’s data type in mixed-mode arithmetic

expressions (Section 2.2) and with different operators (Section 3.1). In addition to these

implicit data type conversions made automatically in mixed-mode arithmetic and assignment

expressions, C++ provides for explicit user-specified type conversions. The operator used to

force converting a value to another type is the cast operator. C++ provides compile-time and

runtime cast operators. The compile-time cast is a unary operator with this syntax:

dataTypeƒ(expression)

The dataType is the data type to which the expression in parentheses is converted. For

example, the following expression converts the value of the expression aƒ*ƒb to an integer

value:9

intƒ(aƒ*ƒb)

Runtime casts are also included in C++. In this type of cast, the requested type conversion

is checked at runtime and applied if the conversion results in a valid value. Although four types

of runtime casts are available, the most commonly used cast and the one corresponding to the

compile-time cast has the following syntax:

staticCast<dataType>ƒ(expression)

For example, the runtime cast staticCast<int>(aƒ*ƒb) is equivalent to the compile-

time cast intƒ(a*ƒb).

9The C type cast syntax, in this case (int)(aƒ*ƒb), also works in C++.

D_C7785_03.1c 111D_C7785_03.1c 111 1/18/11 11:59 AM1/18/11 11:59 AM

112 Assignment and Interactive Input

 EXERCISES 3.3

1. (Practice) Write function calls to determine the following:

a. The square root of 6.37

b. The square root of x - y

c. The sine of 30 degrees

d. The sine of 60 degrees

e. The absolute value of a2 - b2

f. The value of e raised to the third power

2. (Practice) For aƒ=ƒ10.6, bƒ=ƒ13.9, and cƒ=ƒ-3.42, determine the following values:

a. intƒ(a)
b. intƒ(b)
c. intƒ(c)
d. intƒ(aƒ+ƒb)
e. intƒ(a)ƒ+ƒbƒ+ƒc
f. intƒ(aƒ+ƒb)ƒ+ƒc
g. intƒ(aƒ+ƒbƒ+ƒc)
h. doubleƒ(intƒ(a))ƒ+ƒb
i. doubleƒ(intƒ(aƒ+ƒb))
j. abs(a)ƒ+ƒabs(b)
k. sqrt(abs(aƒ-ƒb))

3. (Practice) Write C++ statements for the following:

a. area = (c × b × sin a) / 2

b.

c.

d.

e. b = sin2 x - cos2 x

4. (Program) Write, compile, and run a C++ program that calculates and returns the fourth root

of the number 81.0, which is 3. After verifying that your program works correctly, use it to

determine the fourth root of 1,728.896400. Your program should make use of the sqrt()

function or use the fact that the fourth root of a value can be obtained by raising the value to

the 1/4 power.

5. (Program) The volume of oil stored in an underground 200-foot deep cylindrical tank is

determined by measuring the distance from the top of the tank to the surface of the oil.

Knowing this distance and the radius of the tank, the volume of oil in the tank can be deter-

mined by using this formula:

volume = π radius2 (200 - distance)

D_C7785_03.1c 112D_C7785_03.1c 112 1/18/11 2:49 PM1/18/11 2:49 PM

113Chapter 3
Mathematical Library Functions

 Using this information, write, compile, and run a C++ program that determines the volume of

oil in a 200-foot tank that has a radius of 10 feet and measures 12 feet from the top of the tank

to the top of the oil. Your program should display the radius, distance from the top of the tank

to the oil, and the calculated volume.

6. (Program) The circumference of an ellipse (review Figure 3.4) is given by this formula:

Circumference

 Using this formula, write a C++ program to calculate the circumference of an ellipse with a

minor radius, a, of 2.5 inches and a major radius, b, of 6.4 inches.

7. (Program) Write, compile, and run a C++ program to calculate the distance between two

points with the coordinates (7, 12) and (3, 9). Use the fact that the distance between two points

with the coordinates (x1, y1) and (x2, y2) is given by this formula:

distance =

 After verifying that your program works correctly by calculating the distance between the

two points manually, use your program to determine the distance between the points

(-12, -15) and (22, 5).

8. (Program) If a 20-foot ladder is placed on the side of a building at a 85-degree angle, as

shown in Figure 3.9, the height at which the ladder touches the building can be calculated as

height = 20 × sin 85°. Calculate this height by hand, and then write, compile, and run a C++

program that determines and displays the value of the height. After verifying that your pro-

gram works correctly, use it to determine the height of a 25-foot ladder placed at an angle of

85 degrees.

20
'

85°

Figure 3.9 Calculating the height of a ladder against a building

D_C7785_03.1c 113D_C7785_03.1c 113 1/18/11 2:49 PM1/18/11 2:49 PM

114 Assignment and Interactive Input

9. (Program) The maximum height reached by a ball thrown with an initial velocity, v, in

meters/sec, at an angle of u is given by this formula:

height = (.5 × v2 × sin2 u) / 9.8

 Using this formula, write, compile, and run a C++ program that determines and displays the

maximum height reached when the ball is thrown at 5 mph at an angle of 60 degrees. (Hint:
Make sure to convert the initial velocity into the correct units. There are 1609 meters in a

mile.) Calculate the maximum height manually, and verify the result your program produces.

After verifying the result, use your program to determine the height reached by a ball thrown

at 7 mph at an angle of 45 degrees.

10. (Program) A model of worldwide population growth, in billions of people, since 2000 is given

by this formula:

Population = 7.5 e0.02[Year - 2010]

 Using this formula, write, compile, and run a C++ program to estimate the worldwide popula-

tion in the year 2012. Verify the result your program produces by calculating the answer manu-

ally, and then use your program to estimate the world’s population in the year 2020.

11. (Program) The roads of Kansas are laid out in a rectangular grid at exactly one-mile intervals,

as shown in Figure 3.10. Farmer Pete drives his 1939 Ford pickup x miles east and y miles

north to get to farmer Joe’s farm. Both x and y are integer numbers. Using this information,

write, test, and run a C++ program that prompts the user for the values of x and y, and then

uses this formula to find the shortest driving distance across the fields to Joe’s farm:

distance = sqrt(x2 + y2);

 Round the answer to the nearest integer value before it’s displayed.

12. (Program) A model to estimate the number of grams of a radioactive isotope left after t years

is given by this formula:

remaining material = (original material) e-0.00012t

 Using this formula, write, compile, and run a C++ program to determine the amount of

radioactive material remaining after 1000 years, assuming an initial amount of 100 grams.

Verify the display your program produces by using a hand calculation. After verifying that

your program is working correctly, use it to determine the amount of radioactive material

remaining after 275 years, assuming an initial amount of 250 grams.

D_C7785_03.1c 114D_C7785_03.1c 114 1/18/11 11:59 AM1/18/11 11:59 AM

115Chapter 3
Mathematical Library Functions

Distance

x

y

Pete’s
farm

Joe’s
farm

N

Figure 3.10 Illustration for Exercise 11

13. (Program) The number of years it takes for an isotope of uranium to decay to one-half an

original amount is given by this formula, where λ, the decay constant (which is equal to the

inverse of the mean lifetime), equals 0.00012:

half-life - ln(2) / λ

 Using this formula, write, compile, and run a C++ program that calculates and displays the

half-life of this uranium isotope. Verify the result your program produces by using a hand cal-

culation. After verifying that your program is working correctly, use it to determine the half-life

of a uranium isotope with λ = 0.00026.

14. (Program) a. Appendix B lists the integer values corresponding to each letter stored with

the ASCII code. Note that uppercase letters consist of contiguous codes, starting with an

integer value of 65 for the letter A and ending with 90 for the letter Z. Similarly, lowercase

letters begin with the integer value of 97 for the letter a and end with 122 for the letter z.

With this information as background, determine the character value of the expressions

charƒ('A'ƒ+ƒ32) and charƒ('Z'ƒ+ƒ32).

b. Using Appendix B, determine the integer value of the expression 'a'ƒ-ƒ'A'.

c. Using the results of Exercises 14a and 14b, determine the character value of the following

expression, where uppercaseƒletter can be any uppercase letter from A to Z:

charƒ(uppercaseƒletterƒ+ƒ'a'ƒ-ƒ'A').

D_C7785_03.1c 115D_C7785_03.1c 115 1/18/11 11:59 AM1/18/11 11:59 AM

116 Assignment and Interactive Input

15. (Desk check and program) a. For display purposes, the setprecision() manipulator

allows rounding all outputs to the specified number of decimal places. Doing so can, however,

yield seemingly incorrect results when used in financial programs that require displaying all

monetary values to the nearest penny. For example, examine this program:

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒdoubleƒa,ƒb,ƒc;

ƒƒaƒ=ƒ1.674;
ƒƒbƒ=ƒ1.322;
ƒƒcoutƒ<<ƒsetiosflags(ios::fixed)ƒ<<ƒsetprecision(2);
ƒƒcoutƒ<<ƒaƒ<<ƒendl;
ƒƒcoutƒ<<ƒbƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“----\n”;
ƒƒcƒ=ƒaƒ+ƒb;
ƒƒcoutƒ<<ƒcƒ<<ƒendl;

ƒƒreturnƒ0;
}

 It produces the following display:

1.67
1.32

3.00

 Clearly, the sum of the displayed numbers should be 2.99, not 3.00. The problem is that

although the values in a and b have been displayed with two decimal digits, they were added

internally in the program as three-digit numbers. The solution is to round the values in a and

b before they’re added with the statement cƒ=ƒaƒ+ƒb;. Using the int cast, devise a method

to round the values in the variables a and b to the nearest hundredth (penny value) before

they’re added.

b. Include the method you devised for Exercise 15a in a working program that produces the

following display:

1.67
1.32

2.99

D_C7785_03.1c 116D_C7785_03.1c 116 1/18/11 11:59 AM1/18/11 11:59 AM

117Chapter 3
Interactive Keyboard Input

3.4 Interactive Keyboard Input

Data for programs to be run only once can be included in the program. For example, if you

want to multiply the numbers 30.0 and 0.05, you could use Program 3.10.

 Program 3.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒnum1,ƒnum2,ƒproduct;

ƒƒnum1ƒ=ƒ30.0;
ƒƒnum2ƒ=ƒ0.05;
ƒƒproductƒ=ƒnum1ƒ*ƒnum2;
ƒƒcoutƒ<<ƒ“30.0ƒtimesƒ0.05ƒisƒ“ƒ<<ƒproductƒ<<ƒendl;

ƒƒreturnƒ0;
}

This is the output displayed by Program 3.10:

30.0ƒtimesƒ0.05ƒisƒ1.5

Program 3.10 can be shortened, as shown in Program 3.11. Both programs, however, suffer

from the same basic problem: They must be rewritten to multiply different numbers. Neither

program allows entering different numbers to operate on.

 Program 3.11

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒcoutƒ<<ƒ“30.0ƒtimesƒ0.05ƒisƒ“ƒ<<ƒ30.0ƒ*ƒ0.05ƒ<<ƒendl;

ƒƒreturnƒ0;
}

D_C7785_03.1c 117D_C7785_03.1c 117 1/18/11 11:59 AM1/18/11 11:59 AM

118 Assignment and Interactive Input

Except for the programming practice you get by writing, entering, and running the pro-

gram, programs that do the same calculation only once, on the same set of numbers, clearly

aren’t very useful. After all, using a calculator to multiply two numbers is simpler than entering

and running Program 3.10 or Program 3.11.

This section explains the cin object, which is used to enter data in a program while it’s

running. Just as the cout object displays a copy of the value stored in a variable, the cin object

allows the user to enter a value at the keyboard (see Figure 3.11). The value is then stored in

a variable.

int main()
{
 cin >>
 cout <<
}

Screen

Keyboard

Figure 3.11 cin is used to enter data; cout is used to display data

When a statement such as cinƒ>>ƒnum1; is encountered, the computer stops program

execution and accepts data from the keyboard. When a data item is typed, the cin object

stores the item in the variable listed after the extraction (“get from”) operator, >>. The pro-

gram then continues execution with the next statement after the call to cin. To see how this

object works, take a look at Program 3.12.

 Program 3.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒnum1,ƒnum2,ƒproduct;

ƒƒcoutƒ<<ƒ“Pleaseƒtypeƒinƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒnum1;
ƒƒcoutƒ<<ƒ“Pleaseƒtypeƒinƒanotherƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒnum2;
ƒƒproductƒ=ƒnum1ƒ*ƒnum2;
ƒƒcoutƒ<<ƒnum1ƒ<<ƒ“ƒtimesƒ“ƒ<<ƒnum2ƒ<<ƒ“ƒisƒ“ƒ<<ƒproductƒ<<ƒendl;

ƒƒreturnƒ0;
}

The first cout statement in Program 3.12 prints a string that tells the person at the key-

board what should be typed. When an output string is used in this manner, it’s called a prompt.

D_C7785_03.1c 118D_C7785_03.1c 118 1/18/11 11:59 AM1/18/11 11:59 AM

119Chapter 3
Interactive Keyboard Input

In this case, the prompt tells the user to type a number. The computer then executes the next

statement, which activates cin. The cin object puts the computer into a temporary pause (or

wait) state while the user types a value, and then the user signals the cin object that the data

entry is finished by pressing the Enter key. The entered value is stored in the variable to the

right of the extraction operator (num1), and the computer is taken out of its paused state.

Program execution proceeds with the next statement, which in Program 3.12 is another

cout activation that displays a message asking the user to enter another number. The second

cin statement again puts the computer into a temporary wait state while the user types a

second value. This second number is stored in the variable num2.

The following sample run was made with Program 3.12; the bold code indicates what the

user enters:

Pleaseƒtypeƒinƒaƒnumber:ƒ30
Pleaseƒtypeƒinƒanotherƒnumber:ƒ0.05
30ƒtimesƒ0.05ƒisƒ1.5

In Program 3.12, each time cin is invoked, it’s used to store one value in a variable. The

cin object, however, can be used to enter and store as many values as there are extraction

operators and variables to hold the entered data. For example, the statement

cinƒ>>ƒnum1ƒ>>ƒnum2;

results in two values being read from the keyboard and assigned to the variables num1 and

num2. If the data entered at the keyboard is

0.052ƒƒƒƒ245.79

the variables num1 and num2 contain the values 0.052 and 245.79, respectively. Note that there

must be at least one space between numbers when they’re entered to clearly indicate where

one number ends and the next begins. Inserting more than one space between the numbers

has no effect on cin.

The same spacing is applicable to entering character data; that is, the extraction operator,

>>, skips blank spaces and stores the next nonblank character in a character variable. For

example, in response to these statements,

charƒch1,ƒch2,ƒch3;ƒ//ƒdeclareƒthreeƒcharacterƒvariables
cinƒ>>ƒch1ƒ>>ƒch2ƒ>>ƒch3;ƒ//ƒacceptƒthreeƒcharacters

the input

aƒƒbƒƒc

causes the letter a to be stored in the variable ch1, the letter b to be stored in the variable ch2,

and the letter c to be stored in the variable ch3. Because a character variable can be used to

store only one character, the following input, without spaces, can also be used:

abc

You can make any number of statements with the cin object in a program, and any num-

ber of values can be entered with a single cin statement. Program 3.13 shows using the cin

object to input three numbers from the keyboard. The program then calculates and displays

the average of the entered numbers.

D_C7785_03.1c 119D_C7785_03.1c 119 1/18/11 11:59 AM1/18/11 11:59 AM

120 Assignment and Interactive Input

 Program 3.13

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum1,ƒnum2,ƒnum3;
ƒƒdoubleƒaverage;

ƒƒcoutƒ<<ƒ“Enterƒthreeƒintegerƒnumbers:ƒ“;
ƒƒcinƒƒ>>ƒnum1ƒ>>ƒnum2ƒ>>ƒnum3;
ƒƒaverageƒ=ƒ(num1ƒ+ƒnum2ƒ+ƒnum3)ƒ/ƒ3.0;
ƒƒcoutƒ<<ƒ“Theƒaverageƒofƒtheƒnumbersƒisƒ“ƒ<<ƒaverageƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 3.13 produces the following output:

Enterƒthreeƒintegerƒnumbers:ƒ22ƒ56ƒ73
Theƒaverageƒofƒtheƒnumbersƒisƒ50.3333

Note that the data entered at the keyboard for this sample run consists of this input:

22ƒƒƒ56ƒƒƒ73

In response to this stream of input, Program 3.13 stores the value 22 in the variable num1, the

value 56 in the variable num2, and the value 73 in the variable num3 (see Figure 3.12). Because the

average of three integer numbers can be a floating-point number, the variable average, used to

store the average, is declared as a double-precision variable. Note also that parentheses are needed

in the assignment statement averageƒ=ƒ(num1ƒ+ƒnum2ƒ+ƒnum3)ƒ/ƒ3.0;. Without the paren-

theses, the only value divided by 3 would be the integer in num3 (because division has a higher

precedence than addition).

cin >> num1 >> num2 >> num3;

22 56 73

22

56

73

num1

num2

num3

Figure 3.12 Inputting data in the variables num1, num2, and num3

D_C7785_03.1c 120D_C7785_03.1c 120 1/18/11 11:59 AM1/18/11 11:59 AM

121Chapter 3
Interactive Keyboard Input

The cin extraction operation, like the cout insertion operation, is “clever” enough to

make a few data type conversions. For example, if an integer is entered in place of a double-

precision number, the integer is converted to the correct data type.10 Similarly, if a double-

precision number is entered when an integer is expected, only the integer part of the number

is used. For example, assume the following numbers are typed in response to the statement

cinƒ>>ƒnum1ƒ>>ƒnum2ƒ>>ƒnum3;, where num1 and num3 have been declared as double-

precision variables and num2 is an integer variable:

56ƒƒƒ22.879ƒƒƒ33.923

The 56 is converted to 56.0 and stored in the variable num1. The extraction operation

continues, extracting data from the input stream and expecting an integer value. As far as cin

is concerned, the decimal point in 22.879 indicates the end of an integer and the start of a

decimal number. Therefore, the number 22 is assigned to num2. Continuing to process its input

stream, cin takes the .879 as the next double-precision number and assigns it to num3. As far

as cin is concerned, 33.923 is extra input and is ignored. If, however, you don’t enter enough

data initially, the cin object continues to make the computer pause until enough data has been

entered.

A First Look at User-Input Validation
A well-constructed program should validate user input and ensure that a program doesn’t crash

or produce nonsensical output caused by unexpected input. The term validate means checking

that the entered value matches the data type of the variable it’s assigned to in a cin statement

and the value is within an acceptable range for the application. Programs that detect and

respond effectively to unexpected user input are formally called robust programs and infor-

mally referred to as “bulletproof” programs. One of your jobs as a programmer is to produce

robust programs. As written, Programs 3.12 and 3.13 aren’t robust programs, and in the follow-

ing discussion, you see why.

The first problem with these programs becomes evident when a user enters a nonnu-

merical value. For example, examine the following sample run of Program 3.13:

Enterƒthreeƒintegerƒnumbers:ƒ10ƒ20.68ƒ20
Theƒaverageƒofƒtheƒnumbersƒisƒ-2.86331e+008

This output occurs because the conversion of the second input number results in assign-

ing the integer value 20 to num2 and the value -858993460 to num3. The -858993460 value

results because an invalid character, the decimal point, is assigned to a variable that expects an

integer value. The average of the numbers 10, 20, and -858993460 is computed correctly as

-286331143.3, which is displayed in scientific notation with six significant digits as

-2.86331e+008. As far as the average user is concerned, this result would be reported as a pro-

gram error.

This same problem occurs whenever a noninteger value is entered for either of the first

two inputs. (It doesn’t occur for any numerical value entered as the third input because the

integer part of the last input is accepted, and the remaining input is ignored.) As a programmer,

10Strictly speaking, what comes in from the keyboard isn’t any data type, such as an int or a double, but is simply a sequence of

characters. The extraction operation handles the conversion from the character sequence to a defined data type.

D_C7785_03.1c 121D_C7785_03.1c 121 1/18/11 11:59 AM1/18/11 11:59 AM

122 Assignment and Interactive Input

your first response might be “The program clearly asks you to enter integer values.”

Experienced programmers, however, understand that their responsibility is to ensure that a

program anticipates and appropriately handles all inputs users can possibly enter. To achieve

this goal, think about what can go wrong with your program as you develop it, and then have

another person or group test the program thoroughly.11

The basic approach to handling invalid data input is called user-input validation, which

means checking the entered data during or immediately after it has been entered, and then

giving users a way to reenter any invalid data. User-input validation is an essential part of any

commercially viable program; if done correctly, it protects a program from attempting to pro-

cess data that can cause computational problems. You see how to do this type of validation in

Chapters 4 and 5, when you learn about C++’s selection and repetition statements.

 EXERCISES 3.4

1. (Practice) For the following declaration statements, write one or more statements using the

cin object that causes the computer to pause while the user enters the appropriate data:

a. intƒfirstnum;

b. doubleƒgrade;

c. doubleƒsecnum;

d. charƒkeyval;

e. intƒmonth,ƒyears;
doubleƒaverage;

f. charƒch;
intƒnum1,num2;
doubleƒgrade1,grade2;

g. doubleƒinterest,ƒprincipal,ƒcapital;
doubleƒprice,ƒyield;

h. charƒch,letter1,letter2;
intƒnum1,num2,num3;

i. doubleƒtemp1,temp2,temp3;
doubleƒvolts1,volts2;

2. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enterƒtheƒlengthƒofƒtheƒroom:
Enterƒtheƒwidthƒofƒtheƒroom:

 After each prompt is displayed, your program should use a cin object call to accept data from

the keyboard for the displayed prompt. After the width of the room is entered, your program

should calculate and display the area of the room. The area displayed should be calculated by

using the formula area = length × width and should be included in an appropriate message.

b. Check the area displayed by the program written for Exercise 2a by calculating the result

manually.

11Test specifications are often provided before a program is written, and a team of programmers is assigned to test programs after

they’re written.

D_C7785_03.1c 122D_C7785_03.1c 122 1/18/11 11:59 AM1/18/11 11:59 AM

123Chapter 3
Interactive Keyboard Input

3. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enterƒtheƒlengthƒofƒtheƒswimmingƒpool:
Enterƒtheƒwidthƒofƒtheƒswimmingƒpool:
Enterƒtheƒaverageƒdepthƒofƒtheƒswimmingƒpool:

 After each prompt is displayed, your program should use a cin statement to accept data from

the keyboard for the displayed prompt. After the depth of the swimming pool is entered, your

program should calculate and display the volume of the pool. The volume should be calcu-

lated with the formula volume = length × width × average depth and be displayed in an output

message.

b. Check the volume displayed by the program written for Exercise 3a by calculating the

result manually.

4. (Program) Write, compile, and run a C++ program that displays the following prompt:

Enterƒtheƒradiusƒofƒaƒcircle:

 After accepting a value for the radius, your program should calculate and display the area of

the circle. (Hint : Area = 3.1416 × radius2.) For testing purposes, verify your program by using

an input radius of 3 inches. After manually determining that your program’s result is correct,

use your program to complete the following chart:

Radius (in) Area (sq. in)
1.0
1.5
2.0
2.5
3.0
3.5

5. (Program) a. Write a C++ program that first displays the following prompt:

EnterƒtheƒtemperatureƒinƒdegreesƒCelsius:

 Have your program accept a value entered from the keyboard and convert the temperature

entered to degrees Fahrenheit, using this formula:

Fahrenheit = (9.0 / 5.0) × Celsius + 32.0

 Your program should then display the temperature in degrees Fahrenheit with an output

message.

b. Compile and run the program written for Exercise 5a. To verify your program, use the fol-

lowing test data and calculate the Fahrenheit equivalents by hand, and then use your pro-

gram to see whether you get the same results:

Test data set 1: 0 degrees Celsius

Test data set 2: 50 degrees Celsius

Test data set 3: 100 degrees Celsius

D_C7785_03.1c 123D_C7785_03.1c 123 1/18/11 11:59 AM1/18/11 11:59 AM

124 Assignment and Interactive Input

 When you’re sure your program is working correctly, use it to complete the following chart:

Celsius Fahrenheit
45
50
55
60
65
70

6. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enterƒtheƒmilesƒdriven:
Enterƒtheƒgallonsƒofƒgasƒused:

 After each prompt is displayed, your program should use a cin statement to accept data from

the keyboard for the displayed prompt. After the number for gallons of gas used has been

entered, your program should calculate and display the miles per gallon (mpg). This value

should be calculated with the formula miles per gallon = miles / gallons used and displayed in an

output message. Verify your program by using the following test data:

Test data set 1: miles = 276, gas = 10 gallons

Test data set 2: miles = 200, gas = 15.5 gallons

 After finishing your verification, use your program to complete the following chart. (Make sure to

convert the miles driven to kilometers driven, convert gallons used to liters used, and then compute

the kilometers per liter. There are 1.61 kilometers per mile and 4.54609 liters per gallon.)

Miles Driven Gallons Used Mpg Km Driven Liters Used Km/L
250 16.00
275 18.00
312 19.54
296 17.39

b. For the program written for Exercise 6a, determine how many verification runs are required

to make sure the program is working correctly, and give a reason to support your answer.

7. (Program) a. Write, compile, and run a C++ program that displays the following prompts:

Enterƒaƒnumber:
Enterƒaƒsecondƒnumber:
Enterƒaƒthirdƒnumber:
Enterƒaƒfourthƒnumber:

 After each prompt is displayed, your program should use a cin statement to accept a number

from the keyboard for the displayed prompt. After the fourth number has been entered, your

program should calculate and display the average of the numbers. The average should be

D_C7785_03.1c 124D_C7785_03.1c 124 1/18/11 11:59 AM1/18/11 11:59 AM

125Chapter 3
Interactive Keyboard Input

displayed in an output message. Check the average your program calculates by using the fol-

lowing test data:

Test data set 1: 100, 100, 100, 100

Test data set 2: 100, 0, 100, 0

 After finishing your verification, use your program to complete the following chart:

Numbers Average
92, 98, 79, 85
86, 84, 75, 86
63, 85, 74, 82

b. Repeat Exercise 7a, making sure you use the same variable name, number, for each number

input. Also, use the variable sum for the sum of the numbers. (Hint: To do this, you can use

the statement sumƒ=ƒsumƒ+ƒnumber; after each number is accepted. Review the material

on accumulating in Section 3.1.)

8. (Program) The perimeter, approximate surface area, and approximate volume of an in-ground

pool are given by the following formulas:

perimeter = 2 × (length + width)
volume = length × width × average depth
underground surface area = 2 × (length + width) × average depth + length × width

 Using these formulas as a basis, write a C++ program that accepts the length, width, and average

depth measurements, and then calculates the pool’s perimeter, volume, and underground sur-

face area. In writing your program, make these two calculations immediately after entering the

input data: length × width and length + width. The results of these two calculations should be used,

as needed, in the assignment statements for determining the perimeter, volume, and under-

ground surface area without recalculating them for each equation. Verify your program’s results

by doing a hand calculation, using the following test data: length = 25 feet, width = 15 feet, and

average depth = 5.5 feet. After verifying that your program is working, use it to complete the fol-

lowing chart:

Length Width Average
Depth

Perimeter Volume Underground
Surface Area

25 10 5.0
25 10 5.5
25 10 6.0
25 10 6.5
30 12 5.0
30 12 5.5
30 12 6.0
30 12 6.5

D_C7785_03.1c 125D_C7785_03.1c 125 1/18/11 11:59 AM1/18/11 11:59 AM

126 Assignment and Interactive Input

9. (Program) a. Write, compile, and run a C++ program to compute and display the value of the

second-order polynomial ax2 + bx + c for any user-entered values of the coefficients a, b, and c
and the variable x. Have your program display a message first to inform users what the program

does, and then display suitable prompts to alert users to enter data. (Hint: Use a prompt such

as Enterƒtheƒcoefficientƒofƒtheƒx-squaredƒterm:.)

b. Check the result of your program written for Exercise 9a by using the following test data:

Test data set 1: a = 0, b = 0, c = 22, x = 56

Test data set 2: a = 0, b = 22, c = 0, x = 2

Test data set 3: a = 22, b = 0, c = 0, x = 2

Test data set 4: a = 2, b = 4, c = 5, x = 2

 After finishing your verification, use your program to complete the following chart:

a b c x Polynomial Value (ax2 + bx + c)
2.0 17.0 -12.0 1.3
3.2 2.0 15.0 2.5
3.2 2.0 15.0 -2.5
-2.0 10.0 0.0 2.0
-2.0 10.0 0.0 4.0
-2.0 10.0 0.0 5.0
-2.0 10.0 0.0 6.0
5.0 22.0 18.0 8.3
4.2 -16 -20 -5.2

10. (Program) Write, compile, and run a program that calculates and displays the square root

value of a user-entered real number. Verify your program by calculating the square roots of this

test data: 25, 16, 0, and 2. After finishing your verification, use your program to determine the

square roots of 32.25, 42, 48, 55, 63, and 79.

11. (Program) Write, compile, and run a program to calculate and display the fourth root of a

user-entered number. Recall from elementary algebra that you find the fourth root of a num-

ber by raising the number to the 1⁄4 power. (Hint : Don’t use integer division—can you see

why?) Verify your program by calculating the fourth root of this test data: 81, 16, 1, and 0. When

you’re finished, use your program to determine the fourth root of 42, 121, 256, 587, 1240, and

16,256.

12. (Program) Program 3.12 prompts users to input two numbers; the first value entered is stored

in num1, and the second value is stored in num2. Using this program as a starting point, write

a program that swaps the values stored in the two variables.

13. (Program) Write a C++ program that prompts users to enter a number. Have your program

accept the number as an integer and display the integer immediately by using a cout state-

ment. Run your program three times. The first time, enter a valid integer number; the second

time, enter a double-precision number; and the third time, enter a character. Using the output

display, see what number your program actually accepted from the data you entered.

D_C7785_03.1c 126D_C7785_03.1c 126 1/18/11 11:59 AM1/18/11 11:59 AM

127Chapter 3
Symbolic Constants

14. (Program) Repeat Exercise 13, but have your program declare the variable used to store the

number as a double-precision variable. Run the program three times. The first time, enter an

integer; the second time, enter a double-precision number; and the third time, enter a charac-

ter. Using the output display, keep track of what number your program actually accepted from

the data you entered. What happened, if anything, and why?

15. (For thought) a. Why do you think successful programs contain extensive data-input validity

checks? (Hint: Review Exercises 13 and 14.)

b. What do you think is the difference between a data-type check and a data-reasonableness

check?

c. Assume that a program requests users to enter a month, day, and year. What are some checks

that could be made on the data entered?

3.5 Symbolic Constants

Certain constants used in a program have more general meanings that are recognized outside

the program’s context. Examples of these types of constants include the number 3.1416, which

is π accurate to four decimal places; 32.2 ft/sec2, which is the gravitational constant; and the

number 2.71828, which is Euler’s number accurate to five decimal places.

The meanings of certain other constants used in a program are defined strictly in the con-

text of the application being programmed. For example, in a program used to determine bank

interest charges, the interest rate typically appears in a number of different places throughout

the program. Similarly, in a program used to calculate taxes, the tax rate might appear in many

instructions. Programmers refer to these types of numbers as magic numbers. By themselves,

the numbers are ordinary, but in the context of a particular application, they have a special

(“magical”) meaning. When a magic number appears repeatedly in the same program, it

becomes a potential source of error if the constant has to be changed. For example, if the inter-

est rate or the sales tax rate changes, as these rates are likely to do, the programmer has the

cumbersome task of changing the value everywhere it appears in the program. Multiple

changes are subject to error: If just one value is overlooked and remains unchanged, when the

program runs the result will be incorrect, and the source of the error will be difficult to locate.

To avoid the problem of having a magic number spread throughout a program in many

places and to identify more universal constants clearly, such as �, C++ enables programmers to

give these constants symbolic names. Then the symbolic name instead of the magic number

can be used throughout the program. If the number ever has to be changed, the change need

be made only once, at the point where the symbolic name is equated to the actual number

value. To equate numbers to symbolic names, you use the const declaration qualifier, which

specifies that the declared identifier is read-only after it’s initialized; it can’t be changed. Here

are three examples of using this qualifier:

constƒdoubleƒPIƒ=ƒ3.1416;
constƒdoubleƒSALESTAXƒ=ƒ0.05;
constƒintƒMAXNUMƒ=ƒ100;

The first declaration statement creates a double-precision variable named PI and initial-

izes it with the value 3.1416. The second declaration statement creates the double-precision

D_C7785_03.1c 127D_C7785_03.1c 127 1/18/11 11:59 AM1/18/11 11:59 AM

128 Assignment and Interactive Input

constant named SALESTAX and initializes it to 0.05. Finally, the third declaration creates an

integer constant named MAXNUM and initializes it with the value 100.

After a const identifier is created and initialized, the value stored in it can’t be changed.

For all practical purposes, the name of the constant and its value are linked together for the

duration of the program that declares them.

Although the const identifiers have been shown in uppercase letters, lowercase letters

could have been used. Using uppercase letters is customary in C++, however, to make const

identifiers easy to identify. When programmers see uppercase letters in a program, they know

a constant is being used, and its value can’t be changed in the program.

After it’s declared, a const identifier can be used in any C++ statement in place of the

number it represents. For example, both these assignment statements are valid:

circumƒ=ƒ2ƒ*ƒPIƒ*ƒradius;
amountƒ=ƒSALESTAXƒ*ƒpurchase;

These statements must, of course, appear after the declarations for all their variables and

constants. Because a const declaration equates a constant value to an identifier, and the iden-

tifier can be used as a replacement for its initializing constant, these identifiers are commonly

referred to as symbolic constants or named constants. These terms are used interchangeably in

this book.

Placement of Statements
At this stage, you have been introduced to a variety of statement types. The general rule in

C++ for statement placement is simply that a variable or symbolic constant must be declared

before it can be used. Although this rule permits placing both preprocessor directives and

declaration statements throughout a program, doing so results in a poor program structure. As

a matter of good programming form, the following statement order should be used:

preprocessorƒdirectives

intƒmain()
{
ƒƒ//ƒsymbolicƒconstants
ƒƒ//ƒvariableƒdeclarations

ƒƒ//ƒotherƒexecutableƒstatements

ƒƒreturnƒ0;
}

As new statement types are introduced, this placement structure will be expanded to

accommodate them. Note that comment statements can be intermixed anywhere in this basic

structure. Program 3.14 illustrates this structure and uses a symbolic constant to calculate the

sales tax due on a purchased item.

D_C7785_03.1c 128D_C7785_03.1c 128 1/18/11 11:59 AM1/18/11 11:59 AM

129Chapter 3
Symbolic Constants

 Program 3.14

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒdoubleƒSALESTAXƒ=ƒ0.05;
ƒƒdoubleƒamount,ƒtaxes,ƒtotal;
ƒƒ
ƒƒcoutƒ<<ƒ“\nEnterƒtheƒamountƒpurchased:ƒ“;
ƒƒcinƒƒ>>ƒamount;
ƒƒtaxesƒ=ƒSALESTAXƒ*ƒamount;
ƒƒtotalƒ=ƒamountƒ+ƒtaxes;
ƒƒcoutƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2);
ƒƒcoutƒ<<ƒ“Theƒsalesƒtaxƒisƒ“ƒ<<ƒsetw(4)ƒ<<ƒtaxesƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒtotalƒbillƒisƒ“ƒ<<ƒsetw(5)ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

The following sample run was made with Program 3.14:

Enterƒtheƒamountƒpurchased:ƒ36.00
Theƒsalesƒtaxƒisƒ1.80
Theƒtotalƒbillƒisƒ37.80

Although the const qualifier has been used to construct symbolic constants, you encoun-

ter this data type again in Chapter 11, where you learn that it’s useful as a function argument

to make sure the argument isn’t modified in the function.

 EXERCISES 3.5

1. (Modify) Rewrite the following program to use the symbolic constant PI in place of the

value 3.1416 used in the program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒdoubleƒradius,ƒcircum;

D_C7785_03.1c 129D_C7785_03.1c 129 1/18/11 11:59 AM1/18/11 11:59 AM

130 Assignment and Interactive Input

ƒƒcoutƒ<<ƒ“Enterƒaƒradius:ƒ“;
ƒƒcinƒƒ>>ƒradius;
ƒƒcircumƒ=ƒ2.0ƒ*ƒ3.1416ƒ*ƒradius;
ƒƒcoutƒ<<ƒ“\nTheƒcircumferenceƒofƒtheƒcircleƒisƒ“
ƒƒƒƒƒƒƒ<<ƒcircumƒ<<ƒendl;

ƒƒreturnƒ0;
}

2. (Modify) Rewrite the following program to use the named constant FACTOR in place of the

expression (5.0/9.0) used in the program:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒfahren,ƒcelsius;
ƒƒcoutƒ<<ƒ“EnterƒaƒtemperatureƒinƒdegreesƒFahrenheit:ƒ“;
ƒƒcinƒƒ>>ƒfahren;
ƒƒcelsiusƒ=ƒ(5.0/9.0)ƒ*ƒ(fahrenƒ-ƒ32.0);
ƒƒcoutƒ<<ƒ“TheƒequivalentƒCelsiusƒtemperatureƒisƒ“
ƒƒƒƒƒƒƒ<<ƒcelsiusƒ<<ƒendl;

ƒƒreturnƒ0;
}

3. (Modify) Rewrite the following program to use the symbolic constant PRIME in place of the

value 0.04 used in the program:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒprime,ƒamount,ƒinterest;
ƒƒprimeƒ=ƒ0.04;ƒƒƒƒƒƒ//ƒprimeƒinterestƒrate
ƒƒcoutƒ<<ƒEnterƒtheƒamount:ƒ“;
ƒƒcinƒƒ>>ƒamount;
ƒƒinterestƒ=ƒprimeƒ*ƒamount;
ƒƒcoutƒ<<ƒ“Theƒinterestƒearnedƒisƒ“
ƒƒƒƒƒƒƒ<<ƒinterestƒ<<ƒ“ƒdollars”ƒ<<ƒendl;

ƒƒreturnƒ0;
}

D_C7785_03.1c 130D_C7785_03.1c 130 1/18/11 11:59 AM1/18/11 11:59 AM

131Chapter 3
Symbolic Constants

4. (Program) Heat is radiated from the sun and all planets orbiting the sun. The heat that’s radi-

ated can be calculated by using the following formula:

E = e σ T4

E is the energy radiated per second in units of watts per meter squared (watts/m2).

e is the emissivity of the substance, which is 1 for the sun and all the planets.

σ is the constant (.000000056697 = 5.6697e-8).

T is the surface temperature in degrees Celsius.

 For example, the heat radiated from the sun, which has an emissivity of 1 and a surface tem-

perature of approximately 6000° C, is as follows:

E = (1) × (.000000056697) × (6000)4 watts/m2

 = 73,479,300 watts/m2

 Using the formula, write a C++ program that accepts a planet’s temperature and provides the

heat generated from the planet as its output. Your program should assign the value 5.6697e-8

to a symbolic constant named HEATFACTOR. After determining that your program is working

correctly (make sure it produces the correct radiation for the sun), use it to complete the fol-

lowing chart:

Planet (emissivity = 1) Average Surface
Temperature (° Celsius)

Heat Radiated
(watts/m2)

Mercury 270
Venus 462
Earth 14

5. (Program) During the day, heat is absorbed by many objects, such as cars, roofs, and brick

walls. This heat is then radiated back into the environment during the cooler evening hours.

Using the formula E = e σ T4 (see Exercise 4), write a C++ program that determines the

amount of heat radiated for the objects listed in the following table. Your program should

request the object’s average surface temperature and emissivity, and then calculate and display

the heat radiated. Make sure to use a symbolic constant named HEATFACTOR for the value of

σ. Complete the following chart, making three runs of the program:

Substance Average Surface
Temperature
(° Celsius)

Emissivity Heat Radiated
(watts/m2)

Automobile 47 .3
Brick 45 .9
Commercial roof 48 .05

D_C7785_03.1c 131D_C7785_03.1c 131 1/18/11 11:59 AM1/18/11 11:59 AM

132 Assignment and Interactive Input

3.6 Common Programming Errors

When using the material in this chapter, be aware of the following possible errors:

1. Forgetting to assign or initialize values for all variables before using them in an expres-

sion. Values can be assigned by assignment statements, initialized in a declaration

statement, or assigned interactively by entering values with the cin object.

2. Using a mathematical library function without including the preprocessor statement

#includeƒ<cmath> (and on a UNIX-based system, forgetting to include the -lm

argument on the cc command line).

3. Using a library function without providing the correct number of arguments of the

proper data type.

4. Applying the increment or decrement operator to an expression. For example, the

expression (countƒ+ƒn)++ is incorrect. The increment and decrement operators can

be applied only to variables.

5. Forgetting to use the extraction operator, >>, to separate variables in a cin statement.

6. A more unusual error occurs when increment and decrement operators are used with

variables appearing more than once in the same expression. This error occurs because

C++ doesn’t specify the order in which operands are accessed in an expression. For

example, the value assigned to result in the following statement depends on the

compiler:

resultƒ=ƒiƒ+ƒi++;

 If your compiler accesses the first operand (i) first, the preceding statement is equiva-

lent to

resultƒ=ƒ2ƒ*ƒi;
i++;

 However, if your compiler accesses the second operand (i++) first, the value of the first

operand is altered before it’s used the second time, and the value 2iƒ+ƒ1 is assigned

to result. As a general rule, don’t use the increment or decrement operator in an

expression when the variable it operates on appears more than once in the expression.

7. Being unwilling to test a program in depth. Being objective about testing your own

software is difficult, but as a programmer, you must remind yourself that just because

you think your program is correct doesn’t make it so.

3.7 Chapter Summary
1. An expression is a sequence of one or more operands separated by operators. An operand is

a constant, a variable, or another expression. A value is associated with an expression.

2. Expressions are evaluated according to the precedence and associativity of the operators

used in the expression.

3. The assignment operator is the = symbol. Expressions using this operator assign a value to

a variable, and the expression also takes on a value. Because assignment is a C++ operation,

the assignment operator can be used more than once in the same expression.

D_C7785_03.1c 132D_C7785_03.1c 132 1/18/11 11:59 AM1/18/11 11:59 AM

133Chapter 3
Chapter Supplement: Errors, Testing, and
Debugging

4. The increment operator, ++, adds 1 to a variable, and the decrement operator, --, subtracts

1 from a variable. Both operators can be used as prefixes or postfixes. In a prefix operation,

the variable is incremented (or decremented) before its value is used. In a postfix operation,

the variable is incremented (or decremented) after its value is used.

5. C++ provides library functions for calculating square root, logarithmic, and other mathemat-

ical computations. Programs using a mathematical function must include the statement

#includeƒ<cmath> or have a function declaration before calling the mathematical function.

6. Every mathematical library function operates on its arguments to calculate a single value.

To use a library function effectively, you must know the function name, what the function

does, the number and data types of arguments the function expects, and the data type of

the returned value.

7. Data passed to a function is called an argument of the function. Arguments are passed to a

library function by including each argument, separated by commas, in the parentheses fol-

lowing the function’s name. Each function has its own requirements for the number and

data types of the arguments that must be provided.

8. Functions can be included in larger expressions.

9. The cin object is used for data input. It accepts a stream of data from the keyboard and

assigns the data to variables. This is the general form of a statement using cin:

cinƒ>>ƒvar1ƒ>>ƒvar2ƒ.ƒ.ƒ.ƒ>>ƒvarn;

 The extraction operator, >>, must be used to separate variable names in a cin statement.

10. When a cin statement is encountered, the computer temporarily suspends further execu-

tion until enough data has been entered for the number of variables in the cin statement.

11. It’s a good programming practice to display a message before a cin statement that alerts

users to the type and number of data items to be entered. This message is called a prompt.

12. Values can be equated to a single constant by using the const keyword. This keyword cre-

ates a named constant that’s read-only after it’s initialized in the declaration statement. This

declaration has the syntax

constƒdataTypeƒsymbolicNameƒ=ƒinitialValue;

 and permits using the constant instead of initialValue anywhere in the program after the

declaration. Generally, these declarations are placed before variable declarations in a program.

3.8 Chapter Supplement: Errors, Testing, and Debugging

The ideal in programming is to produce readable, error-free programs that work correctly and

can be modified or changed with a minimum of testing. You can work toward this ideal by

keeping in mind the different types of errors that can occur, when they’re typically detected,

and how to correct them.

D_C7785_03.1c 133D_C7785_03.1c 133 1/18/11 11:59 AM1/18/11 11:59 AM

134 Assignment and Interactive Input

Program errors can be detected at any of the following times:

• Before a program is compiled

• While the program is being compiled

• While the program is running

• After the program has been run and the output is being examined

The method for detecting errors before a program is compiled is called desk checking

because you’re usually sitting at a desk with the code in front of you. It refers to the process

of examining source code for syntax and logic errors. The method for detecting errors after a

program has run is called program verification and testing.

Compile-Time and Runtime Errors
Errors detected while a program is being compiled are called compile-time errors, and errors

that occur while a program is running are called runtime errors. These terms describe when

errors occur, not what caused them. Most compile-time errors, however, are caused by syntax

errors, and the majority of runtime errors are caused by logic errors.

By now, you have probably encountered numerous compile-time errors. Beginning pro-

grammers tend to be frustrated by them, but experienced programmers understand the com-

piler is doing a lot of valuable checking, and correcting errors the compiler does detect is

usually easy. Because these errors occur while the program is being developed, not while a user

is performing an important task, no one but the programmer ever knows they occurred. You fix

them, and they go away.

Runtime errors are more troubling because they occur while a user is running the program.

Because the user in most commercial systems isn’t the programmer, typically the error can’t be

assessed and corrected immediately. Runtime errors can be caused by program or hardware fail-

ures. From a programming standpoint, however, most runtime errors are caused by logic errors.

Syntax and Logic Errors
Computer literature distinguishes between two main types of errors: syntax and logic errors. A

syntax error is an error in ordering valid language elements in a statement or the attempt to use

invalid language elements. For example, examine the following statements:

coutƒ<<ƒ“Thereƒareƒfourƒsyntaxƒerrorsƒhere\n
cotƒ“ƒCanƒyouƒfindƒtem”;

They contain the following syntax errors:

1. A closing quotation mark is missing in line 1.

2. A terminating semicolon (;) is missing in line 1.

3. The keyword cout is misspelled in line 2.

4. The insertion symbol, <<, is missing in line 2.

If these errors aren’t discovered by desk checking, the compiler detects them and dis-

plays an error message.12 Sometimes the error message is clear and the error is obvious; at

other times, understanding the compiler’s error message takes a little detective work. Because

12Generally, not all syntax errors might be detected at the same time, however. Frequently, one syntax error masks another error, and

the second error is detected after the first one is corrected.

D_C7785_03.1c 134D_C7785_03.1c 134 1/18/11 11:59 AM1/18/11 11:59 AM

135Chapter 3
Chapter Supplement: Errors, Testing, and
Debugging

syntax errors are detected only at compile time, the terms “compile-time errors” and “syntax

errors” are used interchangeably. Strictly speaking, however, “compile time” refers to when

the error is detected, and “syntax” refers to the type of error detected.

Note that the misspelling of “them” in the second statement isn’t a syntax error. Although

this spelling error results in displaying an undesirable output line, it’s not a violation of C++’s

syntax rules. It’s simply a typographical error, commonly referred to as a “typo.” The compiler

doesn’t catch this type of typographical error.13

Another error the compiler doesn’t catch is a logic error, which is characterized by errone-

ous, unexpected, or unintentional output that’s a result of some flaw in the program’s logic.

These errors can be detected by desk checking, by program testing, by accident when a user

gets erroneous output while the program is running, or not at all.

The most serious logic error is caused by not fully understanding the program’s require-

ments because the logic in a program reflects the logic on which it’s coded. For example, if a

program’s purpose is to calculate a mortgage payment on a house or the load-bearing strength

of a steel beam and the programmer doesn’t fully understand how to make the calculation,

what inputs are needed to perform the calculation, or what special conditions exist (such as

what happens when someone makes an extra mortgage payment or how temperature affects

the beam), a logic error occurs. Because the compiler doesn’t detect these errors and they often

go undetected at runtime, they are always more difficult to detect than syntax errors.

If logic errors are detected, typically they’re revealed in one of two main ways. First, the

program executes to completion but produces incorrect results, such as the following:

• No output—This result is caused by omitting an output statement or using a sequence

of statements that inadvertently bypasses an output statement.

• Unappealing or misaligned output—This result is caused by an error in an output

statement.

• Incorrect numerical results—This result is caused by assigning incorrect values to vari-

ables in an expression, coding an incorrect or incomplete algorithm, coding a correct

algorithm incorrectly, omitting a statement, making a round-off error, or using an

improper sequence of statements.

Second, a logic error can cause a runtime error. Examples of this type of logic error are

attempts to divide by zero or take the square root of a negative number. Typically, these errors

are caused by incorrect user input. Although beginning programmers tend to blame users for

runtime errors caused by entering incorrect data, professionals don’t. They understand that a

runtime error is a basic flaw in the program’s construction that can damage the reputation of

both the program and the programmer. They also understand that determining the error and

correcting what caused it are more fruitful than determining who caused it.

Testing and Debugging
Program testing should be well thought out to maximize the possibility of locating errors. In

this regard, an important programming realization is that although a single test can reveal the

presence of an error, it does not verify the absence of one. In other words, the fact that a

13The misspelling of a C++ keyword or a declared variable name that results in an undeclared name is caught, however, because it

results in a syntax error.

D_C7785_03.1c 135D_C7785_03.1c 135 1/18/11 11:59 AM1/18/11 11:59 AM

136 Assignment and Interactive Input

verification run reveals one error does not mean another error isn’t lurking somewhere else in

the program. Furthermore, the fact that one test revealed no errors does not mean there are

no errors.

After you discover an error, however, you must locate where it occurs and fix it. In com-

puter jargon, a program error is referred to as a bug, and the process of isolating and correcting

the error and verifying the correction is called debugging.

Although no hard-and-fast rules exist for isolating a bug, some useful techniques can be

applied. The first is preventive. Often programmers introduce errors in the rush to code and

run a program before understanding what’s required and how to achieve the required results.

Symptoms of this haste include lacking an outline of the proposed program or not having a

detailed understanding of the program’s requirements. Many errors can be eliminated by desk

checking the program before entering or compiling it.

A second useful technique is imitating the computer by executing each statement by hand

as the computer would. This technique, called program tracing, involves writing down each

variable, as it’s encountered in the program, and listing the value that should be stored in the

variable as each input and assignment statement is encountered. Doing this sharpens your

programming skills because it helps you understand what each statement in your program

causes to happen.

A third useful technique is including some temporary code in your program that displays

the values of selected variables. If the displayed values are incorrect, you can determine what

part of your program generated them and make the necessary corrections. You can also add

temporary code that displays the values of all input data. This technique, called echo printing,

is useful in establishing that the program is receiving and interpreting input data correctly.

The most powerful technique is using a special program called a debugger. A debugger

program can control the execution of a C++ program, interrupt the C++ program at any point

in its execution, and display the values of all variables at the point of interruption.

Finally, no discussion of debugging is complete without mentioning the main ingredient

needed for isolating and correcting errors successfully: the attitude you bring to the task. After

you write a program, you naturally assume it’s correct. Taking a step back to be objective about

testing and finding errors in your own software is difficult. As a programmer, you must remind

yourself that just because you think your program is correct doesn’t make it so. Finding errors

in your own programs is a sobering experience but one that helps you become a better pro-

grammer. The process can be exciting and fun if you approach it as a detection problem, with

you as the master detective.

D_C7785_03.1c 136D_C7785_03.1c 136 1/18/11 11:59 AM1/18/11 11:59 AM

4 4.1 Relational Expressions

 4.2 The if-else Statement

 4.3 Nested if Statements

 4.4 The switch Statement

 4.5 Common Programming Errors

 4.6 Chapter Summary

 4.7 Chapter Supplement: A Closer
Look at Testing

The term flow of control refers to the order in which a program’s statements are executed. Unless directed
otherwise, the normal flow of control for all programs is sequential. This term means statements are
executed in sequence, one after another, in the order in which they’re placed in the program.

Both selection and repetition statements enable programmers to alter this normal sequential flow of
control. As their names imply, selection statements make it possible to select which statement, from a well-
defined set, is executed next, and repetition statements make it possible to go back and repeat a set of
statements. In this chapter, you learn about C++’s selection statements. Because selection requires choosing
between alternatives, this chapter begins with a description of C++’s selection criteria.

4.1 Relational Expressions

Besides providing addition, subtraction, multiplication, and division capabilities, all computers

have the capability to compare numbers. Because many seemingly “intelligent” decision-

making situations can be reduced to choosing between two values, a computer’s comparison

capability can be used to create a remarkable intelligence-like facility.

Chapter

Selection

E_C7785_04.1c 137E_C7785_04.1c 137 1/18/11 10:46 AM1/18/11 10:46 AM

138 Selection

The expressions used to compare operands are called relational expressions. A simple
relational expression consists of a relational operator connecting two variable and/or constant

operands, as shown in Figure 4.1. Table 4.1 lists the relational operators available in C++.

They can be used with integer, Boolean, double, or character data, but they must be typed

exactly as shown in Table 4.1.

operand operand

expression

relational
operator

price < 12.5

Figure 4.1 Anatomy of a simple relational expression

Table 4.1 C++’s Relational Operators

Operator Meaning Example
< Less than ageƒ<ƒ30
> Greater than heightƒ>ƒ6.2
<= Less than or equal to taxableƒ<=ƒ20000
>= Greater than or equal to tempƒ>=ƒ98.6
== Equal to gradeƒ==ƒ100
!= Not equal to numberƒ!=ƒ250

The following are examples of valid relational expressions:

ageƒ>ƒ40 lengthƒ<=ƒ50 widthƒ>ƒ7
3ƒ<ƒ4 flagƒ==ƒdone idNumƒ==ƒ682
dayƒ!=ƒ5 2.0ƒ>ƒ3.3 hoursƒ>ƒ40

The following examples are invalid:

lengthƒ=<ƒ50ƒƒƒƒ//ƒincorrectƒsymbol
2.0ƒ>>ƒ3.3ƒƒƒƒƒƒ//ƒinvalidƒrelationalƒoperator
flagƒ=ƒ=ƒdoneƒƒƒ//ƒspacesƒareƒnotƒallowed

Relational expressions are sometimes called conditions, and both terms are used in this

book. Like all C++ expressions, relational expressions are evaluated to yield a numerical

result.1 A condition that’s interpreted as true evaluates to an integer value of 1, and a false condition
evaluates to an integer value of 0.

For example, because the relationship 3ƒ<ƒ4 is always true, this expression has a value of 1,

and because the relationship 2.0ƒ>ƒ3.3 is always false, the value of the expression is 0. This

can be verified by these statements:

coutƒ<<ƒ“Theƒvalueƒofƒ3ƒ<ƒ4ƒisƒ“ƒ<<ƒ(3ƒ<ƒ4);
coutƒ<<ƒ“\nTheƒvalueƒofƒ2.0ƒ>ƒ3.3ƒisƒ“ƒ<<ƒ(2.0ƒ>ƒ3.3);

1In this regard, C++ differs from most other high-level languages, which yield a Boolean (true or false) result.

E_C7785_04.1c 138E_C7785_04.1c 138 1/18/11 2:57 PM1/18/11 2:57 PM

139Chapter 4
Relational Expressions

These statements result in the following display:

Theƒvalueƒofƒ3ƒ<ƒ4ƒisƒ1
Theƒvalueƒofƒ2.0ƒ>ƒ3.3ƒisƒ0

The value of a relational expression, such as hoursƒ>ƒ40, depends on the value stored in

the variable hours. In a C++ program, a relational expression’s value isn’t as important as the

interpretation C++ places on the value when the expression is used as part of a selection state-

ment. In these statements, which are explained in the next section, you’ll see that C++ uses a

zero value to represent a false condition and any non-zero value to represent a true condition.

The selection of which statement to execute next is then based on this value.

In addition to numerical operands, character data can be compared by using relational

operators. For example, in the ASCII code, the letter 'A' is stored by using a code with a

lower numerical value than the letter 'B', the code for 'B' has a lower value than the code

for 'C', and so on. For character sets coded in this manner, the following conditions are

evaluated as shown:

Expression Value Interpretation
'A'ƒ>ƒ'C' 0 false
'D'ƒ<=ƒ'Z' 1 true
'E'ƒ==ƒ'F' 0 false
'g'ƒ>=ƒ'm' 0 false
'b'ƒ!=ƒ'c' 1 true
'a'ƒ==ƒ'A' 0 false

Comparing letters is essential in alphabetizing names or in using characters to select a

choice in decision-making situations.

Logical Operators
In addition to using simple relational expressions as conditions, more complex conditions can

be created by using the logical operators AND, OR, and NOT. These operators are repre-

sented by the symbols &&, ||, and !.

When the AND operator, &&, is used with two simple expressions, the condition is true

only if both expressions are true by themselves. Therefore, the logical condition

(ageƒ>ƒ40)ƒ&&ƒ(termƒ<ƒ10)

is true only if age is greater than 40 and term is less than 10. Because relational operators have

a higher precedence than logical operators, the parentheses in this logical expression could

have been omitted.

The OR operator, ||, is also used with two expressions. When using the OR operator, the

condition is satisfied if one or both of the two expressions are true. Therefore, the condition

(ageƒ>ƒ40)ƒ||ƒ(termƒ<ƒ10)

E_C7785_04.1c 139E_C7785_04.1c 139 1/18/11 2:57 PM1/18/11 2:57 PM

140 Selection

is true if age is greater than 40, term is less than 10, or both conditions are true. Again, the

parentheses surrounding the relational expressions are included to make the statement easier

to read. Because relational operators have a higher precedence than logical operators, the same

evaluation is made even if the parentheses are omitted.

For the declarations

intƒi,ƒj;
doubleƒa,ƒb,ƒcomplete;

the following are valid conditions:

aƒ>ƒb
(iƒ==ƒj)ƒ||ƒ(aƒ<ƒb)ƒ||ƒcomplete
(a/bƒ>ƒ5)ƒ&&ƒ(iƒ<=ƒ20)

Before these conditions can be evaluated, the values of a, b, i, j, and complete must be

known. For the assignments

aƒ=ƒ12.0;
bƒ=ƒ2.0;
iƒ=ƒ15;
jƒ=ƒ30;
completeƒ=ƒ0.0;

the previous expressions yield the following results:

Expression Value Interpretation
aƒ>ƒb 1 true
(iƒ==ƒj)ƒ||ƒ(aƒ<ƒb)ƒ||ƒcomplete 0 false
(a/bƒ>ƒ5)ƒ&&ƒ(iƒ<=ƒ20) 1 true

The NOT operator, !, is used to change an expression to its opposite state; that is, if the

expression has a non-zero value (true), the statement !expression produces a zero value

(false). If an expression is false to begin with (has a zero value), !expression is true and

evaluates to 1. For example, if the number 26 is stored in the variable age, the expression

ageƒ>ƒ40 has a value of 0 (false), and the expression !(ageƒ>ƒ40) has a value of 1 (true).

Because the NOT operator is used with only one expression, it’s a unary operator.

Relational and logical operators have a hierarchy of execution similar to arithmetic opera-

tors. Table 4.2 lists the precedence of these operators in relation to the other operators you

have used.

E_C7785_04.1c 140E_C7785_04.1c 140 1/18/11 2:57 PM1/18/11 2:57 PM

141Chapter 4
Relational Expressions

Table 4.2 Operator Precedence and Associativity

Operator Associativity
!ƒunaryƒ–ƒ++ƒ-- Right to left
*ƒ/ƒ% Left to right
+ƒ– Left to right
<ƒ<=ƒ>ƒ>= Left to right
==ƒ!= Left to right
&& Left to right
|| Left to right
=ƒ+=ƒ–=ƒ*=ƒ/= Right to left

The following chart illustrates using an operator’s precedence and associativity to evaluate

relational expressions, assuming the following declarations:

charƒkeyƒ=ƒ'm';
intƒiƒ=ƒ5,ƒjƒ=ƒ7,ƒkƒ=ƒ12;
doubleƒxƒ=ƒ22.5;

Expression Equivalent Expression Value Interpretation
iƒ+ƒ2ƒ==ƒkƒ-ƒ1 (iƒ+ƒ2)ƒ==ƒ(kƒ-ƒ1) 0 false
3ƒ*ƒiƒ-ƒjƒ<ƒ22 ((3ƒ*ƒi)ƒ-ƒj)ƒ<ƒ22 1 true
iƒ+ƒ2ƒ*ƒjƒ>ƒk (iƒ+ƒ(2ƒ*ƒj))ƒ>ƒk 1 true
kƒ+ƒ3ƒ<=ƒ-jƒ+ƒ3ƒ*ƒi (kƒ+ƒ3)ƒ<=ƒ((-j)ƒ+ƒ(3*i)) 0 false
'a'ƒ+ƒ1ƒ==ƒ'b' ('a'ƒ+ƒ1)ƒ==ƒ'b' 1 true
keyƒ-ƒ1ƒ>ƒ'p' (keyƒ-ƒ1)ƒ>ƒ'p' 0 false
keyƒ+ƒ1ƒ==ƒ'n' (keyƒ+ƒ1)ƒ==ƒ'n' 1 true
25ƒ>=ƒxƒ+ƒ1.0 25ƒ>=ƒ(xƒ+ƒ1.0) 1 true

As with all expressions, parentheses can be used to alter the assigned operator priority and

improve the readability of relational expressions. By evaluating the expressions in parentheses

first, the following compound condition is evaluated as shown:

(6ƒ*ƒ3ƒ==ƒ36ƒ/ƒ2)ƒ||ƒ(13ƒ<ƒ3ƒ*ƒ3ƒ+ƒ4)ƒ&&ƒ!(6ƒ-ƒ2ƒ<ƒ5)
ƒƒƒƒƒƒƒ(18ƒ==ƒ18)ƒ||ƒƒƒ(13ƒ<ƒ9ƒ+ƒ4)ƒƒƒ&&ƒ!(4ƒ<ƒ5)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ1ƒ||ƒƒƒ(13ƒ<ƒ13)ƒƒƒƒƒƒ&&ƒ!1
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ1ƒ||ƒƒƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒ&&ƒƒ0
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ1ƒ||ƒƒƒƒƒƒƒƒƒ0
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ1

E_C7785_04.1c 141E_C7785_04.1c 141 1/18/11 2:57 PM1/18/11 2:57 PM

142 Selection

A Numerical Accuracy Problem
In C++’s relational expressions, a subtle numerical accuracy problem related to single-precision

and double-precision numbers can occur. Because of the way computers store these numbers,

you should avoid testing for equality of single-precision and double-precision values and vari-

ables with the relational operator ==.

The reason is that many decimal numbers, such as 0.1, can’t be represented exactly in

binary with a finite number of bits, so testing for exact equality for these numbers can fail.

When you want equality of noninteger values, it’s better to require that the absolute value of

the difference between operands be less than some extremely small value. Therefore, for

single-precision and double-precision operands, the general expression

operand_1ƒ==ƒoperand_2

should be replaced by this condition:

abs(operand_1ƒ–ƒoperand_2)ƒ<ƒEPSILON

EPSILON can be a constant set to any acceptably small value, such as 0.000001.2 Therefore,

if the difference between the two operands is less than the value of EPSILON, the two operands

are considered essentially equal. For example, if x and y are double-precision variables, a con-

dition such as

x/yƒ==ƒ0.35

should be programmed as the following:

abs(x/yƒ-ƒ0.35)ƒ<ƒEPSILON

This condition ensures that slight inaccuracies in representing noninteger numbers in

binary don’t affect evaluation of the tested condition. Because all computers have an exact

binary representation of 0, comparisons for exact equality to 0 don’t have this numerical

accuracy problem.

 EXERCISES 4.1

1. (Practice) Determine the value of the following expressions, assuming a = 5, b = 2, c = 4,

d = 6, and e = 3:

2Using the abs() function requires including the cmath header file by placing the preprocessor statement #include<cmath>
before or after #include<iostream>. UNIX-based systems also require including the math library at compile time with the -lm

command-line argument.

a. aƒ>ƒb

b. aƒ!=ƒb

c. dƒ%ƒbƒ==ƒcƒ%ƒb

d. aƒ*ƒcƒ!=ƒdƒ*ƒb

e. dƒ*ƒbƒ==ƒcƒ*ƒe

f. aƒ*ƒb

g. aƒ%ƒbƒ*ƒc

h. cƒ%ƒbƒ*ƒa

i. bƒ%ƒcƒ*ƒa

E_C7785_04.1c 142E_C7785_04.1c 142 1/18/11 10:46 AM1/18/11 10:46 AM

143Chapter 4
The if-else Statement

2. (Practice) Using parentheses, rewrite the following expressions to indicate their order of

evaluation correctly. Then evaluate each expression, assuming a = 5, b = 2, and c = 4.

a. aƒ%ƒbƒ*ƒcƒ&&ƒcƒ%ƒbƒ*ƒa

b. aƒ%ƒbƒ*ƒcƒ||ƒcƒ%ƒbƒ*ƒa

c. bƒ%ƒcƒ*ƒaƒ&&ƒaƒ%ƒcƒ*ƒb

d. bƒ%ƒcƒ*ƒaƒ||ƒaƒ%ƒcƒ*ƒb

3. (Practice) Write relational expressions to express the following conditions (using variable

names of your choosing):

a. A person’s age is equal to 30.

b. A person’s temperature is greater than 98.6 degrees.

c. A person’s height is less than 6 feet.

d. The current month is 12 (December).

e. The letter input is m.

f. A person’s age is equal to 30, and the person is taller than 6 feet.

g. The current day is the 15th day of the 1st month.

h. A person is older than 50 or has been employed at the company for at least 5 years.

i. A person’s identification number is less than 500 and the person is older than 55.

j. A length is greater than 2 feet and less than 3 feet.

4. (Practice) Determine the value of the following expressions, assuming a = 5, b = 2, c = 4,

and d = 5:

a. aƒ==ƒ5

b. bƒ*ƒdƒ==ƒcƒ*ƒc

c. dƒ%ƒbƒ*ƒcƒ>ƒ5ƒ||ƒcƒ%ƒbƒ*ƒdƒ<ƒ7

4.2 The if-else Statement

The if-else statement directs the computer to select between two statements based on the

result of a comparison. For example, if a New Jersey resident’s income is less than or equal to

$20,000, the applicable state tax rate is 2%. If the person’s income is greater than $20,000, a

different rate is applied to the amount over $20,000. The if-else statement can be used in

this situation to determine the tax rate based on whether the person’s income is less than or

equal to $20,000. This is the general form of the if-else statement:

ifƒ(expression)ƒstatement1;
ƒƒelseƒstatement2;

The expression is evaluated first. If its value is non-zero, statement1 is executed. If its

value is zero, the statement after the keyword else is executed. Therefore, one of the two

statements (statement1 or statement2 but not both) is always executed, depending on the

expression’s value. Notice that the tested expression must be enclosed by parentheses, and a

semicolon is placed after each statement.

E_C7785_04.1c 143E_C7785_04.1c 143 1/18/11 10:46 AM1/18/11 10:46 AM

144 Selection

For clarity, the if-else statement is typically written on four lines in this form:

if (expression) no semicolon here
statement1;

else no semicolon here
statement2;

The form of the if-else statement that’s used typically depends on the length of

statement1 and statement2. However, when using this four-line form, don’t put a semi-

colon after the parentheses or the else keyword. The semicolons are placed only at the ends

of statements. Figure 4.2 shows the flowchart for the if-else statement.

next
statement

statement 1

is
condition

true?

previous
statement

no

yes

(else part)

statement 2

Figure 4.2 The if-else flowchart

As an example, take a look at writing an income tax computation program containing an

if-else statement. As stated, the New Jersey state income tax is assessed at 2% of taxable

income for incomes less than or equal to $20,000. For taxable incomes greater than $20,000,

state taxes are 2.5% of the income exceeding $20,000 plus a fixed amount of $400. The

expression to be tested is whether taxable income is less than or equal to $20,000, so the fol-

lowing is a suitable if-else statement for this program:3

ifƒ(taxableƒ<=ƒ20000.0)
ƒƒtaxesƒ=ƒ0.02ƒ*ƒtaxable;
else
ƒƒtaxesƒ=ƒ0.025ƒ*ƒ(taxableƒ-ƒ20000.0)ƒ+ƒ400.0;

3Note that in actual practice, the numerical values in this statement would be defined as named constants.

E_C7785_04.1c 144E_C7785_04.1c 144 1/18/11 10:46 AM1/18/11 10:46 AM

145Chapter 4
The if-else Statement

The relational operator <= is used to represent the condition “is less than or equal to.” If

the value of taxable is less than or equal to 20000.0, the condition is true (has a value of 1)

and the statement taxesƒ=ƒ0.02ƒ*ƒtaxable; is executed. If the condition isn’t true, the

expression’s value is zero, and the statement after the else keyword is executed. Program 4.1

shows using this statement in a complete program.

 Program 4.1

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒtaxable,ƒtaxes;

ƒƒcoutƒ<<ƒ“Pleaseƒtypeƒinƒtheƒtaxableƒincome:ƒ“;
ƒƒcinƒƒ>>ƒtaxable;

ƒƒifƒ(taxableƒ<=ƒ20000.0)
ƒƒƒƒtaxesƒ=ƒ0.02ƒ*ƒtaxable;
ƒƒelse
ƒƒƒƒtaxesƒ=ƒ0.025ƒ*ƒ(taxableƒ-ƒ20000.0)ƒ+ƒ400.0;

ƒƒcoutƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2)
ƒƒƒƒƒƒƒ<<ƒ“Taxesƒareƒ$ƒ“ƒ<<ƒtaxesƒ<<ƒendl;

ƒƒreturnƒ0;
}

A blank line is inserted before and after the if-else statement to highlight it in the pro-

gram. This format is used throughout the book to emphasize the statement being discussed.

To illustrate selection in action, Program 4.1 was run twice with different input data.

These are the results:

Pleaseƒtypeƒinƒtheƒtaxableƒincome:ƒ10000.
Taxesƒareƒ$ƒ200.00

and

Pleaseƒtypeƒinƒtheƒtaxableƒincome:ƒ30000.
Taxesƒareƒ$ƒ650.00

In reviewing this output, observe that the taxable income input in the first run was less

than $20,000, and the tax rate was calculated correctly as 2% of the number entered. In the

E_C7785_04.1c 145E_C7785_04.1c 145 1/18/11 10:46 AM1/18/11 10:46 AM

146 Selection

second run, the taxable income was more than $20,000, and the else part of the if-else

statement was used to yield this correct tax rate computation:

0.025ƒ*ƒ($30,000.ƒ–ƒ$20,000.)ƒ+ƒ$400.ƒ=ƒ$650.

Although any expression can be tested by an if-else statement, only relational expres-

sions are generally used. However, statements such as the following are valid:

ifƒ(num)
ƒƒcoutƒ<<ƒ“Bingo!”;
else
ƒƒcoutƒ<<ƒ“Youƒlose!”;

Because num is a valid expression by itself, the message Bingo! is displayed if num has any

non-zero value, and the message Youƒlose! is displayed if num has a value of zero.

Compound Statements
Although only a single statement is permitted in the if and else parts of the if-else state-

ment, each single statement can be a compound statement. A compound statement is a

sequence of single statements between braces, as shown in this example:

{
ƒƒƒƒstatement1;
ƒƒƒƒstatement2;
ƒƒƒƒstatement3;
ƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒ.
ƒƒƒƒlast statement;
}

Using braces to enclose a set of statements creates a single block of statements, which can

be used anywhere in a C++ program in place of a single statement. The next example shows

using a compound statement in the general form of an if-else statement:

ƒƒƒƒƒifƒ(expression)
ƒƒƒƒƒ{
ƒƒƒƒƒƒƒstatement1;ƒƒƒƒ//ƒasƒmanyƒstatementsƒasƒnecessary
ƒƒƒƒƒƒƒstatement2;ƒƒƒƒ//ƒcanƒbeƒputƒinsideƒtheƒbraces
ƒƒƒƒƒƒƒstatement3;ƒƒƒƒ//ƒeachƒstatementƒmustƒendƒwithƒaƒ;
ƒƒƒƒƒ}
ƒƒƒƒƒelse
ƒƒƒƒƒ{
ƒƒƒƒƒƒƒstatement4;
ƒƒƒƒƒƒƒstatement5;
ƒƒƒƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒlast statement;
ƒƒƒƒƒ}

E_C7785_04.1c 146E_C7785_04.1c 146 1/18/11 10:46 AM1/18/11 10:46 AM

147Chapter 4
The if-else Statement

Program 4.2 shows using a compound statement in an actual program. This program

checks whether the value in tempType is f. If so, the compound statement corresponding to

the if part of the if-else statement is executed. Any other letter in tempType results in

executing the compound statement corresponding to the else part.

 Program 4.2

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒaƒtemperatureƒconversionƒprogram
intƒmain()
{
ƒƒcharƒtempType;
ƒƒdoubleƒtemp,ƒfahren,ƒcelsius;

ƒƒcoutƒ<<ƒ“Enterƒtheƒtemperatureƒtoƒbeƒconverted:ƒ“;
ƒƒcinƒƒ>>ƒtemp;
ƒƒcoutƒ<<ƒ“EnterƒanƒfƒifƒtheƒtemperatureƒisƒinƒFahrenheit”;
ƒƒcoutƒ<<ƒ“\nƒorƒaƒcƒifƒtheƒtemperatureƒisƒinƒCelsius:ƒ“;
ƒƒcinƒƒ>>ƒtempType;

ƒƒ//ƒsetƒoutputƒformats
ƒƒcoutƒ<<ƒsetiosflagsƒ(ios::fixed)
ƒƒƒƒƒƒƒ<<ƒsetiosflagsƒ(ios::showpoint)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2);

ƒƒifƒ(tempTypeƒ==ƒ'f')
ƒƒ{
ƒƒƒƒcelsiusƒ=ƒ(5.0ƒ/ƒ9.0)ƒ*ƒ(tempƒ-ƒ32.0);
ƒƒƒƒcoutƒ<<ƒ“\nTheƒequivalentƒCelsiusƒtemperatureƒisƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒcelsiusƒ<<ƒendl;
ƒƒ}
ƒƒelse
ƒƒ{
ƒƒƒƒfahrenƒ=ƒ(9.0ƒ/ƒ5.0)ƒ*ƒtempƒ+ƒ32.0;
ƒƒƒƒcoutƒ<<ƒ“\nTheƒequivalentƒFahrenheitƒtemperatureƒisƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒfahrenƒ<<ƒendl;
ƒƒ}

ƒƒreturnƒ0;
}

E_C7785_04.1c 147E_C7785_04.1c 147 1/18/11 10:46 AM1/18/11 10:46 AM

148 Selection

A sample run of Program 4.2 follows.

Enterƒtheƒtemperatureƒtoƒbeƒconverted:ƒ212
EnterƒanƒfƒifƒtheƒtemperatureƒisƒinƒFahrenheit
ƒƒorƒaƒcƒifƒtheƒtemperatureƒisƒinƒCelsius:ƒf

TheƒequivalentƒCelsiusƒtemperatureƒisƒ100.00

Block Scope
All statements contained in a compound statement constitute a single block of code, and any

variable declared in this block has meaning only between its declaration and the closing

braces defining the block. For example, take a look at the following example, which consists

of two blocks of code:

{ƒƒ//ƒstartƒofƒouterƒblock
ƒƒƒintƒaƒ=ƒ25;
ƒƒƒintƒbƒ=ƒ17;
ƒƒƒcoutƒ<<ƒ“Theƒvalueƒofƒaƒisƒ“ƒ<<ƒa
ƒƒƒƒƒƒƒƒ<<ƒ”ƒandƒbƒisƒ“ƒ<<ƒbƒ<<ƒendl;

ƒƒƒ{ƒƒ//ƒstartƒofƒinnerƒblock
ƒƒƒƒƒdoubleƒaƒ=ƒ46.25;
ƒƒƒƒƒintƒcƒ=ƒ10;
ƒƒƒƒƒƒƒƒƒƒcoutƒ<<ƒ“aƒisƒnowƒ“ƒ<<ƒa
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒ“ƒbƒisƒnowƒ“ƒ<<ƒb
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒ“ƒandƒcƒisƒ“ƒ<<ƒcƒ<<ƒendl;
ƒƒƒ}ƒƒ//ƒendƒofƒinnerƒblock

ƒƒƒcoutƒ<<ƒ“aƒisƒnowƒ“ƒ<<ƒaƒ<<ƒ“ƒandƒbƒisƒ“ƒ<<ƒbƒ<<ƒendl;
}ƒƒ//ƒendƒofƒouterƒblock

This section of code produces the following output:

Theƒvalueƒofƒaƒisƒ25ƒandƒbƒisƒ17
aƒisƒnowƒ46.25ƒbƒisƒnowƒ17ƒandƒcƒisƒ10
aƒisƒnowƒ25ƒandƒbƒisƒ17

This output is produced as follows: The first block of code defines two variables named a

and b, which can be used anywhere in this block after their declarations, including any block

inside this outer block. In the inner block, two new variables have been declared, named a and

c. Therefore, at this stage, four different variables have been created, two with the same name.

When a variable is referenced, the compiler first attempts to access a variable with the correct

name that has been declared in the block containing the reference. If the referenced variable

hasn’t been defined in the block, the compiler attempts to access the variable declared in the

next outer block, until a valid access results.

E_C7785_04.1c 148E_C7785_04.1c 148 1/18/11 10:46 AM1/18/11 10:46 AM

149Chapter 4
The if-else Statement

Point of Information
Placement of Braces in a Compound Statement

A common practice for some C++ programmers is placing the opening brace of a
compound statement on the same line as the if and else statements. Using this con-
vention, the if statement in Program 4.2 would look like the following example. (This
placement is a matter of style only—both styles are used, and both are acceptable.)

ifƒ(tempTypeƒ==ƒ'f')ƒ{
ƒƒcelsiusƒ=ƒ(5.0ƒ/ƒ9.0)ƒ*ƒ(tempƒ-ƒ32.0);
ƒƒcoutƒ<<ƒ“\nTheƒequivalentƒCelsiusƒtemperatureƒisƒ“
ƒƒƒƒƒƒƒ<<ƒcelsiusƒ<<ƒendl;
}
elseƒ{
ƒƒfahrenƒ=ƒƒ(9.0ƒ/ƒ5.0)ƒ*ƒtempƒ+ƒ32.0;
ƒƒcoutƒ<<ƒ“\nTheƒequivalentƒFahrenheitƒtemperatureƒisƒ“
ƒƒƒƒƒƒƒ<<ƒfahrenƒ<<ƒendl;
}

Therefore, the values of the variables a and c referenced in the inner block use the values

of the variables a and c declared in that block. Because no variable named b was declared in

the inner block, the value of b displayed from inside the inner block is obtained from the outer

block. Finally, the last cout object, which is outside the inner block, displays the value of the

variable a declared in the outer block. If an attempt is made to display the value of c anywhere

in the outer block, the compiler issues an error message stating that c is an undefined symbol.

The area in a program where a variable can be used is formally referred to as the scope of
the variable, and you delve into this subject in Chapter 6.

One-Way Selection
A useful modification of the if-else statement involves omitting the else part of the state-

ment and has this shortened and often useful form:

ifƒ(expression)ƒ
ƒƒƒƒƒstatement;

The statement following ifƒ(expression) is executed only if the expression has a

non-zero value (a true condition). As before, the statement can be a compound statement.

Figure 4.3 shows the flowchart for this statement.

E_C7785_04.1c 149E_C7785_04.1c 149 1/18/11 10:46 AM1/18/11 10:46 AM

150 Selection

next
statement

statement

is
condition

true?

previous
statement

no

yes

Figure 4.3 A one-way if statement

This modified form of the if statement is called a one-way if statement. Program 4.3 uses

this statement to check a car’s mileage and display a message only for cars that have been

driven more than 3000.0 miles.

 Program 4.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒconstƒdoubleƒLIMITƒ=ƒ3000.0;
ƒƒintƒidNum;
ƒƒdoubleƒmiles;

ƒƒcoutƒ<<ƒ“Pleaseƒtypeƒinƒcarƒnumberƒandƒmileage:ƒ“;
ƒƒcinƒƒ>>ƒidNumƒ>>ƒmiles;

☞

E_C7785_04.1c 150E_C7785_04.1c 150 1/18/11 10:46 AM1/18/11 10:46 AM

151Chapter 4
The if-else Statement

ƒƒif(milesƒ>ƒLIMIT)
ƒƒƒƒcoutƒ<<ƒ“ƒCarƒ“ƒ<<ƒidNumƒ<<ƒ“ƒisƒoverƒtheƒlimit.”ƒ<<ƒendl;

ƒƒcoutƒ<<ƒ“Endƒofƒprogramƒoutput.”ƒ<<ƒendl;

ƒƒreturnƒ0;
}

To show the one-way selection criteria in action, Program 4.3 was run twice, each time

with different input data. Only the input data for the first run causes the message

Carƒ256ƒisƒoverƒtheƒlimit to be displayed.

Pleaseƒtypeƒinƒcarƒnumberƒandƒmileage:ƒ256ƒ3562.8
ƒƒCarƒ256ƒisƒoverƒtheƒlimit.
Endƒofƒprogramƒoutput.

and

Pleaseƒtypeƒinƒcarƒnumberƒandƒmileage:ƒ23ƒ2562.3
Endƒofƒprogramƒoutput.

Problems Associated with the if-else Statement
Two of the most common problems encountered in using C++’s if-else statement are the

following:

• Misunderstanding the full implications of what an expression is

• Using the assignment operator, =, in place of the relational operator ==

Recall that an expression is any combination of operands and operators that yields a result.

This definition is much broader and more encompassing than is apparent at first. For example,

all the following are valid C++ expressions:

ageƒ+ƒ5
ageƒ=ƒ30
ageƒ==ƒ40

Assuming the variables are declared correctly, each of these expressions yields a result.

The following example uses the cout object to display the value of these expressions when

age is initially assigned the value 18:

ageƒ=ƒ18;
coutƒ<<ƒ“Theƒvalueƒofƒtheƒfirstƒexpressionƒisƒ“ƒ<<ƒ(ageƒ+ƒ5)ƒ<<ƒendl;
coutƒ<<ƒ“Theƒvalueƒofƒtheƒsecondƒexpressionƒisƒ“ƒ<<ƒ(ageƒ=ƒ30)ƒ<<ƒendl;
coutƒ<<ƒ“Theƒvalueƒofƒtheƒthirdƒexpressionƒisƒ“ƒ<<ƒ(ageƒ==ƒ40)ƒ<<ƒendl;

E_C7785_04.1c 151E_C7785_04.1c 151 1/18/11 10:46 AM1/18/11 10:46 AM

152 Selection

This code produces the following display:

Theƒvalueƒofƒtheƒfirstƒexpressionƒisƒ23
Theƒvalueƒofƒtheƒsecondƒexpressionƒisƒ30
Theƒvalueƒofƒtheƒthirdƒexpressionƒisƒ0

As this output shows, each expression has a value associated with it. The value of the first

expression is the sum of the variable age plus 5, which is 23. The value of the second expres-

sion is 30, which is also assigned to the variable age. The value of the third expression is 0

because age is not equal to 40, and a false condition is represented in C++ with the value 0. If

the value in age had been 40, the relational expression aƒ==ƒ40 would be true and have the

value 1.

Say the relational expression ageƒ==ƒ40 was intended to be used in the if statement

ifƒ(ageƒ==ƒ40)
ƒƒcoutƒ<<ƒ“HappyƒBirthday!”;

but was mistyped as ageƒ=ƒ40, resulting in the following:

ifƒ(ageƒ=ƒ40)
ƒƒcoutƒ<<ƒ“HappyƒBirthday!”;

Because the mistake results in a valid C++ expression, and any C++ expression can be

tested by an if statement, the resulting if statement is valid and causes the message

HappyƒBirthday! to be displayed regardless of what value was previously assigned to age.

Can you see why?

The condition tested by the if statement doesn’t compare the value in age to the

number 40. It assigns the number 40 to age. That is, the expression ageƒ=ƒ40 isn’t a rela-

tional expression at all; it’s an assignment expression. At the completion of the assignment, the

expression itself has a value of 40. Because C++ treats any non-zero value as true, the cout

statement is executed. Another way of looking at it is to realize that the if statement is

equivalent to the following statements:

ageƒ=ƒ40;ƒƒ//ƒassignƒ40ƒtoƒage
ifƒ(age)ƒƒƒ//ƒtestƒtheƒvalueƒofƒage
ƒƒcoutƒ<<ƒ“HappyƒBirthday!”;

Because a C++ compiler has no means of knowing that the expression being tested isn’t

the one you want, you must be especially careful when writing conditions.

E_C7785_04.1c 152E_C7785_04.1c 152 1/18/11 10:46 AM1/18/11 10:46 AM

153Chapter 4
The if-else Statement

Point of Information
The Boolean Data Type

Before the current ANSI/ISO C++ standard, C++ didn’t have a built-in Boolean data type
with its two Boolean values, true and false. Because this data type wasn’t originally
part of the language, a tested expression could not evaluate to a Boolean value. Therefore,
the syntax

ifƒ(Booleanƒexpressionƒisƒtrue)
ƒƒƒexecuteƒthisƒstatement;

also wasn’t built into C or C++. Instead, C++ uses the more encompassing syntax,

ifƒ(expression)
ƒƒƒexecuteƒthisƒstatement;

where expression is any expression that evaluates to a numeric value. If the value of
the tested expression is a non-zero value, it’s considered true, and only a zero value is
considered false.

As the ANSI/ISO C++ standard specifies, C++ has a built-in Boolean data type contain-
ing the values true and false. Boolean variables are declared with the bool keyword.
As currently implemented, the actual values that the Boolean values true and false
represent are the integer values 1 and 0. For example, examine the following program,
which declares two Boolean variables:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒboolƒt1,ƒt2;

ƒƒt1ƒ=ƒtrue;
ƒƒt2ƒ=ƒfalse;
ƒƒcoutƒ<<ƒ”Theƒvalueƒofƒt1ƒisƒ“ƒ<<ƒt1
ƒƒƒƒƒƒƒ<<ƒ“\nandƒtheƒvalueƒofƒt2ƒisƒ“ƒ<<ƒt2ƒ<<ƒendl;

ƒƒreturnƒ0;
}

 This program produces the following output:

The value of t1 is 1
and the value of t2 is 0

continued

E_C7785_04.1c 153E_C7785_04.1c 153 1/18/11 10:46 AM1/18/11 10:46 AM

154 Selection

 EXERCISES 4.2

1. (Practice) Write suitable if statements for the following conditions:

a. If an angle is equal to 90 degrees, print the message “The angle is a right angle.”; else, print

the message “The angle is not a right angle.”

b. If the temperature is above 100 degrees, display the message “above the boiling point of

water”; else, display the message “below the boiling point of water.”

c. If the number is positive, add the number to the variable positivesum; else, add the num-

ber to the variable negativesum.

d. If the slope is less than 0.5, set the variable flag to 0; else, set flag to 1.

e. If the difference between slope1 and slope2 is less than 0.001, set the variable approx to

0; else, calculate approx as the quantity (slope1ƒ-ƒslope2)ƒ/ƒ2.0.

f. If the frequency is above 60, display the message “The frequency is too high.”

g. If the difference between temp1 and temp2 exceeds 2.3, calculate the variable error as

(temp1ƒ-ƒtemp2)ƒ*ƒfactor.

h. If x is greater than y and z is less than 20, request that the user input a value for the

variable p.

i. If distance is greater than 20 and less than 35, request that the user input a value for the

variable time.

Point of Information
The Boolean Data Type (continued)

As shown by this output, the Boolean values true and false are represented by the
integer values 1 and 0 and have the following relationships:

!true=ƒisƒfalse
!false=ƒisƒtrue

Additionally, applying a postfix or prefix ++ operator to a variable of type bool sets
the Boolean value to true. The postfix and prefix -- operators can’t be applied to
Boolean variables.

Boolean values can also be compared, as shown in the following code:

ifƒ(t1ƒ==ƒt2)
ƒƒcoutƒ<<ƒ“Theƒvaluesƒareƒequal”ƒ<<ƒendl;
else
ƒƒcoutƒ<<ƒ“Theƒvaluesƒareƒnotƒequal”ƒ<<ƒendl;

Last, assigning any non-zero value to a Boolean variable results in the variable being
set to true (a value of 1), and assigning a zero value to a Boolean results in the variable
being set to false (a value of 0).

E_C7785_04.1c 154E_C7785_04.1c 154 1/18/11 10:46 AM1/18/11 10:46 AM

155Chapter 4
The if-else Statement

2. (Practice) Write if statements corresponding to the conditions shown in the following

flowcharts:

a. b.

sum=
sum +a

count=
count+1

ace<25

false

true

credit=10
limit=1200

credit=8
limit=800

c==15

false

true

factor=.7

id>22

false

true

average
=sum/count

count==10

false

true

display
average

c. d.

E_C7785_04.1c 155E_C7785_04.1c 155 1/18/11 10:46 AM1/18/11 10:46 AM

156 Selection

3. (Practice) Write a C++ program that asks the user to input two numbers. If the first number

entered is greater than the second number, the program should print the message “The first

number is greater.”; else, it should print the message “The first number is smaller.” Test your

program by entering the numbers 5 and 8 and then using the numbers 11 and 2. What do you

think your program will display if the two numbers entered are equal? Test this case.

4. (Program) a. In a pass/fail course, a student passes if the grade is greater than or equal to 70

and fails if the grade is lower than 70. Write a C++ program that accepts a grade and prints the

message “A passing grade” or “A failing grade,” as appropriate.

b. How many runs should you make for the program written in Exercise 4a to verify that it’s

operating correctly? What data should you input in each program run?

5. (Program) a. If money is left in a particular bank for more than 5 years, the bank pays inter-

est at a rate of 4.5%; otherwise, the interest rate is 3.0%. Write a C++ program that uses the

cinƒobject to accept the number of years in the variable numYears and display the correct

interest rate, depending on the value input into numYears.

b. How many runs should you make for the program written in Exercise 5a to verify that it’s

operating correctly? What data should you input in each program run?

6. (Practice) a. Write a C++ program to display the message “PROCEED WITH TAKEOFF”

or “ABORT TAKEOFF” depending on the input. If the character g is entered in the variable

code, the first message should be displayed; otherwise, the second message should be

displayed.

b. How many runs should you make for the program written in Exercise 6a to verify that it’s

operating correctly? What data should you input in each program run?

7. (Program) Write, compile, and run a C++ program that accepts a user-input integer number

and determines whether it’s even or odd. The output should display the message “The

entered number is even.” or “The entered number is odd.” corresponding to the number the

user entered. (Hint: An even number has a 0 remainder when divided by 2.)

8. (Program) Write, compile, and run a C++ program that accepts a user-entered number and

calculates the square root and the reciprocal. Before calculating the square root, validate that

the number isn’t negative, and before calculating the reciprocal, check that the number isn’t

zero. If either condition occurs, display a message stating that the operation can’t be calculated.

9. (Program) Years that are evenly divisible by 400 or are evenly divisible by 4 but not by 100

are leap years. For example, because 1600 is evenly divisible by 400, 1600 was a leap year.

Similarly, because 1988 is evenly divisible by 4 but not by 100, it was also a leap year. Using

this information, write a C++ program that accepts the year as user input, determines whether

the year is a leap year, and displays a message telling the user whether the entered year is or

is not a leap year.

10. (Program) a. Write, compile, and run a C++ program to compute and display a person’s

weekly salary as determined by the following conditions: If the hours worked are less than or

equal to 40, the person receives $12.00 per hour; otherwise, the person receives $480.00 plus

E_C7785_04.1c 156E_C7785_04.1c 156 1/18/11 10:46 AM1/18/11 10:46 AM

157Chapter 4
The if-else Statement

$18.00 for each hour worked over 40 hours. The program should request the hours worked as

input and display the salary as output.

b. How many runs should you make for the program written in Exercise 10a to verify that it’s

operating correctly? What data should you input in each program run?

11. (Program) a. A senior salesperson is paid $800 a week, and a junior salesperson, $500 a

week. Write a C++ program that accepts as input a salesperson’s status in the character vari-

able status. If status equals s, the senior salesperson’s salary should be displayed; other-

wise, the junior salesperson’s salary should be displayed.

b. How many runs should you make for the program written in Exercise 11a to verify that it’s

operating correctly? What data should you input in each program run?

12. (Program) a. Write a C++ program that displays the message “I feel great today!” or “I feel

down today #$*!” depending on the input. If the character u is entered in the variable ch, the

first message should be displayed; otherwise, the second message should be displayed.

b. How many runs should you make for the program written in Exercise 12a to verify that it’s

operating correctly? What data should you input in each program run?

13. (Program) a. Write a program to display the following two prompts:

ƒEnterƒaƒmonthƒ(useƒaƒ1ƒforƒJan,ƒetc.):
ƒEnterƒaƒdayƒofƒtheƒmonth:

 Have your program accept and store a number in the variable month in response to the first

prompt and accept and store a number in the variable day in response to the second prompt.

If the month entered isn’t between 1 and 12, display a message informing the user that an

invalid month has been entered. If the day entered isn’t between 1 and 31, display a message

informing the user that an invalid day has been entered.

b. What will your program do if the user enters a number with a decimal point for the month?

How can you make sure your if statements check for an integer number?

14. (Program) a. Write, compile, and run a C++ program that accepts a character as input data and

determines whether the character is a lowercase letter. A lowercase letter is any character that’s

greater than or equal to “a” and less than or equal to “z.” If the entered character is a lowercase

letter, display the message “The character just entered is a lowercase letter.” If the entered

letter isn’t lowercase, display the message “The character just entered is not a lowercase letter.”

b. Modify the program written for Exercise 14a to also determine whether the entered char-

acter is an uppercase letter. An uppercase letter is any character greater than or equal to “A”

and less than or equal to “Z.”

15. (Program) Write, compile, and run a C++ program that first determines whether an entered

character is a lowercase or an uppercase letter (see Exercise 14). If the letter is lowercase,

determine and print its position in the alphabet. For example, if the entered letter is c, the

program should print 3 because c is the third letter in the alphabet. (Hint: If the entered char-

acter is lowercase, its position can be determined by subtracting 'a' from the letter and add-

ing 1.) Similarly, if the letter is uppercase, determine and print its position in the alphabet. For

example, if the entered letter is G, the program should print 7 because G is the seventh letter

in the alphabet. (Hint: If the entered character is uppercase, its position can be determined by

subtracting 'A' from the letter and adding 1.)

E_C7785_04.1c 157E_C7785_04.1c 157 1/18/11 10:46 AM1/18/11 10:46 AM

158 Selection

16. (Program) Write, compile, and run a C++ program that asks the user to input two numbers.

After your program accepts these numbers by using one or more cin object calls, have it

check the numbers. If the first number entered is greater than the second number, the pro-

gram should print the message “The first number is greater.”; otherwise, it should print the

message “The first number is not greater than the second.” Test your program by entering

the numbers 5 and 8 and then using the numbers 11 and 2. What will your program display if

the two numbers entered are equal?

17. (Debug) The following program displays the message Helloƒthere! regardless of the letter

input. Determine where the error is and why the program always causes the message to be

displayed.

ƒ#includeƒ<iostream>
ƒusingƒnamespaceƒstd;
ƒintƒmain()
ƒ{
ƒƒƒcharƒletter;
ƒ
ƒƒƒcoutƒ<<ƒ“Enterƒaƒletter:ƒ“;
ƒƒƒcinƒƒ>>ƒletter;
ƒƒƒifƒ(letterƒ=ƒ'm')
ƒƒƒƒƒcoutƒ<<ƒ“Helloƒthere!”ƒ<<ƒendl;
ƒ
ƒƒƒreturnƒ0;
ƒ}

4.3 Nested if Statements

As you have seen, anƒif-else statement can contain any valid C++ simple or compound state-

ments, including another if-else statement. Therefore, one or more if-else statements can

be included in either part of an if-else statement. Including one or more if statements inside

an existing if statement is called a nested if statement. For example, substituting the one-way

if statement

ifƒ(distanceƒ>ƒ500)
ƒƒcoutƒ<<ƒ“snap”;

for statement1 in this if statement

ifƒ(hoursƒ<ƒ9)
ƒƒstatement1;
else
ƒƒcoutƒ<<ƒ“pop”;

E_C7785_04.1c 158E_C7785_04.1c 158 1/18/11 10:46 AM1/18/11 10:46 AM

159Chapter 4
Nested if Statements

results in the following nested if statement:

ifƒ(hoursƒ<ƒ9)
{
ƒƒifƒ(distanceƒ>ƒ500)
ƒƒƒƒcoutƒ<<ƒ“snap”;
}
else
ƒƒcoutƒ<<ƒ“pop”;

The braces around the inner one-way if statement are essential because in their absence,

C++ associates an else with the closest unpaired if. Therefore, without the braces, the pre-

ceding statement is equivalent to the following:

ifƒ(hoursƒ<ƒ9)
ƒƒifƒ(distanceƒ>ƒ500)
ƒƒƒƒcoutƒ<<ƒ“snap”;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“pop”;

In this example, the else is paired with the inner if, which destroys the meaning of the

original if-else statement. Notice also that the indentation is irrelevant, as far as the compiler

is concerned. Whether the indentation exists or not, the statement is compiled by associating

the last else with the closest unpaired if, unless braces are used to alter the default pairing. The

process of nesting if statements can be extended indefinitely, so the coutƒ<<ƒ“snap”; state-

ment could be replaced by a complete if-else statement or another one-way if statement.

The if-else Chain
In general, nesting in which one if-else statement is placed inside the if part of another

if-else statement tends to be confusing and is best avoided in practice. However, an

extremely useful construction is placing one if-else statement inside the else part of

another if-else statement. Typically, this nesting is written in the following form:

ifƒ(expression_1)
ƒƒstatement1;
elseƒifƒ(expression_2)
ƒƒstatement2;
else
ƒƒstatement3;

This useful construction, called an if-else chain, is used extensively in programming

applications. Each condition is evaluated in order, and if any condition is true, the correspond-

ing statement is executed, and the remainder of the chain is terminated. The statement associ-

ated with the final else is executed only if no previous condition is satisfied. This final else

serves as a default or catch-all case that’s useful for detecting an impossible condition or an

error condition.

E_C7785_04.1c 159E_C7785_04.1c 159 1/18/11 10:46 AM1/18/11 10:46 AM

160 Selection

The chain can be continued indefinitely by repeatedly making the last statement another

if-else statement. Therefore, the general form of an if-else chain is as follows:

ifƒ(expression_1)
ƒƒstatement1;
elseƒifƒ(expression_2)
ƒƒstatement2;
elseƒifƒ(expression_3)
ƒƒstatement3;
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
elseƒifƒ(expression_n)
ƒƒstatement_n;
else
ƒƒlast_statement;

As with all C++ statements, each statement can be a compound statement bounded by

braces. To illustrate using an if-else chain, Program 4.4 displays a person’s marital status

corresponding with a letter input. The following letter codes are used:

Input Code Marital Status
M Married
S Single
D Divorced
W Widowed

 Program 4.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcharƒmarcode;

ƒƒcoutƒ<<ƒ“Enterƒaƒmaritalƒcode:ƒ“;
ƒƒcinƒƒ>>ƒmarcode;

ƒƒifƒ(marcodeƒ==ƒ'M')
ƒƒƒƒcoutƒ<<ƒ“Individualƒisƒmarried.”ƒ<<ƒendl;
ƒƒelseƒifƒ(marcodeƒ==ƒ'S')
ƒƒƒƒcoutƒ<<ƒ“Individualƒisƒsingle.”ƒ<<ƒendl;

☞

E_C7785_04.1c 160E_C7785_04.1c 160 1/18/11 10:46 AM1/18/11 10:46 AM

161Chapter 4
Nested if Statements

ƒƒelseƒifƒ(marcodeƒ==ƒ'D')
ƒƒƒƒcoutƒ<<ƒ“Individualƒisƒdivorced.”ƒ<<ƒendl;
ƒƒelseƒifƒ(marcodeƒ==ƒ'W')
ƒƒƒƒcoutƒ<<ƒ“Individualƒisƒwidowed.”ƒ<<ƒendl;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“Anƒinvalidƒcodeƒwasƒentered.”ƒ<<ƒendl;

ƒƒreturnƒ0;
}

As another example of an if-else chain, take a look at determining the monthly income

of a salesperson by using the following commission schedule:

Monthly Sales Income
Greater than or equal to $50,000 $375 plus 16% of sales
Less than $50,000 but greater than or equal to $40,000 $350 plus 14% of sales
Less than $40,000 but greater than or equal to $30,000 $325 plus 12% of sales
Less than $30,000 but greater than or equal to $20,000 $300 plus 9% of sales
Less than $20,000 but greater than or equal to $10,000 $250 plus 5% of sales
Less than $10,000 $200 plus 3% of sales

The following if-else chain can be used to determine the correct monthly income; the

monthlySales variable is used to store the salesperson’s current monthly sales:

ifƒ(monthlySalesƒ>=ƒ50000.00)
ƒƒincomeƒ=ƒ375.00ƒ+ƒ.16ƒ*ƒmonthlySales;
elseƒifƒ(monthlySalesƒ>=ƒ40000.00)
ƒƒincomeƒ=ƒ350.00ƒ+ƒ.14ƒ*ƒmonthlySales;
elseƒifƒ(monthlySalesƒ>=ƒ30000.00)
ƒƒincomeƒ=ƒ325.00ƒ+ƒ.12ƒ*ƒmonthlySales;
elseƒifƒ(monthlySalesƒ>=ƒ20000.00)
ƒƒincomeƒ=ƒ300.00ƒ+ƒ.09ƒ*ƒmonthlySales;
elseƒifƒ(monthlySalesƒ>=ƒ10000.00)
ƒƒincomeƒ=ƒ250.00ƒ+ƒ.05ƒ*ƒmonthlySales;
else
ƒƒincomeƒ=ƒ200.000ƒ+ƒ.03ƒ*ƒmonthlySales;

Notice that this example makes use of the chain stopping after a true condition is found

by checking for the highest monthly sales first. If the salesperson’s monthly sales are less than

$50,000, the if-else chain continues checking for the next highest sales amount, and so on,

until the correct category is obtained. Program 4.5 uses this if-else chain to calculate and

display the income corresponding with the value of monthly sales input in the cin object.

E_C7785_04.1c 161E_C7785_04.1c 161 1/18/11 10:46 AM1/18/11 10:46 AM

162 Selection

 Program 4.5

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒmonthlySales,ƒincome;

ƒƒcoutƒ<<ƒ“Enterƒtheƒvalueƒofƒmonthlyƒsales:ƒ“;
ƒƒcinƒƒ>>ƒmonthlySales;
ƒƒifƒ(monthlySalesƒ>=ƒ50000.00)
ƒƒƒƒincomeƒ=ƒ375.00ƒ+ƒ.16ƒ*ƒmonthlySales;
ƒƒelseƒifƒ(monthlySalesƒ>=ƒ40000.00)
ƒƒƒƒincomeƒ=ƒ350.00ƒ+ƒ.14ƒ*ƒmonthlySales;
ƒƒelseƒifƒ(monthlySalesƒ>=ƒ30000.00)
ƒƒƒƒincomeƒ=ƒ325.00ƒ+ƒ.12ƒ*ƒmonthlySales;
ƒƒelseƒifƒ(monthlySalesƒ>=ƒ20000.00)
ƒƒƒƒincomeƒ=ƒ300.00ƒ+ƒ.09ƒ*ƒmonthlySales;
ƒƒelseƒifƒ(monthlySalesƒ>=ƒ10000.00)
ƒƒƒƒincomeƒ=ƒ250.00ƒ+ƒ.05ƒ*ƒmonthlySales;
ƒƒelse
ƒƒƒƒincomeƒ=ƒ200.00ƒ+ƒ.03ƒ*ƒmonthlySales;

ƒƒcoutƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::ƒfixed)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2)
ƒƒƒƒƒƒƒ<<ƒ“Theƒincomeƒisƒ$”ƒ<<ƒincomeƒ<<ƒendl;

ƒƒreturnƒ0;
}

A sample run of Program 4.5 follows:

Enterƒtheƒvalueƒofƒmonthlyƒsales:ƒ36243.89
Theƒincomeƒisƒ$4674.27

 EXERCISES 4.3

1. (Practice) An acute angle is less than 90 degrees, an obtuse angle is greater than 90 degrees,

and a right angle is equal to 90 degrees. Using this information, write a C++ program that

accepts an angle, in degrees, and displays the type of angle corresponding to the degrees

entered.

E_C7785_04.1c 162E_C7785_04.1c 162 1/18/11 10:46 AM1/18/11 10:46 AM

163Chapter 4
Nested if Statements

2. (Program) The grade level of undergraduate college students is typically determined accord-

ing to the following schedule:

Number of Credits Completed Grade Level
Less than 32 Freshman
32 to 63 Sophomore
64 to 95 Junior
96 or more Senior

Using this information, write a C++ program that accepts the number of credits a student has

completed, determines the student’s grade level, and displays the grade level.

3. (Program) A student’s letter grade is calculated according to the following schedule:

Numerical Grade Letter Grade
Greater than or equal to 90 A
Less than 90 but greater than or equal to 80 B
Less than 80 but greater than or equal to 70 C
Less than 70 but greater than or equal to 60 D
Less than 60 F

 Using this information, write, compile, and run a C++ program that accepts a student’s numerical

grade, converts the numerical grade to an equivalent letter grade, and displays the letter grade.

4. (Program) The interest rate paid on funds deposited in a bank is determined by the amount

of time the money is left on deposit. For a particular bank, the following schedule is used:

Time on Deposit Interest Rate
Greater than or equal to 5 years .040
Less than 5 years but greater than or equal to 4 years .035
Less than 4 years but greater than or equal to 3 years .030
Less than 3 years but greater than or equal to 2 years .025
Less than 2 years but greater than or equal to 1 year .020
Less than 1 year .015

Write, compile, and run a C++ program that accepts the time funds are left on deposit and

displays the interest rate corresponding with the time entered.

5. (Program) Fluid flowing through a pipe can flow in a smooth, constant manner, called laminar

flow; in a chaotic manner, called turbulent flow; or in an intermediate stage between smooth

and turbulent flow, which is called transitional flow. In practice, a value known as the Reynolds

number can be used to determine the type of flow. For a Reynolds number below 2000, the

flow is laminar, and for a Reynolds number above 3000, the flow is turbulent. For a Reynolds

number between 2000 and 3000, the flow is transitional.

E_C7785_04.1c 163E_C7785_04.1c 163 1/18/11 10:46 AM1/18/11 10:46 AM

164 Selection

 Using this information, write, compile, and run a C++ program that accepts a Reynolds num-

ber as user input and displays a message indicating whether the flow is laminar, turbulent,

or transitional.

6. (Program) The tolerance of critical components in a system is determined according to the

following schedule:

Specification Status Tolerance
Space exploration Less than 0.1%
Military grade Greater than or equal to 0.1% and less than 1%
Commercial grade Greater than or equal to 1% and less than 10%
Toy grade Greater than or equal to 10%

Using this information, write, compile, and run a C++ program that accepts a component’s

tolerance reading and determines the specification that should be assigned to it.

7. (Program) a. Write, compile, and run a program that accepts two real numbers and a select

code from a user. If the entered select code is 1, have the program add the two previously

entered numbers and display the result; if the select code is 2, the numbers should be multi-

plied; and if the select code is 3, the first number should be divided by the second number.

b. Determine what the program written in Exercise 7a does when the entered numbers are

3 and 0 and the select code is 3.

c. Modify the program written in Exercise 7a so that division by 0 isn’t allowed, and a message

is displayed when this division is attempted.

8. (Program) The quadrant in which a line starting from the origin is located is determined by

the angle the line makes with the positive x axis, as follows:

Angle from the Positive x Axis Quadrant
Between 0 and 90 degrees I
Between 90 and 180 degrees II
Between 180 and 270 degrees III
Between 270 and 360 degrees IV

a. Using this information, write, compile, and run a C++ program that accepts the angle of the

line as user input and determines and displays the correct quadrant for the input data. (Note:
If the angle is exactly 0, 90, 180, or 270 degrees, the corresponding line doesn’t reside in any

quadrant but lies on an axis.)

b. Modify the program written for Exercise 8a to display a message that identifies an angle of

0 degrees as the positive x axis, an angle of 90 degrees as the positive y axis, an angle of

180 degrees as the negative x axis, and an angle of 270 degrees as the negative y axis.

E_C7785_04.1c 164E_C7785_04.1c 164 1/18/11 10:46 AM1/18/11 10:46 AM

165Chapter 4
Nested if Statements

9. (Program) Write, compile, and run a C++ program that accepts a number followed by one

space and then a letter. If the letter following the number is f, the program is to treat the

number entered as a temperature in degrees Fahrenheit, convert the number to the equiva-

lent degrees Celsius, and display a suitable message. If the letter following the number is c,

the program is to treat the number entered as a temperature in degrees Celsius, convert the

number to the equivalent degrees Fahrenheit, and display a suitable message. If the letter is

neither f nor c, the program is to display a message that the data entered is incorrect and then

terminate. Use an if-else chain in your program and make use of these conversion formulas:

Celsius = (5.0 / 9.0) × (Fahrenheit - 32.0)
Fahrenheit = (9.0 / 5.0) × Celsius + 32.0

10. (Program) Many states base yearly car registration fees on an automobile’s model year and

weight, using a schedule similar to the following:

Model Year Weight Weight Class Registration Fee
1990 or earlier Less than 2700 lbs 1 26.50

2700 to 3800 lbs 2 35.50
More than 3800 lbs 3 56.50

1991 to 1999 Less than 2700 lbs 4 35.00
2700 to 3800 lbs 5 45.50
More than 3800 lbs 6 62.50

2000 or later Less than 3500 lbs 7 49.50
3500 or more lbs 8 62.50

 Using this information, write, compile, and run a C++ program that accepts an automobile’s

year and weight and determines and displays its weight class and registration fee.

11. (Debug) Using the commission schedule from Program 4.5, the following program calculates

monthly income:

ƒ#includeƒ<iostream>
ƒ#includeƒ<iomanip>
ƒusingƒnamespaceƒstd;
ƒ
ƒintƒmain()
ƒ{
ƒƒƒdoubleƒmonthlySales,ƒincome;
ƒ
ƒƒƒcoutƒ<<ƒ“Enterƒtheƒvalueƒofƒmonthlyƒsales:ƒ“;
ƒƒƒcinƒƒ>>ƒmonthlySales;
ƒƒƒifƒ(monthlySalesƒ>=ƒ50000.00)
ƒƒƒƒƒincomeƒ=ƒ375.00ƒ+ƒ.16ƒ*ƒmonthlySales;
ƒƒƒifƒ(monthlySalesƒ>=ƒ40000.00ƒ&&ƒmonthlySalesƒ<ƒ50000.00)
ƒƒƒƒƒincomeƒ=ƒ350.00ƒ+ƒ.14ƒ*ƒmonthlySales;
ƒƒƒifƒ(monthlySalesƒ>=ƒ30000.00ƒ&&ƒmonthlySalesƒ<ƒ40000.00)
ƒƒƒƒƒincomeƒ=ƒ325.00ƒ+ƒ.12ƒ*ƒmonthlySales;

E_C7785_04.1c 165E_C7785_04.1c 165 1/18/11 10:46 AM1/18/11 10:46 AM

166 Selection

ƒƒƒifƒ(monthlySalesƒ>=ƒ20000.00ƒ&&ƒmonthlySalesƒ<ƒ30000.00)
ƒƒƒƒƒincomeƒ=ƒ300.00ƒ+ƒ.09ƒ*ƒmonthlySales;
ƒƒƒifƒ(monthlySalesƒ>=ƒ10000.00ƒ&&ƒmonthlySalesƒ<ƒ20000.00)
ƒƒƒƒƒincomeƒ=ƒ250.00ƒ+ƒ.05ƒ*ƒmonthlySales;
ƒƒƒifƒ(monthlySalesƒ<ƒ10000.00)
ƒƒƒƒƒincomeƒ=ƒ200.00ƒ+ƒ.03ƒ*ƒmonthlySales;
ƒ
ƒƒƒcoutƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::ƒfixed)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)
ƒƒƒƒƒƒƒƒ<<ƒ“\n\nTheƒincomeƒisƒ$”ƒ<<ƒincomeƒ<<ƒendl;
ƒ
ƒƒƒreturnƒ0;
ƒ}

 a. Will this program produce the same output as Program 4.5?

b. Which program is better? Why?

12. (Debug) The following program was written to produce the same result as Program 4.5:

ƒ#includeƒ<iostream>
ƒ#includeƒ<iomanip>
ƒusingƒnamespaceƒstd;
ƒ
ƒintƒmain()
ƒ{
ƒƒƒdoubleƒmonthlySales,ƒincome;
ƒ
ƒƒƒcoutƒ<<ƒ“Enterƒtheƒvalueƒofƒmonthlyƒsales:ƒ“;
ƒƒƒcinƒƒ>>ƒmonthlySales;
ƒ
ƒƒƒifƒ(monthlySalesƒ<ƒ10000.00)
ƒƒƒƒƒincomeƒ=ƒ200.00ƒ+ƒ.03ƒ*ƒmonthlySales;
ƒƒƒelseƒifƒ(monthlySalesƒ>=ƒ10000.00)
ƒƒƒƒƒincomeƒ=ƒ250.00ƒ+ƒ.05ƒ*ƒmonthlySales;
ƒƒƒelseƒifƒ(monthlySalesƒ>=ƒ20000.00)
ƒƒƒƒƒincomeƒ=ƒ300.00ƒ+ƒ.09ƒ*ƒmonthlySales;
ƒƒƒelseƒifƒ(monthlySalesƒ>=ƒ30000.00)
ƒƒƒƒƒincomeƒ=ƒ325.00ƒ+ƒ.12ƒ*ƒmonthlySales;
ƒƒƒelseƒifƒ(monthlySalesƒ>=ƒ40000.00)
ƒƒƒƒƒincomeƒ=ƒ350.00ƒ+ƒ.14ƒ*ƒmonthlySales;
ƒƒƒelseƒifƒ(monthlySalesƒ>=ƒ50000.00)
ƒƒƒƒƒincomeƒ=ƒ375.00ƒ+ƒ.16ƒ*ƒmonthlySales;
ƒ
ƒƒƒcoutƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::ƒfixed)

E_C7785_04.1c 166E_C7785_04.1c 166 1/18/11 10:46 AM1/18/11 10:46 AM

167Chapter 4
The switch Statement

ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2)
ƒƒƒƒƒƒƒƒ<<ƒ“Theƒincomeƒisƒ$”ƒ<<ƒincomeƒ<<ƒendl;
ƒ
ƒƒƒreturnƒ0;
ƒ}

a. What does this program do?

b. For what values of monthly sales does this program calculate the correct income?

4.4 The switch Statement

An if-else chain is used in programming applications in which one set of instructions

must be selected from many possible alternatives. A switch statement is an alternative to the

if-else chain for cases that involve comparing an integer expression with a specific value. It

has this general form:

switchƒ(integer_expression)
{ƒƒƒƒ//ƒstartƒofƒcompoundƒstatement
ƒƒcase value_1:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatement1;
ƒƒƒƒstatement2;
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒbreak;
ƒƒcase value_2:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatementm;
ƒƒƒƒstatementn;
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒbreak;
ƒƒƒ.
ƒƒƒ.
ƒƒcase value_n:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatementw;
ƒƒƒƒstatementx;
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒbreak;
ƒƒdefault:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatementaa;
ƒƒƒƒstatementbb;
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
}ƒƒƒƒ//ƒendƒofƒswitchƒandƒcompoundƒstatement

E_C7785_04.1c 167E_C7785_04.1c 167 1/18/11 10:46 AM1/18/11 10:46 AM

168 Selection

The switch statement uses four new keywords: switch, case, default, andƒbreak.

The following discussion explains what each of these keywords does.

The switch keyword identifies the start of the switch statement. The expression in

parentheses after switch is then evaluated, and the result is compared with alternative values

contained in the compound statement. The expression in the switch statement must evaluate

to an integer result, or a compilation error results.

In the switch statement, the case keyword identifies values that are compared with the

switch expression’s value. The case values are compared in the order in which they’re listed

until a match is found, and then execution begins with the statement following the match. As

shown in Figure 4.4, the switch expression’s value determines where execution actually begins.

Start here if
expression equals value_1

Start here if
expression equals value_2

Start here if
expression equals value_3

Start here if
expression equals value_n

Start here if no
previous match

switch (expression) // evaluate expression
{
 case value_1:

 break;
 case value_2:

 break;
 case value_3:

 break;

 case value_n:

 break;
 default:

} // end of switch statement

Figure 4.4 The expression determines an entry point for execution

A switch statement can contain any number of case labels in any order. If the value of

the expression doesn’t match any of the case values, however, no statement is executed unless

the default keyword is encountered. (The default keyword is optional and operates just

like the last else in an if-else chain.) If the value of the expression doesn’t match any case

value, program execution begins with the statement following the default keyword.

E_C7785_04.1c 168E_C7785_04.1c 168 1/18/11 10:46 AM1/18/11 10:46 AM

169Chapter 4
The switch Statement

After the switch statement has located an entry point, all further case value evaluations

are ignored. Execution continues through the end of the compound statement unless the

break keyword is encountered, which identifies the end of a case and causes an immediate

exit from the switch statement. Just as the case keyword identifies possible entry points in

the compound statement, the break keyword determines terminating points. If break state-

ments are omitted, all cases following the matching case value, including the default case,

are executed.

When writing a switch statement, you can use multiple case values to refer to the same

set of statements; the default keyword is optional, as mentioned. For example, take a look at

the following:

switchƒ(number)
{
ƒƒcaseƒ1:
ƒƒƒƒcoutƒ<<ƒ“HaveƒaƒGoodƒMorning\n”;
ƒƒƒƒbreak;
ƒƒcaseƒ2:
ƒƒƒƒcoutƒ<<ƒ“HaveƒaƒHappyƒDay\n”;
ƒƒƒƒbreak;
ƒƒcaseƒ3:
ƒƒcaseƒ4:
ƒƒcaseƒ5:
ƒƒƒƒcoutƒ<<ƒ“HaveƒaƒNiceƒEvening\n”;
}

If the value stored in the number variable is 1, the message HaveƒaƒGoodƒMorning is

displayed. Similarly, if the value of number is 2, the second message is displayed. Finally, if the

value of number is 3, 4, or 5, the last message is displayed. Because the statement to be exe-

cuted for the last three cases is the same, the case statements for these values can be “stacked

together,” as shown in the example. Also, because there’s no default keyword, no message is

printed if the value of number isn’t one of the listed case values. Although listing case values

in increasing order is a good programming practice, it’s not required by the switch statement.

A switch statement can have any number of case values, in any order; only the values you’re

testing for must be listed.

Program 4.6 uses a switch statement to select the arithmetic operation (addition, multi-

plication, or division) to perform on two numbers, depending on the value of the opselect

variable.

 Program 4.6

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒopselect; ☞

E_C7785_04.1c 169E_C7785_04.1c 169 1/18/11 10:46 AM1/18/11 10:46 AM

170 Selection

ƒƒdoubleƒfnum,ƒsnum;

ƒƒcoutƒ<<ƒ“Pleaseƒtypeƒinƒtwoƒnumbers:ƒ“;
ƒƒcinƒƒ>>ƒfnumƒ>>ƒsnum;
ƒƒcoutƒ<<ƒ“Enterƒaƒselectƒcode:ƒ“;
ƒƒcoutƒ<<ƒ“\nƒƒƒƒƒƒƒƒ1ƒforƒaddition”;
ƒƒcoutƒ<<ƒ“\nƒƒƒƒƒƒƒƒ2ƒforƒmultiplication”;
ƒƒcoutƒ<<ƒ“\nƒƒƒƒƒƒƒƒ3ƒforƒdivisionƒ:ƒ“;
ƒƒcinƒƒ>>ƒopselect;

ƒƒswitchƒ(opselect)
ƒƒ{
ƒƒƒƒcaseƒ1:
ƒƒƒƒƒƒcoutƒ<<ƒ“Theƒsumƒofƒtheƒnumbersƒenteredƒisƒ“ƒ
ƒƒƒƒƒƒƒƒƒƒƒ<<ƒfnum+snumƒ<<ƒendl;
ƒƒƒƒƒƒbreak;
ƒƒƒƒcaseƒ2:
ƒƒƒƒƒƒcoutƒ<<ƒ“Theƒproductƒofƒtheƒnumbersƒenteredƒisƒ“ƒ
ƒƒƒƒƒƒƒƒƒƒƒ<<ƒfnum*snumƒ<<ƒendl;
ƒƒƒƒƒƒbreak;
ƒƒƒƒcaseƒ3:
ƒƒƒƒƒƒcoutƒ<<ƒ“Theƒfirstƒnumberƒdividedƒbyƒtheƒsecondƒisƒ“ƒ
ƒƒƒƒƒƒƒƒƒƒƒ<<ƒfnum/snumƒ<<ƒendl;
ƒƒƒƒƒƒbreak;
ƒƒ}ƒƒƒƒƒƒ//ƒendƒofƒswitch

ƒƒreturnƒ0;
}ƒƒƒ//ƒendƒofƒmain()

In the following two sample runs, the display clearly identifies the case that was selected:

Pleaseƒtypeƒinƒtwoƒnumbers:ƒ12ƒ3
Enterƒaƒselectƒcode:
ƒƒƒƒƒƒƒƒƒƒ1ƒforƒaddition
ƒƒƒƒƒƒƒƒƒƒ2ƒforƒmultiplication
ƒƒƒƒƒƒƒƒƒƒ3ƒforƒdivisionƒ:ƒ2
Theƒproductƒofƒtheƒnumbersƒenteredƒisƒ36

and

Pleaseƒtypeƒinƒtwoƒnumbers:ƒ12ƒ3
Enterƒaƒselectƒcode:
ƒƒƒƒƒƒƒƒƒƒ1ƒforƒaddition
ƒƒƒƒƒƒƒƒƒƒ2ƒforƒmultiplication
ƒƒƒƒƒƒƒƒƒƒ3ƒforƒdivisionƒ:ƒ3
Theƒfirstƒnumberƒdividedƒbyƒtheƒsecondƒisƒ4

E_C7785_04.1c 170E_C7785_04.1c 170 1/18/11 10:46 AM1/18/11 10:46 AM

171Chapter 4
The switch Statement

In reviewing Program 4.6, notice the break statement in the last case statement. Although

it’s not necessary, terminating the last case in a switch statement with a break is a good pro-

gramming practice. It prevents a possible program error later if another case statement is added

to the switch statement. With the addition of a new case, the break keyword between cases

ensures that you won’t forget to include the break at the time of the modification.

Because character data types are always converted to integers in an expression, a switch

statement can also be used to “switch” based on the value of a character expression. For

example, assuming choice is a character variable, the following switch statement is valid:

switch(choice)
{
ƒƒcaseƒ'a':ƒcaseƒ'e':ƒcaseƒ'i':ƒcaseƒ'o':ƒcaseƒ'u':
ƒƒƒƒcoutƒ<<ƒ“Theƒcharacterƒinƒchoiceƒisƒaƒvowel\n”;
ƒƒƒƒbreak;
ƒƒdefault:
ƒƒƒƒcoutƒ<<ƒ“Theƒcharacterƒinƒchoiceƒisƒnotƒaƒvowel\n”;
ƒƒƒƒbreak;ƒƒƒƒ//ƒthisƒbreakƒisƒoptional
}ƒƒƒƒ//ƒendƒofƒswitchƒstatement

 EXERCISES 4.4

1. (Modify) Rewrite the following if-else chain by using a switch statement:

ƒifƒ(letterGradeƒ==ƒ'A')
ƒƒƒcoutƒ<<ƒ“Theƒnumericalƒgradeƒisƒbetweenƒ90ƒandƒ100\n”;
ƒelseƒifƒ(letterGradeƒ==ƒ'B')
ƒƒƒcoutƒ<<ƒ“Theƒnumericalƒgradeƒisƒbetweenƒ80ƒandƒ89.9\n”;
ƒelseƒifƒ(letterGradeƒ==ƒ'C')
ƒƒƒcoutƒ<<ƒ“Theƒnumericalƒgradeƒisƒbetweenƒ70ƒandƒ79.9\n”;
ƒelseƒifƒ(letterGradeƒ==ƒ'D')
ƒƒƒcoutƒ<<ƒ“Howƒareƒyouƒgoingƒtoƒexplainƒthisƒone?\n”;
ƒelse
ƒ{
ƒƒƒcoutƒ<<ƒ“OfƒcourseƒIƒhadƒnothingƒtoƒdoƒwithƒmyƒgrade.\n”;
ƒƒƒcoutƒ<<ƒ“Itƒmustƒhaveƒbeenƒtheƒprofessor'sƒfault.\n”;
ƒ}

2. (Modify) Rewrite the following if-else chain by using a switch statement:

ƒifƒ(bondTypeƒ==ƒ1)
ƒ{
ƒƒƒinData();
ƒƒƒcheck();
ƒ}
ƒelseƒifƒ(bondTypeƒ==ƒ2)
ƒ{

☞

E_C7785_04.1c 171E_C7785_04.1c 171 1/18/11 10:46 AM1/18/11 10:46 AM

172 Selection

ƒƒƒdates();
ƒƒƒleapYr();
ƒ}
ƒelseƒifƒ(bondTypeƒ==ƒ3)
ƒ{
ƒƒƒyield();
ƒƒƒmaturity();
ƒ}
ƒelseƒifƒ(bondTypeƒ==ƒ4)
ƒ{
ƒƒƒprice();
ƒƒƒroi();
ƒ}
ƒelseƒifƒ(bondTypeƒ==ƒ5)
ƒ{
ƒƒƒfiles();
ƒƒƒsave();
ƒ}
ƒelseƒifƒ(bondTypeƒ==ƒ6)
ƒ{
ƒƒƒretrieve();
ƒƒƒscreen();
ƒ}

3. (Program) Each storage drive in a shipment is stamped with a code from 1 to 4, indicating

the following storage capacities:

Code Capacity
1 2 GB
2 4 GB
3 16 GB
4 32 GB

Write, compile, and run a C++ program that accepts the code number as an input value and,

based on the value entered, displays the correct storage drive capacity.

4. (Modify) Rewrite Program 4.4 by using a switch statement.

5. (Modify) Repeat Exercise 9 in Section 4.3, using a switch statement instead of an

if-elseƒchain.

6. (Modify) Rewrite Program 4.6 by using a character variable for the select code.

7. (For thought) Determine why the if-else chain in Program 4.5 can’t be replaced with a

switch statement.

E_C7785_04.1c 172E_C7785_04.1c 172 1/18/11 10:46 AM1/18/11 10:46 AM

173Chapter 4
Common Programming Errors

4.5 Common Programming Errors

Three programming errors are common with C++’s selection statements:

1. Using the assignment operator, =, in place of the relational operator ==. This error can

cause frustration because any expression can be tested by an if-else statement, so

it’s not a syntax error that the compiler will pick up. Rather, it’s a logic error, which can

be difficult to locate. For example, the statement

ifƒ(opselectƒ=ƒ2)
ƒƒƒƒƒcoutƒ<<ƒ“HappyƒBirthday”;
else
ƒƒƒƒƒcoutƒ<<ƒ“GoodƒDay”;

 always results in the message HappyƒBirthday being displayed, regardless of the

initial value in the opselect variable. The reason is that the assignment expression

opselectƒ=ƒ2 has a value of 2, which is considered a true value in C++. The correct

expression to determine the value in opselect is opselectƒ==ƒ2.

2. Letting the if-else statement appear to select an incorrect choice. In this typical

debugging problem, the programmer mistakenly concentrates on the tested condition

as the source of the problem. For example, assume the following if-else statement

is part of your program:

ifƒ(keyƒ==ƒ'F')
{
ƒƒƒƒcontempƒ=ƒ(5.0/9.0)ƒ*ƒ(intempƒ-ƒ32.0);
ƒƒƒƒcoutƒ<<ƒ“ConversionƒtoƒCelsiusƒwasƒdone”;
}
else
{
ƒƒƒƒcontempƒ=ƒ(9.0/5.0)ƒ*ƒintempƒ+ƒ32.0;
ƒƒƒƒcoutƒ<<ƒ“ConversionƒtoƒFahrenheitƒwasƒdone”;
}

 This statement always displays ConversionƒtoƒCelsiusƒwasƒdone when the vari-

able key contains an F. Therefore, if this message is displayed when you believe key

doesn’t contain F, you should investigate key’s value. As a general rule, whenever a

selection statement doesn’t act as you think it should, test your assumptions about the

values assigned to the tested variables by displaying their values. If an unanticipated

value is displayed, you have at least isolated the source of the problem to the variables

rather than the structure of the if-else statement. From there, you have to deter-

mine where and how the incorrect value was produced.

E_C7785_04.1c 173E_C7785_04.1c 173 1/18/11 10:46 AM1/18/11 10:46 AM

174 Selection

3. Using nested if statements without including braces to indicate the structure. Without

braces, the compiler defaults to pairing elses with the closest unpaired ifs, which

sometimes destroys the selection statement’s original intent. To avoid this problem

and create code that’s adaptable to change, writing all if-else statements as com-

pound statements in this form is useful:

ifƒ(expression)
{
ƒƒƒone or more statements in here
}
else
{
ƒƒƒone or more statements in here

}

 No matter how many statements are added later, this form maintains the if state-

ment’s original intent.

4.6 Chapter Summary
1. Relational expressions, also called conditions, are used to compare operands. If a relational

expression is true, the value of the expression is the integer 1. If the relational expression

is false, it has an integer value of 0. Relational expressions are created by using the following

relational operators:

Relational Operator Meaning Example
< Less than ageƒ<ƒ30
> Greater than heightƒ>ƒ6.2
<= Less than or equal to taxableƒ<=ƒ20000
>= Greater than or equal to tempƒ>=ƒ98.6
== Equal to gradeƒ==ƒ100
!= Not equal to numberƒ!=ƒ250

2. More complex conditions can be constructed from relational expressions by using C++’s

logical operators, && (AND), || (OR), and ! (NOT).

3. An if-else statement is used to select between two alternative statements based on an

expression’s value. Although relational expressions are usually used for the tested expres-

sion, any valid expression can be used. In testing an expression, if-else statements inter-

pret a non-zero value as true and a zero value as false. The general form of an if-else

statement is as follows:

ifƒ(expression)
ƒƒstatement1;
else
ƒƒstatement2;

E_C7785_04.1c 174E_C7785_04.1c 174 1/19/11 10:27 AM1/19/11 10:27 AM

175Chapter 4
Chapter Summary

 This form is a two-way selection statement. If the expression has a non-zero value, it’s con-

sidered true and statement1 is executed; otherwise, statement2 is executed.

4. An if-else statement can contain other if-else statements. In the absence of braces,

each else is associated with the closest preceding unpaired if.

5. The if-else chain is a multiway selection statement with this general form:

ifƒ(expression_1)
ƒƒstatement_1;
elseƒifƒ(expression_2)
ƒƒstatement_2;
elseƒifƒ(expression_3)
ƒƒstatement_3;
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
elseƒifƒ(expression_m)
ƒƒstatement_m;
else
ƒƒstatement_n;

 Each expression is evaluated in the order in which it appears in the chain. If an expression

is true (has a non-zero value), only the statement between this expression and the next

elseƒif or else is executed, and no further expressions are tested. The final else is

optional, and the statement corresponding to the final else is executed only if no previous

expressions are true.

6. A compound statement consists of any number of single statements enclosed by the brace

pair { and }. Compound statements are treated as a single unit and can be used anywhere

a single statement is used.

7. Variables have meaning only in the block in which they’re declared, which includes any

inner block contained in the declaring block.

8. The switch statement is a multiway selection statement with this general form:

switchƒ(integer_expression)
{ƒƒƒƒ//ƒstartƒofƒcompoundƒstatement
ƒƒcase value_1:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatement1;
ƒƒƒƒstatement2;
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒbreak;
ƒƒcase value_2:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatementm;
ƒƒƒƒstatementn;

☞

E_C7785_04.1c 175E_C7785_04.1c 175 1/18/11 10:46 AM1/18/11 10:46 AM

176 Selection

ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒbreak;
ƒƒƒ.
ƒƒƒ.
ƒƒcase value_n:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatementw;
ƒƒƒƒstatementx;
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒbreak;
ƒƒdefault:ƒƒ//ƒterminatedƒwithƒaƒcolon
ƒƒƒƒstatementaa;
ƒƒƒƒstatementbb;
ƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.
}ƒƒƒƒ//ƒendƒofƒswitchƒandƒcompoundƒstatement

 For this statement, the value of an integer expression is compared with integer or character

constants or constant expressions. Program execution is transferred to the first matching

case and continues through the end of the switch statement, unless an optional break

statement is encountered. The case values in a switch statement can appear in any order,

and an optional default case can be included. The default case is executed if no other

cases are matched.

4.7 Chapter Supplement: A Closer Look at Testing

In theory, a comprehensive set of test runs would reveal all possible program errors and ensure

that a program works correctly for any combination of input and computed data. In practice,

this level of testing requires checking all possible combinations of statement execution.

Because of the time and effort required, this goal is usually impossible except for extremely

simple programs. To see why this is so, take a look at Program 4.7.

 Program 4.7

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum;
ƒƒcoutƒ<<ƒ“Enterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒnum;

☞

E_C7785_04.1c 176E_C7785_04.1c 176 1/18/11 10:46 AM1/18/11 10:46 AM

177Chapter 4
Chapter Supplement: A Closer Look at Testing

ƒƒifƒ(numƒ==ƒ5)
ƒƒƒƒcoutƒ<<ƒ“Bingo!\n”;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“Bongo!\n”;

ƒƒreturnƒ0;
}

Program 4.7 has two paths that can be traversed as the program progresses from its open-

ing brace to its closing brace. The first path, which is executed when the input number is 5, is

in this sequence:

coutƒ<<ƒ“Enterƒaƒnumber”;
cinƒƒ>>ƒnum;
coutƒ<<ƒ“Bingo!\n”;

The second path, which is executed when any number except 5 is input, includes this

sequence of instructions:

coutƒ<<ƒ“Enterƒaƒnumber”;
cinƒƒ>>ƒnum;
coutƒ<<ƒ“Bongo!\n”;

Testing each possible path through Program 4.7 requires two runs with a judicious selec-

tion of test input data to make sure both paths of the if statement are exercised. Adding one

more if statement in the program increases the number of possible execution paths by a fac-

tor of two and requires four (that is, 22) runs for complete testing. Similarly, a program consist-

ing of three unnested if-else statements requires eight (that is, 23) runs for complete testing,

and a program containing four unnested if-else statements requires 16 (that is, 24) test runs.

Now consider a program consisting of only 10 modules, with each module containing five

if statements. Assuming the modules are always called in the same sequence, there are

32 possible paths through each module (25) and more than 1,000,000,000,000,000 (250, repre-

senting the number of modules multiplied by the number of if statements per module) pos-

sible paths through the complete program (all modules executed in sequence). The time

needed to create test data and the computer runtime required to exercise each path with the

test data make complete testing of this program virtually impossible.

The inability to test all combinations of statement execution sequences fully has led to

the programming proverb “There is no error-free program.” It has also led to the realization

that any testing should be well thought out to maximize the possibility of locating errors. At a

minimum, test data should include suitable values for input data, illegal input values that the

program should reject, and limiting values that are checked by selection statements in the

program.

E_C7785_04.1c 177E_C7785_04.1c 177 1/19/11 8:10 AM1/19/11 8:10 AM

5 5.1 The while Statement

 5.2 Interactive while Loops

 5.3 The for Statement

 5.4 The doƒwhile Statement

 5.5 Common Programming Errors

 5.6 Chapter Summary

The programs you’ve examined so far have illustrated the programming concepts involved in input, out-
put, assignment, and selection capabilities. By this time, you should have gained enough experience to be
comfortable with these concepts and the mechanics of implementing them in C++. Many problems, how-
ever, require a repetition capability, in which the same calculation or sequence of instructions is repeated,
over and over, using different sets of data. Examples of this type of repetition include continual checking
of user data entries until an acceptable entry, such as a valid password, is entered; counting and accumu-
lating running totals; and constant acceptance of input data and recalculation of output values that stop
only at entry of a sentinel value.

This chapter explores the different methods programmers use in constructing repeating sections of code
and explains how they can be implemented in C++. More commonly, a section of code that’s repeated is
referred to as a loop because after the last statement in the code is executed, the program can branch, or
loop, back to the first statement and start another repetition through the code. Each repetition is also
referred to as an iteration or a pass through the loop. In this chapter, you explore the C++ statements used
to create loops: while, for, and do-while.

Chapter

Repetition

F_C7785_05.1c 179F_C7785_05.1c 179 1/18/11 10:47 AM1/18/11 10:47 AM

180 Repetition

5.1 The while Statement

A while statement is a general repetition statement that can be used in a variety of program-

ming situations. It has this general form:

whileƒ(expression)
ƒƒstatement;

The expression in parentheses is evaluated in exactly the same manner as one in an if-else
statement; the difference is in how the expression is used. As you have seen, when the expres-

sion in an if-else statement is true (has a non-zero value), the statement following the

expression is executed once. In a while statement, the statement following the expression is

executed repeatedly as long as the expression evaluates to a non-zero value. Naturally, this

means that somewhere in the while statement must be a statement altering the tested expres-

sion’s value. As you’ll see, this is indeed the case. For now, however, considering just the

expression and the statement following the parentheses, the computer uses this process in

evaluating a while statement:

1. Test the expression
2. If the expression has a non-zero (true) value
 a. execute the statement following the parentheses
 b. go back to Step 1
 else
 exit the while statement and execute the next executable statement following

the while statement

Notice that Step 2b forces program control to be transferred back to Step 1. This transfer

of control back to the start of a while statement to reevaluate the expression is what forms the

program loop. The while statement literally loops back on itself to recheck the expression until

it evaluates to zero (becomes false). This rechecking means the loop must contain a provision

that permits altering the tested expression’s value. As you’ll see, this provision is indeed made.

Figure 5.1 shows the looping process a while statement produces. A diamond shape is

used to show the two entry and two exit points required in the decision part of the while

statement.

To make this looping process more tangible, consider the relational expression

countƒ<=ƒ10 and the statement coutƒ<<ƒcount;. Using these elements, you can write the

following valid while statement:

whileƒ(countƒ<=ƒ10)
ƒƒcoutƒ<<ƒcount;

Although this statement is valid, the alert reader will realize that it creates a situation in

which the cout statement is called forever (or until you stop the program) or not called at all.

Here’s why this happens: If countƒhas a value less than or equal to 10 when the expression is

first evaluated, a call to cout is made. The while statement then automatically loops back on

itself and retests the expression. Because you haven’t changed the value stored in count, the

expression is still true, and another call to cout is made. This process continues forever, or

until the program containing this statement is stopped prematurely by the user. However, if

F_C7785_05.1c 180F_C7785_05.1c 180 1/18/11 10:47 AM1/18/11 10:47 AM

181Chapter 5
The while Statement

count starts with a value greater than 10, the expression is false to begin with, and the call to

cout is never made.

test
the expression

(step 1)

execute the
statement
after the

parentheses
(step 2a)

loop

enter the
while statement

(a false condition)

expression
evaluates

to zero

exit the
while statement

expression
evaluates

to a non-zero
number

(a true condition)

go back and
reevaluate the

expression
(step 2b)

Figure 5.1 Anatomy of a while loop

How do you set an initial value in count to control what the while statement does the

first time the expression is evaluated? The answer, of course, is to assign values to each variable

in the tested expression before the while statement is encountered. For example, the follow-

ing sequence of instructions is valid:

countƒ=ƒ1;
whileƒ(countƒ<=ƒ10)
ƒƒcoutƒ<<ƒcountƒ<<ƒ"ƒ";

Using this sequence of instructions ensures that count starts with a value of 1. You could

assign any value to count in the assignment statement. What’s important is to assign some
value. In practice, the assigned value depends on the application.

You must still change the value of count so that you can finally exit the while statement.

Doing so requires an expression such as countƒ=ƒcountƒ+ƒ1 to increment the value of

count each time the while statement is executed. The fact that a while statement provides

F_C7785_05.1c 181F_C7785_05.1c 181 1/18/11 10:47 AM1/18/11 10:47 AM

182 Repetition

for repetition of a single statement doesn’t prevent including an additional statement to

change the value of count. All you have to do is replace the single statement with a compound

statement, as in this example:

countƒ=ƒ1;ƒƒƒƒƒƒƒƒƒ//ƒinitializeƒcount
whileƒ(countƒ<=ƒ10)
{
ƒƒcoutƒ<<ƒcountƒ<<ƒ"ƒ";
ƒƒcount++;ƒƒƒƒƒƒƒƒƒ//ƒincrementƒcount
}

Note that, for clarity, each statement in the compound statement is placed on a different

line. This format is consistent with the convention adopted for compound statements in

Chapter 4.

Now analyze the preceding sequence of instructions. The first assignment statement sets

count equal to 1. The while statement is then entered, and the expression is evaluated for the

first time. Because the value of count is less than or equal to 10, the expression is true, and the

compound statement is executed. The first statement in the compound statement uses the cout

object to display the value of count. The next statement adds 1 to the value currently stored in

count, making this value equal to 2. The while statement then loops back to retest the expres-

sion. Because count is still less than or equal to 10, the compound statement is executed again.

This process continues until the value of count reaches 11. Program 5.1 shows these statements

in an actual program.

 Program 5.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒcount;

ƒƒcountƒ=ƒ1;ƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinitializeƒcount
ƒƒwhileƒ(countƒ<=ƒ10)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒcountƒ<<ƒ“ƒ“;
ƒƒƒƒcount++;ƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒincrementƒcount
ƒƒ}

ƒƒreturnƒ0;
}

This is the output for Program 5.1:

1ƒƒ2ƒƒ3ƒƒ4ƒƒ5ƒƒ6ƒƒ7ƒƒ8ƒƒ9ƒƒ10

F_C7785_05.1c 182F_C7785_05.1c 182 1/18/11 10:47 AM1/18/11 10:47 AM

183Chapter 5
The while Statement

Note that there’s nothing special about the nameƒcount used in Program 5.1. Any valid

integer variable could have been used.

Before you look at other examples of the while statement, two comments on Program 5.1

are in order. First, the statement count++ can be replaced with any statement that changes the

value of count. A statement such as countƒ=ƒcountƒ+ƒ2;, for example, causes every second

integer to be displayed. Second, it’s the programmer’s responsibility to ensure that count is

changed in a way that leads to a normal exit from the while statement. For example, if you

replace the expression count++ with the expression count--, the value of count never

exceeds 10 and an infinite loop is created. An infinite loop is one that never ends. The com-

puter doesn’t tap you on the shoulder and say, “Excuse me. You’ve created an infinite loop.”

The program just keeps displaying numbers until you realize it isn’t working as you expected.

Now that you have some familiarity with the while statement, see whether you can read

and determine the output of Program 5.2.

 Program 5.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒi;

ƒƒiƒ=ƒ10;
ƒƒwhileƒ(iƒ>=ƒ1)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒiƒ<<ƒ“ƒ“;
ƒƒƒƒi--;ƒƒƒ//ƒsubtractƒ1ƒfromƒi
ƒƒ}

ƒƒreturnƒ0;
}

The assignment statement in Program 5.2 initially sets the int variable i to 10. The

while statement then checks whether the value of i is greater than or equal to 1. While the

expression is true, the value of i is displayed by the cout object, and the value of i is decre-

mented by 1. When i finally reaches 0, the expression is false, and the program exits the while

statement. Therefore, Program 5.2 produces the following display when it runs:

10ƒƒ9ƒƒ8ƒƒ7ƒƒ6ƒƒ5ƒƒ4ƒƒ3ƒƒ2ƒƒ1

To understand the power of the while statement, consider the task of printing a table of

numbers from 1 to 10 with the numbers’ squares and cubes. You can do this with a simple

while statement, as shown in Program 5.3.

F_C7785_05.1c 183F_C7785_05.1c 183 1/18/11 10:47 AM1/18/11 10:47 AM

184 Repetition

 Program 5.3

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum;
ƒƒcoutƒ<<ƒ“NUMBERƒƒƒSQUAREƒƒƒCUBE\n”
ƒƒƒƒƒƒƒ<<ƒ“------ƒƒƒ------ƒƒƒ----\n”;

ƒƒnumƒ=ƒ1;
ƒƒwhileƒ(numƒ<ƒ11)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒsetw(3)ƒ<<ƒnumƒ<<ƒ“ƒƒƒƒƒƒƒƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(3)ƒ<<ƒnumƒ*ƒnumƒ<<ƒ“ƒƒƒƒƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(4)ƒ<<ƒnumƒ*ƒnumƒ*ƒnumƒ<<ƒendl;
ƒƒƒƒnum++;ƒƒƒƒ//ƒincrementƒnum
ƒƒ}

ƒƒreturnƒ0;
}

When Program 5.3 runs, the following display is produced:

NUMBERƒƒƒƒSQUAREƒƒƒƒCUBE
------ƒƒƒƒ------ƒƒƒƒ----
ƒƒ1ƒƒƒƒƒƒƒƒƒƒ1ƒƒƒƒƒƒƒƒƒ1
ƒƒ2ƒƒƒƒƒƒƒƒƒƒ4ƒƒƒƒƒƒƒƒƒ8
ƒƒ3ƒƒƒƒƒƒƒƒƒƒ9ƒƒƒƒƒƒƒƒ27
ƒƒ4ƒƒƒƒƒƒƒƒƒ16ƒƒƒƒƒƒƒƒ64
ƒƒ5ƒƒƒƒƒƒƒƒƒ25ƒƒƒƒƒƒƒ125
ƒƒ6ƒƒƒƒƒƒƒƒƒ36ƒƒƒƒƒƒƒ216
ƒƒ7ƒƒƒƒƒƒƒƒƒ49ƒƒƒƒƒƒƒ343
ƒƒ8ƒƒƒƒƒƒƒƒƒ64ƒƒƒƒƒƒƒ512
ƒƒ9ƒƒƒƒƒƒƒƒƒ81ƒƒƒƒƒƒƒ729
ƒ10ƒƒƒƒƒƒƒƒ100ƒƒƒƒƒƒ1000

Note that the expression used in Program 5.3 is numƒ<ƒ11. For the integer variable num,

this expression is exactly equivalent to the expression numƒ<=ƒ10. The choice of which to use

is entirely up to you.

If you want to use Program 5.3 to produce a table of 1000 numbers, all you do is change

the expression in the while statement from numƒ<ƒ11 to numƒ<ƒ1001. Changing the 11 to

1001 produces a table of 1000 lines—not bad for a simple five-line while statement.

F_C7785_05.1c 184F_C7785_05.1c 184 1/18/11 10:47 AM1/18/11 10:47 AM

185Chapter 5
The while Statement

All the program examples of the while statement use fixed-count loops because the

tested condition is a counter that checks for a fixed number of repetitions. In a variation on the

fixed-count loop, the counter isn’t incremented by 1 each time through the loop but by some

other value. For example, suppose you have the task of producing a Celsius-to-Fahrenheit

temperature conversion table. Fahrenheit temperatures corresponding to Celsius tempera-

tures from 5 to 50 degrees are to be displayed in increments of 5 degrees, which can be done

with this series of statements:

celsiusƒ=ƒ5;ƒƒƒƒƒ//ƒstartingƒCelsiusƒvalue
whileƒ(celsiusƒ<=ƒ50)
{
ƒƒfahrenƒ=ƒ(9.0/5.0)ƒ*ƒcelsiusƒ+ƒ32.0;
ƒƒcoutƒ<<ƒsetw(4)ƒƒ<<ƒcelsius
ƒƒƒƒƒƒƒ<<ƒsetw(13)ƒ<<ƒfahrenƒ<<ƒendl;
ƒƒcelsiusƒ=ƒcelsiusƒ+ƒ5;
}

As before, the while statement consists of everything from the word while through the

compound statement’s closing brace. Before the program enters the while loop, you must

make sure a value is assigned to the counter being evaluated, and there’s a statement to alter

the counter’s value in the loop (in increments of 5) to ensure an exit from the while loop.

Program 5.4 illustrates using similar code in a complete program.

 Program 5.4

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒaƒprogramƒtoƒconvertƒCelsiusƒtoƒFahrenheit
intƒmain()
{

ƒƒconstƒintƒMAXCELSIUSƒ=ƒ50;
ƒƒconstƒintƒSTARTVALƒ=ƒ5;
ƒƒconstƒintƒSTEPSIZEƒ=ƒ5;
ƒƒintƒcelsius;
ƒƒdoubleƒfahren;

ƒƒcoutƒ<<ƒ“DEGREESƒƒƒDEGREES\n”
ƒƒƒƒƒƒƒ<<ƒ“CELSIUSƒƒFAHRENHEIT\n”
ƒƒƒƒƒƒƒ<<ƒ“-------ƒƒ----------\n”;

ƒƒcelsiusƒ=ƒSTARTVAL;

☞

F_C7785_05.1c 185F_C7785_05.1c 185 1/18/11 10:47 AM1/18/11 10:47 AM

186 Repetition

ƒƒ//ƒsetƒoutputƒformatsƒforƒfloating-pointƒnumbersƒonly
ƒƒcoutƒ<<ƒsetiosflags(ios::showpoint)ƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2);

ƒƒwhileƒ(celsiusƒ<=ƒMAXCELSIUS)
ƒƒ{
ƒƒƒfahrenƒ=ƒ(9.0/5.0)ƒ*ƒcelsiusƒ+ƒ32.0;
ƒƒƒcoutƒ<<ƒsetw(4)ƒƒ<<ƒcelsius
ƒƒƒƒƒƒƒƒ<<ƒsetw(13)ƒ<<ƒfahrenƒ<<ƒendl;
ƒƒƒcelsiusƒ=ƒcelsiusƒ+ƒSTEPSIZE;
ƒƒ}ƒ

returnƒ0;
}

This is the display produced when Program 5.4 runs:

DEGREESƒƒƒDEGREES
CELSIUSƒƒFAHRENHEIT
-------ƒƒ----------
ƒƒƒ5ƒƒƒƒƒƒƒƒ41.00
ƒƒ10ƒƒƒƒƒƒƒƒ50.00
ƒƒ15ƒƒƒƒƒƒƒƒ59.00
ƒƒ20ƒƒƒƒƒƒƒƒ68.00
ƒƒ25ƒƒƒƒƒƒƒƒ77.00
ƒƒ30ƒƒƒƒƒƒƒƒ86.00
ƒƒ35ƒƒƒƒƒƒƒƒ95.00
ƒƒ40ƒƒƒƒƒƒƒ104.00
ƒƒ45ƒƒƒƒƒƒƒ113.00
ƒƒ50ƒƒƒƒƒƒƒ122.00

 EXERCISES 5.1

1. (Modify) Rewrite Program 5.1 to print the numbers 2 to 10 in increments of 2. The output

of your program should be the following:

2ƒƒ4ƒƒ6ƒƒ8ƒƒ10

2. (Modify) Rewrite Program 5.4 to produce a table starting at a Celsius value of -10 and ending

with a Celsius value of 60, in increments of 10 degrees.

3. (Desk check) a. For the following program, determine the total number of items displayed

as well as the first and last numbers printed:

#includeƒ<iostream>
usingƒnamespaceƒstd;

☞

F_C7785_05.1c 186F_C7785_05.1c 186 1/18/11 10:47 AM1/18/11 10:47 AM

187Chapter 5
The while Statement

intƒmain()
{
ƒƒintƒnumƒ=ƒ0;
ƒƒwhileƒ(numƒ<=ƒ20)
ƒƒ{
ƒƒƒƒnum++;
ƒƒƒƒcoutƒ<<ƒnumƒ<<ƒ“ƒ“;
ƒƒ}

ƒƒreturnƒ0;
}

b. Enter and run the program from Exercise 3a on a computer to verify your answers to the

exercise.

c. How would the output be affected if the two statements in the compound statement were

reversed (that is, if the cout statement were placed before the num++ statement)?

4. (Program) Write, compile, and run a C++ program that converts gallons to liters. The program

should display gallons from 10 to 20 in 1-gallon increments and the corresponding liter equiv-

alents. Use the relationship that 1 gallon = 3.785 liters.

5. (Program) Write, compile, and run a C++ program that converts feet to meters. The program

should display feet from 3 to 30 in 3-foot increments and the corresponding meter equivalents.

Use the relationship that 3.28 feet = 1 meter.

6. (Program) A machine purchased for $28,000 is depreciated at a rate of $4000 a year for 7 years.

Write, compile, and run a C++ program that computes and displays a depreciation table for

7 years. The table should have this form:

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒEND-OF-YEARƒƒƒƒACCUMULATED
YEARƒƒƒDEPRECIATIONƒƒƒƒƒƒVALUEƒƒƒƒƒƒƒƒDEPRECIATION
----ƒƒƒ------------ƒƒƒƒ-----------ƒƒƒƒ------------
1ƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒƒ24000ƒƒƒƒƒƒƒƒƒƒƒƒ4000
2ƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒƒ20000ƒƒƒƒƒƒƒƒƒƒƒƒ8000
3ƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒƒ16000ƒƒƒƒƒƒƒƒƒƒƒ12000
4ƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒƒ12000ƒƒƒƒƒƒƒƒƒƒƒ16000
5ƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒƒƒ8000ƒƒƒƒƒƒƒƒƒƒƒ20000
6ƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒ24000
7ƒƒƒƒƒƒƒƒ4000ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒƒƒƒ28000

7. (Program) An automobile travels at an average speed of 55 mph for 4 hours. Write, compile,

and run a C++ program that displays the distance, in miles, the car has traveled after 0.5, 1.0,

1.5, and so on hours until the end of the trip.

8. (Program) a. The following is an approximate conversion formula for converting Fahrenheit

to Celsius temperatures:

Celsius = (Fahrenheit - 30) / 2

 Using this formula, and starting with a Fahrenheit temperature of 0 degrees, write a C++ pro-

gram that determines when the approximate equivalent Celsius temperature differs from the

F_C7785_05.1c 187F_C7785_05.1c 187 1/18/11 10:47 AM1/18/11 10:47 AM

188 Repetition

exact equivalent value by more than 4 degrees. (Hint: Use a while loop that terminates when

the difference between approximate and exact Celsius equivalents exceeds 4 degrees.)

b. Using the approximate Celsius conversion formula given in Exercise 8a, write a C++ pro-

gram that produces a table of Fahrenheit temperatures, exact Celsius equivalent tempera-

tures, approximate Celsius equivalent temperatures, and the difference between the exact

and approximate equivalent Celsius values. The table should begin at 0 degrees Fahrenheit,

use 2-degree Fahrenheit increments, and terminate when the difference between exact and

approximate values is more than 4 degrees.

5.2 Interactive while Loops

Combining interactive data entry with the repetition capabilities of the while statement pro-

duces adaptable and powerful programs. To understand the concept, take a look at Program 5.5,

in which a while statement is used to accept and then display four user-entered numbers, one

at a time. Although the program uses a simple idea, it highlights the flow of control concepts

needed to produce more useful programs.

 Program 5.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXNUMSƒ=ƒ4;
ƒƒintƒcount;
ƒƒdoubleƒnum;

ƒƒcoutƒ<<ƒ“\nThisƒprogramƒwillƒaskƒyouƒtoƒenterƒ“
ƒƒƒƒƒƒƒ<<ƒMAXNUMSƒ<<ƒ“ƒnumbers.\n”;
ƒƒcountƒ=ƒ1;

ƒƒwhileƒ(countƒ<=ƒMAXNUMS)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nEnterƒaƒnumber:ƒ“;
ƒƒƒƒcinƒƒ>>ƒnum;
ƒƒƒƒcoutƒ<<ƒ“Theƒnumberƒenteredƒisƒ“ƒ<<ƒnum;
ƒƒƒƒcount++;
ƒƒ}
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

F_C7785_05.1c 188F_C7785_05.1c 188 1/18/11 10:47 AM1/18/11 10:47 AM

189Chapter 5
Interactive while Loops

The following is a sample run of Program 5.5. The bolded numbers were input in response

to the prompts:

Thisƒprogramƒwillƒaskƒyouƒtoƒenterƒ4ƒnumbers.

Enterƒaƒnumber:ƒ26.2
Theƒnumberƒenteredƒisƒ26.2
Enterƒaƒnumber:ƒ5
Theƒnumberƒenteredƒisƒ5
Enterƒaƒnumber:ƒ103.456
Theƒnumberƒenteredƒisƒ103.456
Enterƒaƒnumber:ƒ1267.89
Theƒnumberƒenteredƒisƒ1267.89

Review the program so that you understand clearly how the output was produced. The

first message displayed is caused by execution of the first cout statement. This statement is

outside and before the while statement, so it’s executed once, before any statement in the

while loop.

After the while loop is entered, the statements in the compound statement are executed

while the tested condition is true. The first time through the compound statement, the mes-

sage Enterƒaƒnumber: is displayed. The program then calls cin, which forces the computer

to wait for a number to be entered at the keyboard. After a number is typed and the Enter

key is pressed, the cout object displays the number. The variable count is then incremented

by 1. This process continues until four passes through the loop have been made and the value

of count is 5. Each pass causes the message Enterƒaƒnumber: to be displayed, causes one

call to cin to be made, and causes the message Theƒnumberƒenteredƒis to be displayed.

Figure 5.2 shows this flow of control.

Instead of simply displaying the entered numbers, Program 5.5 can be modified to use the

entered data. For example, you can add the numbers entered and display the total. To do this,

you must be careful about how you add the numbers because the same variable, num, is used

for each number entered. For this reason, the entry of a new number in Program 5.5 auto-

matically causes the previous number stored in num to be lost. Therefore, each number

entered must be added to the total before another number is entered. This is the required

sequence:

Enter a number
Add the number to the total

How do you add a single number to a total? A statement such as totalƒ=ƒtotalƒ+ƒnum;

does the job perfectly. It’s the accumulation statement introduced in Section 3.1. After each

number is entered, the accumulating statement adds the number to the total, as shown in

Figure 5.3. Figure 5.4 illustrates the flow of control for adding the numbers.

F_C7785_05.1c 189F_C7785_05.1c 189 1/18/11 10:47 AM1/18/11 10:47 AM

190 Repetition

add 1 to
count

loop

no

(condition is false)

set count
equal to 1

print a
message

print value
of number

accept a
number

using cin

print the
message
Enter a
number:

is count
less than or

equal to
4?

go back and
retest count

these statements
are executed

each time the loop
is traversed

yes
(condition is true)

end of program

start

stop

Figure 5.2 Flow of control diagram for Program 5.5

F_C7785_05.1c 190F_C7785_05.1c 190 1/18/11 10:47 AM1/18/11 10:47 AM

191Chapter 5
Interactive while Loops

total = total + num

new
total

total

the variable total

new number
goes in here

cin

num

new number

accept a new
number

the variable num

Figure 5.3 Accepting and adding a number to a total

add 1 to
count

add num
to total

accept a
num

is count
< 4?

no

set total
to 0

print total

yes

set count
to 1

stop

start

Figure 5.4 Accumulation flow of control

F_C7785_05.1c 191F_C7785_05.1c 191 1/18/11 10:47 AM1/18/11 10:47 AM

192 Repetition

In reviewing Figure 5.4, observe that a provision has been made for initially setting the total

to 0 before the whileƒloop is entered. If you cleared the total inside the while loop, it would

be set to 0 each time the loop was executed, and any value stored previously would be erased.

Program 5.6 incorporates the necessary modifications to Program 5.5 to total the numbers

entered. As shown, the statement totalƒ=ƒtotalƒ+ƒnum; is placed immediately after the

call to cin. Putting the accumulating statement at this point in the program ensures that the

entered number is “captured” immediately into the total.

 Program 5.6

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXNUMSƒ=ƒ4;
ƒƒintƒcount;
ƒƒdoubleƒnum,ƒtotal;

ƒƒcoutƒ<<ƒ“\nThisƒprogramƒwillƒaskƒyouƒtoƒenterƒ“
ƒƒƒƒƒƒƒ<<ƒMAXNUMSƒ<<ƒ“ƒnumbers.\n”;
ƒƒcountƒ=ƒ1;
ƒƒtotalƒ=ƒ0;

ƒƒwhileƒ(countƒ<=ƒMAXNUMS)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nEnterƒaƒnumber:ƒ“;
ƒƒƒƒcinƒƒ>>ƒnum;
ƒƒƒƒtotalƒ=ƒtotalƒ+ƒnum;
ƒƒƒƒcoutƒ<<ƒ“Theƒtotalƒisƒnowƒ“ƒ<<ƒtotal;
ƒƒƒƒcount++;
ƒƒ}

ƒƒcoutƒƒƒ<<ƒ“\n\nTheƒfinalƒtotalƒisƒ“ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

To make sure you understand, review Program 5.6. The variable total was created to

store the total of the numbers entered. Before entering the while statement, the value of

total is set to 0 to make sure any previous value in the storage location(s) assigned to this

variable is erased. Inside the while loop, the statement totalƒ=ƒtotalƒ+ƒnum; is used to

add the value of the entered number to total. As each value is entered, it’s added to the exist-

ing total to create a new total. Therefore, total becomes a running subtotal of all the values

F_C7785_05.1c 192F_C7785_05.1c 192 1/18/11 10:47 AM1/18/11 10:47 AM

193Chapter 5
Interactive while Loops

entered. Only after all numbers are entered does total contain the final sum of all the num-

bers. After the while loop is finished, a cout statement is used to display this sum.

Using the same data entered in the sample run for Program 5.5, the following sample run

of Program 5.6 was made:

Thisƒprogramƒwillƒaskƒyouƒtoƒenterƒ4ƒnumbers.

Enterƒaƒnumber:ƒ26.2
Theƒtotalƒisƒnowƒ26.2
Enterƒaƒnumber:ƒ5
Theƒtotalƒisƒnowƒ31.2
Enterƒaƒnumber:ƒ103.456
Theƒtotalƒisƒnowƒ134.656
Enterƒaƒnumber:ƒ1267.89
Theƒtotalƒisƒnowƒ1402.546

Theƒfinalƒtotalƒisƒ1402.546

Having used an accumulating assignment statement to add the numbers entered, you can

go further and calculate the average of the numbers. Where do you calculate the average—

inside the while loop or outside it? In the case at hand, calculating an average requires that

both a final sum and the number of items in that sum be available. The average is then com-

puted by dividing the final sum by the number of items. At this stage, you must ask, “At what

point in the program is the correct sum available, and at what point is the number of items

available?”

In reviewing Program 5.6, you can see that the correct sum needed for calculating the

average is available after the while loop is finished. In fact, the whole purpose of the while

loop is to ensure that the numbers are entered and added correctly to produce a correct sum.

After the loop is finished, you also have a count of the number of items used in the sum.

However, because of the way the while loop was constructed, the number in countƒ(5)

when the loop is finished is 1 more than the number of items (4) used to obtain the total.

Knowing this, you simply subtract 1 from count before using it to determine the average. With

this information as background, see whether you can read and understand Program 5.7.

 Program 5.7

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXNUMSƒ=ƒ4;
ƒƒintƒcount;
ƒƒdoubleƒnum,ƒtotal,ƒaverage;

☞

F_C7785_05.1c 193F_C7785_05.1c 193 1/18/11 10:47 AM1/18/11 10:47 AM

194 Repetition

ƒƒcoutƒ<<ƒ“\nThisƒprogramƒwillƒaskƒyouƒtoƒenterƒ“
ƒƒƒƒƒƒƒ<<ƒMAXNUMSƒ<<ƒ“ƒnumbers.\n\n”;
ƒƒcountƒ=ƒ1;
ƒƒtotalƒ=ƒ0;

ƒƒwhileƒ(countƒ<=ƒMAXNUMS)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Enterƒaƒnumber:ƒ“;
ƒƒƒƒcinƒƒ>>ƒnum;
ƒƒƒƒtotalƒ=ƒtotalƒ+ƒnum;
ƒƒƒƒcount++;
ƒƒ}

ƒƒcount--;
ƒƒaverageƒ=ƒtotalƒ/ƒcount;
ƒƒcoutƒ<<ƒ“\nTheƒaverageƒofƒtheƒnumbersƒisƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒaverageƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 5.7 is almost identical to Program 5.6, except for the calculation of the average.

The constant display of the total inside and after the while loop has also been removed. The

loop in Program 5.7 is used to enter and add four numbers. Immediately after the loop is

exited, the average is computed and displayed. A sample run of Program 5.7 follows:

Thisƒprogramƒwillƒaskƒyouƒtoƒenterƒ4ƒnumbers.

Enterƒaƒnumber:ƒ26.2
Enterƒaƒnumber:ƒ5
Enterƒaƒnumber:ƒ103.456
Enterƒaƒnumber:ƒ1267.89

Theƒaverageƒofƒtheƒnumbersƒisƒ350.637

Sentinels
All the loops created so far have been examples of fixed-count loops, in which a counter is used

to control the number of loop iterations. By means of a while statement, variable-condition

loops can also be constructed. For example, when entering grades, you might not want to count

the number of grades that will be entered. Instead, you prefer to enter grades continuously,

and at the end, type a special data value to signal the end of data input.

F_C7785_05.1c 194F_C7785_05.1c 194 1/18/11 10:47 AM1/18/11 10:47 AM

195Chapter 5
Interactive while Loops

In programming, data values used to signal the start or end of a data series are called

sentinels. Sentinel values must, of course, be selected so as not to conflict with legitimate data

values. For example, if you’re constructing a program to process a student’s grades, and

assuming no extra credit is given that could produce a grade higher than 100, you could use

any grade higher than 100 as a sentinel value. Program 5.8 illustrates this concept: Data is

requested and accepted continuously until a number larger than 100 is entered. Entering a

number higher than 100 alerts the program to exit the while loop and display the sum of the

numbers entered.

 Program 5.8

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒHIGHGRADEƒ=ƒ100;
ƒƒdoubleƒgrade,ƒtotal;

ƒƒgradeƒ=ƒ0;
ƒƒtotalƒ=ƒ0;
ƒƒcoutƒ<<ƒ“\nToƒstopƒenteringƒgrades,ƒtypeƒinƒanyƒnumber”;
ƒƒcoutƒ<<ƒ“\nƒgreaterƒthanƒ100.\n\n”;
ƒƒcoutƒ<<ƒ“Enterƒaƒgrade:ƒ“;
ƒƒcinƒƒ>>ƒgrade;

ƒƒwhileƒ(gradeƒ<=ƒHIGHGRADE)
ƒƒ{
ƒƒƒƒtotalƒ=ƒtotalƒ+ƒgrade;
ƒƒƒƒcoutƒ<<ƒ“Enterƒaƒgrade:ƒ“;
ƒƒƒƒcinƒƒ>>ƒgrade;
ƒƒ}

ƒƒcoutƒ<<ƒ“\nTheƒtotalƒofƒtheƒgradesƒisƒ“ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

F_C7785_05.1c 195F_C7785_05.1c 195 1/18/11 10:47 AM1/18/11 10:47 AM

196 Repetition

The following lines show a sample run of Program 5.8. As long as grades less than or equal

to 100 are entered, the program continues to request and accept additional data. When a num-

ber less than or equal to 100 is entered, the program adds this number to the total. When a

number greater than 100 is entered, the loop is exited, and the sum of the grades that were

entered is displayed.

Toƒstopƒenteringƒgrades,ƒtypeƒinƒanyƒnumber
ƒgreaterƒthanƒ100.

Enterƒaƒgrade:ƒ95
Enterƒaƒgrade:ƒ100
Enterƒaƒgrade:ƒ82
Enterƒaƒgrade:ƒ101

Theƒtotalƒofƒtheƒgradesƒisƒ277

Point of Information
Loop Types

A loop that evaluates a condition before any statements in the loop are executed is
referred to as a pretest loop or an entrance-controlled loop. In C++, these loops are
created by using while or for statements.

A loop that evaluates a condition at the end of the repeating section of code is
referred to as a posttest loop or an exit-controlled loop. These loops always execute
the loop statements at least once before the condition is tested. The do-while state-
ment is used to construct this type of loop.

In addition to where the condition is tested (pretest or posttest), repeating sections of
code are classified by the type of condition being tested. In a fixed-count loop, the
condition is used to keep track of how many repetitions have occurred. In this type of
loop, a fixed number of calculations are performed or a fixed number of lines are print-
ed, at which point the repeating section of code is exited. All of C++’s repetition state-
ments can be used to create fixed-count loops.

In a variable-condition loop, the tested condition doesn’t depend on a count being
reached, but on a variable that can change interactively with each pass through the
loop. When a specified value is encountered, regardless of how many iterations have
occurred, repetitions stop. All of C++’s repetition statements can be used to create
variable-condition loops.

F_C7785_05.1c 196F_C7785_05.1c 196 1/18/11 10:47 AM1/18/11 10:47 AM

197Chapter 5
Interactive while Loops

break and continue Statements
Two useful statements in connection with repetition statements are the break and continue

statements. You encountered the break statement in Section 4.4 when learning about the

switch statement. This is the format of the break statement:

break;

A break statement, as its name implies, forces an immediate break, or exit, from the

switch, while, for, and do-while statements (discussed in the next sections). For example,

execution of the following while loop is terminated immediately if a number greater than 76

is entered:

while(countƒ<=ƒ10)
{
ƒƒcoutƒ<<ƒ“Enterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒnum;
ƒƒifƒ(numƒ>ƒ76)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Youƒlose!\n”;
ƒƒƒƒbreak;ƒƒƒƒƒƒ//ƒbreakƒoutƒofƒtheƒloop
ƒƒ}
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“Wayƒtoƒgo!\n”;
ƒƒcount++;
}
//ƒbreakƒjumpsƒtoƒhere

The break statement violates structured programming principles because it provides a

second, nonstandard exit from a loop. Nevertheless, the break statement is extremely useful

for breaking out of loops when an unusual condition is detected. It’s also used to exit from a

switch statement, but it’s because the matching caseƒvalue has been detected and processed.

The continue statement is similar to the break statement but applies only to loops cre-

ated with while, do-while, and for statements. This is the general format of a continue

statement:

continue;

When continue is encountered in a loop, the next iteration of the loop begins immedi-

ately. For while loops, this means execution is transferred automatically to the top of the loop,

and reevaluation of the tested expression is initiated. Although the continue statement has

no direct effect on a switch statement, it can be included in a switch statement, which is also

contained in a loop. The effect of continue is the same: The next loop iteration begins.

F_C7785_05.1c 197F_C7785_05.1c 197 1/18/11 10:47 AM1/18/11 10:47 AM

198 Repetition

As a general rule, the continue statement is less useful than the break statement, but it’s

convenient for skipping over data that shouldn’t be processed while remaining in a loop. For

example, invalid grades are simply ignored in the following section of code, and only valid

grades are added to the total:1

whileƒ(countƒ<ƒ30)
{
coutƒ<<ƒ“Enterƒaƒgrade:ƒ“;
ƒƒcinƒƒ>>ƒgrade;
ƒƒif(gradeƒ<ƒ0ƒ||ƒgradeƒ>ƒ100)
ƒƒƒƒcontinue;
ƒƒtotalƒ=ƒtotalƒ+ƒgrade;
ƒƒcount++;
}

The Null Statement
All statements must be terminated by a semicolon. A semicolon with nothing preceding it is

also a valid statement, called the null statement, as shown:

;

It’s a do-nothing statement used where a statement is required syntactically, but no action

is called for. Typically, null statements are used with while or for statements. Program 5.9c in

Section 5.3 shows an example of a for statement using a null statement.

 EXERCISES 5.2

1. (Modify) Rewrite Program 5.6 to compute the total of eight numbers.

2. (Modify) Rewrite Program 5.6 to display this prompt:

Pleaseƒtypeƒinƒtheƒtotalƒnumberƒofƒdataƒvaluesƒtoƒbeƒadded:

 In response to this prompt, the program should accept a user-entered number, and then use it

to control the number of times the while loop is executed. So if the user enters 5 in response

to the prompt, the program should request the input of five numbers and display the total after

five numbers have been entered.

3. (Modify) Rewrite Program 5.7 to compute the average of 10 numbers.

1Although this section of code illustrates the flow of control the continue statement provides, it’s not the preferred way of achieving

the correct result. Instead of using an if statement and a continue statement to exclude invalid data, a better method is including

valid data with these statements:

ifƒ(gradeƒ>=ƒ0ƒ&&ƒgradeƒ<=ƒ100)
{
ƒƒtotalƒ=ƒtotalƒ+ƒgrade;
ƒƒcount++;
}

F_C7785_05.1c 198F_C7785_05.1c 198 1/18/11 10:47 AM1/18/11 10:47 AM

199Chapter 5
Interactive while Loops

4. (Modify) Rewrite Program 5.7 to display the following prompt:

Pleaseƒtypeƒinƒtheƒtotalƒnumberƒofƒdataƒvaluesƒtoƒbeƒaveraged:

 In response to this prompt, the program should accept a user-entered number, and then use it

to control the number of times the while loop is executed. So if the user enters 6 in response

to the prompt, the program should request an input of six numbers and display the average of

the next six numbers entered.

5. (Debug) By mistake, a programmer puts the statement averageƒ=ƒtotalƒ/ƒcount; in the

while loop immediately after the statement totalƒ=ƒtotalƒ+ƒnum;ƒin Program 5.7. As a

result, the while loop becomes the following:

whileƒ(countƒ<=ƒMAXNUMS)
{
ƒƒcoutƒ<<ƒ“Enterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒnum;
ƒƒtotalƒ=ƒtotalƒ+ƒnum;
ƒƒaverageƒ=ƒtotalƒ/ƒcount;
ƒƒcount++;
}

a. Will the program yield the correct result with this while loop?

b. From a programming perspective, which while loop is better to use, and why?

6. (Program) a. Write a C++ program to convert meters to feet. The program should request the

starting meter value, the number of conversions to be made, and the increment between met-

ric values. The display should have appropriate headings and list the meters and correspond-

ing feet value. If the number of iterations is greater than 10, have your program substitute a

default increment of 10. Use the relationship that 1 meter = 3.281 feet.

b. Run the program written in Exercise 6a on a computer. Verify that your program begins at

the correct starting meter value and contains the exact number of conversions specified in

your input data.

7. (Modify) a. Modify the program written in Exercise 6a to request the starting meter value,

the ending meter value, and the increment. Instead of the condition checking for a fixed

count, it checks for the ending meter value. If the number of iterations is greater than 20, have

your program substitute a default increment of (ending value - starting value) / 19.

b. Run the program written in Exercise 7a on a computer. Verify that your output starts at the

correct beginning value and ends at the correct ending value.

8. (Program) a. Write a C++ program to convert Celsius degrees to Fahrenheit. The program

should request the starting Celsius value, the number of conversions to be made, and the

increment between Celsius values. The display should have appropriate headings and list the

Celsius value and the corresponding Fahrenheit value. Use the relationship that Fahrenheit =
(9.0 / 5.0) * Celsius + 32.0.

b. Compile and run the program written in Exercise 8a on a computer. Verify that your pro-

gram begins at the correct starting Celsius value and contains the exact number of conver-

sions specified in your input data.

F_C7785_05.1c 199F_C7785_05.1c 199 1/18/11 10:47 AM1/18/11 10:47 AM

200 Repetition

9. (Program) An arithmetic series is defined by the following:

 a + (a + d) + (a + 2d) + (a + 3d) + ˙˙˙ + [(a + (n - 1)d)]

a is the first term.

d is the “common difference.”

n is the number of terms to be added.

 Using this information, write a C++ program that uses a while loop to display each term and

determine the sum of the arithmetic series having a = 1, d = 3, and n = 100. Make sure your

program displays the value it has calculated.

10. (Program) A geometric series is defined by the following:

 a + ar + ar 2 + ar 3 + ˙˙˙ + ar n - 1

a is the first term.

r is the “common ratio.”

n is the number of terms in the series.

 Using this information, write a C++ program that uses a while loop to display each term and

determine the sum of a geometric series having a = 1, r = .5, and n = 10. Make sure your pro-

gram displays the value it has calculated.

11. (Program) a. The data in the following chart was collected on a recent automobile trip:

Mileage Gallons
22,495 Full tank
22,841 12.2
23,185 11.3
23,400 10.5
23,772 11.0
24,055 12.2
24,434 14.7
24,804 14.3
25,276 15.2

Write, compile, and run a C++ program that accepts a mileage and gallons value and calculates

the miles per gallon (mpg) for that segment of the trip. The mpg is calculated as the difference

in mileage between fill-ups divided by the number of gallons of gasoline used in the fill-up.

b. Modify the program written for Exercise 11a to also compute and display the cumulative

mpg after each fill-up. The cumulative mpg is calculated as the difference between mileage

at each fill-up and mileage at the start of the trip divided by the sum of gallons used to that

point in the trip.

F_C7785_05.1c 200F_C7785_05.1c 200 1/18/11 10:47 AM1/18/11 10:47 AM

201Chapter 5
The for Statement

12. (Program) a. A bookstore summarizes its monthly transactions by keeping the following

information for each book in stock:

 Book identification number

 Inventory balance at the beginning of the month

 Number of copies received during the month

 Number of copies sold during the month

 Write a C++ program that accepts this data for each book and then displays the book identifi-

cation number and an updated book inventory balance, using this relationship:

New balance = Inventory balance at the beginning of the month

 + Number of copies received during the month

 - Number of copies sold during the month

 Your program should use a while statement with a fixed-count condition so that information

on only three books is requested.

b. Compile and run the program written in Exercise 12a. Review the display your program

produces and verify that the output is correct.

13. (Modify) Modify the program you wrote for Exercise 12 to keep requesting and displaying

results until a sentinel value of 999 is entered. Compile and run your program. Review the

display your program produces and verify that the output is correct.

5.3 The for Statement

A for statement performs the same functions as the while statement but uses a different

form. In many situations, especially those using a fixed-count condition, the for statement’s

format is easier to use than the while statement equivalent. This is the general form of the

forƒstatement:

forƒ(initializing list;ƒexpression;ƒaltering list)
ƒƒstatement;

Although the for statement looks a little complicated, it’s really quite simple if you con-

sider each part separately. Inside the parentheses of the for statement are three items, sepa-

rated by semicolons. Each item is optional and can be described separately, but the semicolons

must always be present, even if you don’t use the items. As you’ll see, the items in parentheses

correspond to the initialization, expression evaluation, and expression altering values you’ve

already used with the while statement.

Typically, variables need to be initialized or other evaluations need to be made before

entering a repetition loop, so the for statement allows grouping all initializing statements as

the first set of items inside for’s parentheses. The items in this initializing list are

executed only once, before the expression is evaluated for the first time.

The middle item in parentheses, expression, is any valid C++ expression, and there’s no

difference in the way for and while statements use this expression. In both statements, as

long as the expression has a non-zero (true) value, the statement following the parentheses is

F_C7785_05.1c 201F_C7785_05.1c 201 1/18/11 10:47 AM1/18/11 10:47 AM

202 Repetition

executed. So before the first check of the expression, initial values for the tested expression’s

variables must be assigned, and before the expression is reevaluated, there must be one or

more statements that alter these values.

The for statement also provides a single place for all expression-altering statements: the

altering list, the last item inside for’s parentheses. All items in this list are executed by

the for statement at the end of the loop, just before the expression is reevaluated.

Figure 5.5 illustrates the internal workings of a for loop. As shown, when the for loop is

completed, control is transferred to the first executable statement following the loop.

execute the
altering list

execute the
statement
after the

parentheses

evaluate
the

tested
expression

loop

(false condition)

expression’s value
is non-zero
(true condition)

initializing
statements

enter the
for statement

expression’s value
is zero

exit the
for statement

go back and
retest the condition

Figure 5.5 The for statement’s flow of control

F_C7785_05.1c 202F_C7785_05.1c 202 1/18/11 10:47 AM1/18/11 10:47 AM

203Chapter 5
The for Statement

To avoid having to show every step, you can use a simplified set of flowchart symbols to

describe for loops. If you use the following flowchart symbol to represent a for statement,

for
statement

you can then illustrate a complete for loop, as shown in Figure 5.6.

for
(expression)

{
 statement 1
 through
 statement n
}

enter the for
statement

expression’s value is non-zero
(true condition)

(false condition)

expression’s value
is zero exit the for

statement

Figure 5.6 A simplified for loop flowchart

The following examples show the correspondence between while and for statements.

First, take a look at this while statement:

countƒ=ƒ1;
whileƒ(countƒ<=ƒ10)
{
ƒƒcoutƒ<<ƒcountƒƒ<<ƒ"ƒ";
ƒƒcount++;
}

Here’s the corresponding for statement:

forƒ(countƒ=ƒ1;ƒcountƒ<=ƒ10;ƒcount++)
ƒƒcoutƒ<<ƒcountƒƒ<<ƒ"ƒ";

F_C7785_05.1c 203F_C7785_05.1c 203 1/18/11 10:47 AM1/18/11 10:47 AM

204 Repetition

As this example shows, the only difference between the for and while statements is the

placement of equivalent expressions. Grouping the initialization, expression test, and altering

list in the for statement is convenient, especially when you’re creating fixed-count loops.

Now look at this for statement:

forƒ(countƒ=ƒ2;ƒcountƒ<=ƒ20;ƒcountƒ=ƒcountƒ+ƒ2)
ƒƒcoutƒ<<ƒcountƒ<<ƒ"ƒ";

In this statement, all the loop control information is contained in the parentheses. The

loop starts with a count of 2, stops when the count exceeds 20, and increments the loop coun-

ter in steps of 2. Program 5.9 shows this for statement in an actual program. A blank space is

placed between output values for readability.

Point of Information
Where to Place the Opening Braces

When the for loop contains a compound statement, professional C++ programmers use
two styles of writing for loops. The style used in this book takes the following form:

forƒ(expression)
{
ƒƒcompound statement in here
}

An equally acceptable style places the compound statement’s opening brace on the
first line. Using this style, a for loop looks like the following:

forƒ(expression)ƒ{
ƒƒcompound statement in here
}

The advantage of the first style is that the braces line up under one another, making
it easier to locate brace pairs. The advantage of the second style is that it makes the
code more compact and saves a line, so more code can be viewed in the same display
area. Both styles are used but are almost never intermixed. Select whichever style
appeals to you and be consistent in its use. As always, the indentation you use in the
compound statement (two or four spaces or a tab) should also be consistent throughout
all your programs. The combination of styles you select becomes a “signature” for your
programming work.

F_C7785_05.1c 204F_C7785_05.1c 204 1/18/11 10:47 AM1/18/11 10:47 AM

205Chapter 5
The for Statement

 Program 5.9

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒcount;
ƒƒforƒ(countƒ=ƒ2;ƒcountƒ<=ƒ20;ƒcountƒ=ƒcountƒ+ƒ2)
ƒƒƒƒcoutƒ<<ƒcountƒ<<ƒ“ƒ“;

ƒƒreturnƒ0;
}

This is the output of Program 5.9:

2ƒ4ƒ6ƒ8ƒ10ƒ12ƒ14ƒ16ƒ18ƒ20

The for statement doesn’t require having any of the items inside for’s parentheses or

using them for initializing or altering the values in the expression statements; however, the two

semicolons must be included in these parentheses. For example, the construction

forƒ(ƒ;ƒcountƒ<=ƒ20ƒ;) is valid.

If the initializing list is missing, the initialization step is omitted when the for statement

is executed. Therefore, the programmer must provide the required initializations before the

for statement is encountered. Similarly, if the altering list is missing, any expressions needed

to alter the evaluation of the tested expression must be included in the statement part of the

loop. The for statement only ensures that all expressions in the initializing list are executed

once, before evaluation of the tested expression, and all expressions in the altering list are

executed at the end of the loop, before the tested expression is rechecked. Program 5.9 can be

rewritten in any of the three ways shown in Programs 5.9a, 5.9b, and 5.9c.

 Program 5.9a

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒcount;

ƒƒcountƒ=ƒ2;ƒƒƒƒ//ƒinitializedƒoutsideƒtheƒforƒstatement
ƒƒforƒ(ƒ;ƒcountƒ<=ƒ20;ƒcountƒ=ƒcountƒ+ƒ2)
ƒƒƒƒcoutƒ<<ƒcountƒ<<ƒ“ƒ“;

ƒƒreturnƒ0;
}

F_C7785_05.1c 205F_C7785_05.1c 205 1/18/11 10:47 AM1/18/11 10:47 AM

206 Repetition

 Program 5.9b

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒcount;

ƒƒcountƒ=ƒ2;ƒƒƒ//ƒinitializedƒoutsideƒtheƒforƒstatement
ƒƒfor(ƒ;ƒcountƒ<=ƒ20;ƒ)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒcountƒ<<ƒ“ƒ“;
ƒƒƒƒcountƒ=ƒcountƒ+ƒ2;ƒƒƒƒ//ƒalterationƒstatement
ƒƒ}

ƒƒreturnƒ0;
}

 Program 5.9c

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()ƒƒƒ//ƒallƒexpressionsƒinsideƒfor'sƒparentheses
{
ƒƒintƒcount;

ƒƒforƒ(countƒ=ƒ2;ƒcountƒ<=ƒ20;ƒcoutƒ<<ƒcountƒ<<ƒ“ƒ“,ƒcountƒ=ƒcountƒ+ƒ2);

ƒƒreturnƒ0;
}

In Program 5.9a, count is initialized outside the for statement, and the first list inside the

parentheses is left blank. In Program 5.9b, both the initializing list and the altering list are

outside the parentheses. Program 5.9b also uses a compound statement in the for loop, with

the expression-altering statement included in the compound statement. Finally, Program 5.9c

has included all items inside the parentheses, so there’s no need for any useful statement fol-

lowing the parentheses. In this example, the null statement (;) satisfies the syntax require-

ment of one statement to follow for’s parentheses.

Also, observe in Program 5.9c that the altering list (the last set of items in parentheses)

consists of two items, and a comma has been used to separate these items. Using commas to

separate items in both the initializing and altering lists is required if either of these lists con-

tains more than one item.

F_C7785_05.1c 206F_C7785_05.1c 206 1/18/11 10:47 AM1/18/11 10:47 AM

207Chapter 5
The for Statement

Last, note that these three programs are all inferior to Program 5.9, and although you

might encounter them in your programming career, you shouldn’t use them. The for state-

ment in Program 5.9 is much clearer because all items pertaining to the tested expression are

grouped together inside the parentheses. Keeping the for loop structure “clean,” as in

Program 5.9, is important and a good programming practice.

Although the initializing and altering lists can be omitted from a for statement, omitting

the tested expression results in an infinite loop. For example, this statement creates an infi-

nite loop:

forƒ(countƒ=ƒ2;ƒ;ƒcount++)
ƒƒcoutƒ<<ƒcountƒ<<ƒ"ƒ";

As with the while statement, both break and continue statements can be used in a for

loop. A break forces an immediate exit from the for loop, as it does in the while loop. A

continue, however, forces control to be passed to the altering list in a for statement, after

which the tested expression is reevaluated. This action differs from continue’s action in a

while statement, where control is passed directly to reevaluation of the tested expression.

Finally, many programmers use the initializing list of a for statement to both declare and

initialize the counter variable and any other variables used primarily in the for loop. For

example, in this for statement, the variable count is both declared and initialized inside the

for statement:

for(intƒcountƒ=ƒ0;ƒcountƒ<ƒ10;ƒcount++)
ƒƒcoutƒ<<ƒcountƒƒ<<ƒ"ƒ";

As always, having been declared, count can now be used anywhere after its declaration in

the body of the function containing the declaration.

To understand the enormous power of for loops, consider the task of printing a table of

numbers from 1 to 10, including their squares and cubes, by using a for statement. This table

was produced previously by using a while loop in Program 5.3. You might want to review

Program 5.3 and compare it with Program 5.10 to get a better sense of the equivalence

between for and while statements.

 Program 5.10

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXNUMSƒ=ƒ10;
ƒƒintƒnum;
ƒƒcoutƒ<<ƒendl;ƒƒƒƒƒƒ//ƒprintƒaƒblankƒline
ƒƒcoutƒ<<ƒ“NUMBERƒƒƒSQUAREƒƒƒCUBE\n”
ƒƒƒƒƒƒƒ<<ƒ“------ƒƒƒ------ƒƒƒ----\n”;

☞

F_C7785_05.1c 207F_C7785_05.1c 207 1/18/11 10:47 AM1/18/11 10:47 AM

208 Repetition

ƒƒforƒ(numƒ=ƒ1;ƒnumƒ<=ƒMAXNUMS;ƒnum++)
ƒƒƒƒcoutƒ<<ƒsetw(3)ƒ<<ƒnumƒ<<ƒ“ƒƒƒƒƒƒƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(3)ƒ<<ƒnumƒ*ƒnumƒ<<ƒ“ƒƒƒƒƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(4)ƒ<<ƒnumƒ*ƒnumƒ*ƒnumƒ<<ƒendl;

ƒƒreturnƒ0;
}

When Program 5.10 is run, this is the display produced:

NUMBERƒƒƒƒƒSQUAREƒƒƒƒCUBE
------ƒƒƒƒƒ------ƒƒƒƒ----
ƒƒ1ƒƒƒƒƒƒƒƒƒƒƒ1ƒƒƒƒƒƒƒƒƒ1
ƒƒ2ƒƒƒƒƒƒƒƒƒƒƒ4ƒƒƒƒƒƒƒƒƒ8
ƒƒ3ƒƒƒƒƒƒƒƒƒƒƒ9ƒƒƒƒƒƒƒƒ27
ƒƒ4ƒƒƒƒƒƒƒƒƒƒ16ƒƒƒƒƒƒƒƒ64
ƒƒ5ƒƒƒƒƒƒƒƒƒƒ25ƒƒƒƒƒƒƒ125
ƒƒ6ƒƒƒƒƒƒƒƒƒƒ36ƒƒƒƒƒƒƒ216
ƒƒ7ƒƒƒƒƒƒƒƒƒƒ49ƒƒƒƒƒƒƒ343
ƒƒ8ƒƒƒƒƒƒƒƒƒƒ64ƒƒƒƒƒƒƒ512
ƒƒ9ƒƒƒƒƒƒƒƒƒƒ81ƒƒƒƒƒƒƒ729
ƒ10ƒƒƒƒƒƒƒƒƒ100ƒƒƒƒƒƒ1000

Simply changing the number 10 in the for statement of Program 5.10 to 1000 creates a

loop that’s executed 1000 times and produces a table of numbers from 1 to 1000. As with the

while statement, this small change produces an immense increase in the program’s processing

and output. Notice also that the expression num++ was used in the altering list in place of the

equivalent numƒ=ƒnumƒ+ƒ1.

Interactive for Loops
Using the cin object inside a for loop creates an interactive for loop, much like using this

object in a while loop. For example, in Program 5.11, a cin object is used to input a set of

numbers. As each number is input, it’s added to a total. When the for loop is exited, the aver-

age is calculated and displayed.

 Program 5.11

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒThisƒprogramƒcalculatesƒtheƒaverage
//ƒofƒMAXCOUNTƒuser-enteredƒnumbers
intƒmain()
{

☞

F_C7785_05.1c 208F_C7785_05.1c 208 1/18/11 10:47 AM1/18/11 10:47 AM

209Chapter 5
The for Statement

ƒƒconstƒintƒMAXCOUNTƒ=ƒ5;
ƒƒintƒcount;
ƒƒdoubleƒnum,ƒtotal,ƒaverage;

ƒƒtotalƒ=ƒ0.0;

ƒƒforƒ(countƒ=ƒ0;ƒcountƒ<ƒMAXCOUNT;ƒcount++)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Enterƒaƒnumber:ƒ“;
ƒƒƒƒcinƒƒ>>ƒnum;
ƒƒƒƒtotalƒ=ƒtotalƒ+ƒnum;
ƒƒ}

ƒƒaverageƒ=ƒtotalƒ/ƒcount;
ƒƒcoutƒ<<ƒ“Theƒaverageƒofƒtheƒdataƒenteredƒisƒ“ƒ<<ƒaverage
ƒƒƒƒƒƒƒ<<ƒendl;

ƒƒreturnƒ0;
}

The for statement in Program 5.11 creates a loop that’s executed five times. The user is

prompted to enter a number each time through the loop. After each number is entered, it’s

added to the total immediately. Although total was initialized to 0 before the for statement,

this initialization could have been included with the initialization of count, as follows:

forƒ(totalƒ=ƒ0.0,ƒcountƒ=ƒ0;ƒcountƒ<ƒMAXCOUNT;ƒcount++)

Additionally, the declarations for both total and count could have been included with

their initializations inside the initializing list, as follows:

forƒ(doubleƒtotalƒ=ƒ0.0,ƒintƒcountƒ=ƒ0;ƒcountƒ<ƒMAXCOUNT;ƒcount++)

Any of these for constructs is considered a good programming practice. Which one you

choose is simply a matter of your own programming style.

Nested Loops
In many situations, using a loop within another loop, called a nested loop, is convenient. Here’s

a simple example of a nested loop:

for(iƒ=ƒ1;ƒiƒ<=ƒ5;ƒi++)ƒ//ƒstartƒofƒouterƒloopƒƒ<-----+
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒƒƒƒƒƒƒƒƒƒƒƒƒ|
ƒƒcoutƒ<<ƒ“\niƒisƒnowƒ“ƒ<<ƒiƒ<<ƒendl;ƒƒ//ƒƒƒƒƒƒƒƒƒƒƒƒƒ|
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒƒƒƒƒƒƒƒƒƒƒƒƒ|
ƒƒfor(jƒ=ƒ1;ƒjƒ<=ƒ4;ƒj++)ƒƒ//ƒstartƒofƒinnerƒloopƒƒƒƒƒ|
ƒƒƒƒcoutƒ<<ƒ“ƒjƒ=ƒ“ƒ<<ƒj;ƒƒ//ƒendƒofƒinnerƒloopƒƒƒƒƒƒƒ|
}ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒendƒofƒouterƒloopƒƒƒƒƒ<-----+

F_C7785_05.1c 209F_C7785_05.1c 209 1/18/11 10:47 AM1/18/11 10:47 AM

210 Repetition

The first loop, controlled by the value of i, is called the outer loop. The second loop, con-

trolled by the value of j, is called the inner loop. Notice that all statements in the inner loop

are contained in the boundaries of the outer loop, and a different variable is used to control

each loop. For each trip through the outer loop, the inner loop runs through its entire sequence.

Therefore, each time the i counter increases by 1, the inner for loop executes completely and

goes through four values (j takes on the values 1 to 4), as shown in Figure 5.7. Program 5.12

includes this type of loop in a working program.

inner
loop

inner
loop

inner
loop

i=3

i=2

i=1

j=1j=2

j=3

j=4

j=4

j=3

j=2 j=1
j=4

j=3

j=2

j=1

Figure 5.7 For each value of i, j loops four times

 Program 5.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒi,j;

☞

F_C7785_05.1c 210F_C7785_05.1c 210 1/18/11 10:47 AM1/18/11 10:47 AM

211Chapter 5
The for Statement

ƒƒfor(iƒ=ƒ1;ƒiƒ<=ƒ5;ƒi++)ƒƒƒƒ//ƒstartƒofƒouterƒloopƒ<----+
ƒƒ{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ|
ƒƒƒƒcoutƒ<<ƒ“\niƒisƒnowƒ“ƒ<<ƒiƒ<<ƒendl;ƒƒ//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ|
ƒƒƒ//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ|
ƒƒƒƒfor(jƒ=ƒ1;ƒƒjƒ<=ƒ4;ƒj++)//ƒstartƒofƒinnerƒloopƒƒƒƒƒƒƒ|
ƒƒƒƒƒƒcoutƒ<<ƒ“ƒjƒ=ƒ“ƒ<<ƒj;ƒ//ƒendƒofƒinnerƒloopƒƒƒƒƒƒƒƒƒ|
ƒƒ}ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒendƒofƒouterƒloopƒƒƒ<----+

ƒƒreturnƒ0;
}

This is the output of a sample run of Program 5.12:

iƒisƒnowƒ1
ƒƒjƒ=ƒ1ƒƒjƒ=ƒ2ƒƒjƒ=ƒ3ƒƒjƒ=ƒ4
iƒisƒnowƒ2
ƒƒjƒ=ƒ1ƒƒjƒ=ƒ2ƒƒjƒ=ƒ3ƒƒjƒ=ƒ4
iƒisƒnowƒ3
ƒƒjƒ=ƒ1ƒƒjƒ=ƒ2ƒƒjƒ=ƒ3ƒƒjƒ=ƒ4
iƒisƒnowƒ4
ƒƒjƒ=ƒ1ƒƒjƒ=ƒ2ƒƒjƒ=ƒ3ƒƒjƒ=ƒ4
iƒisƒnowƒ5
ƒƒjƒ=ƒ1ƒƒjƒ=ƒ2ƒƒjƒ=ƒ3ƒƒjƒ=ƒ4

To understand the usefulness of a nested loop, take a look at using one to compute the

average grade for each student in a class of 20 students. Each student has taken four exams

during the semester. The final grade is calculated as the average of these exam grades. An

outer loop consisting of 20 passes is used to compute the average grade for each student. The

inner loop consists of four passes, and one exam grade is entered in each inner loop pass. As

each grade is entered, it’s added to the total for the student, and at the end of the loop, the

average is calculated and displayed. Because both the outer and inner loops are fixed-count

loops of 20 and 4, respectively, for statements are used to create these loops. Program 5.13

uses a nested loop to make the required calculations.

 Program 5.13

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒconstƒintƒNUMGRADESƒ=ƒ4;
ƒƒconstƒintƒNUMSTUDENTSƒ=ƒ20;
ƒƒintƒi,j;
ƒƒdoubleƒgrade,ƒtotal,ƒaverage; ☞

F_C7785_05.1c 211F_C7785_05.1c 211 1/18/11 10:47 AM1/18/11 10:47 AM

212 Repetition

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<=ƒNUMSTUDENTS;ƒi++)ƒƒ//ƒstartƒofƒouterƒloop
ƒƒ{
ƒƒƒƒtotalƒ=ƒ0;ƒƒƒƒƒƒƒƒƒƒƒ//ƒclearƒtheƒtotalƒforƒthisƒstudent
ƒƒƒƒforƒ(jƒ=ƒ1;ƒjƒ<=ƒNUMGRADES;ƒj++)ƒƒ//ƒstartƒofƒinnerƒloop
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒ“Enterƒanƒexaminationƒgradeƒforƒstudent:ƒ“ƒ
ƒƒƒƒƒƒƒƒƒƒƒ<<ƒjƒ<<ƒ“:”;
ƒƒƒƒƒƒcinƒƒ>>ƒgrade;
ƒƒƒƒƒƒtotalƒ=ƒtotalƒ+ƒgrade;ƒƒƒƒƒƒ//ƒaddƒtheƒgradeƒtoƒtheƒtotal
ƒƒƒƒ}ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒendƒofƒtheƒinnerƒforƒloop
ƒƒƒƒaverageƒ=ƒtotalƒ/ƒNUMGRADES;ƒƒ//ƒcalculateƒtheƒaverage
ƒƒƒƒcoutƒ<<ƒ“\nTheƒaverageƒforƒstudentƒ“ƒ<<ƒi
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒisƒ“ƒ<<ƒaverageƒ<<ƒ“\n\n”;
ƒƒ}ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒendƒofƒtheƒouterƒforƒloop

ƒƒreturnƒ0;
}

In reviewing Program 5.13, pay particular attention to the initialization of total in the

outer loop, before the inner loop is entered: total is initialized 20 times, once for each stu-

dent. Also, notice that the average is calculated and displayed immediately after the inner loop

is finished. Because the statements that compute and print the average are also in the outer

loop, 20 averages are calculated and displayed. The entry and addition of each grade in the

inner loop uses techniques you have seen before and should be familiar with now.

 EXERCISES 5.3

1. (Practice) Write a for statement for each of the following cases:

a. Use a counter named i that has an initial value of 1, a final value of 20, and an increment

of 1.

b. Use a counter named icount that has an initial value of 1, a final value of 20, and an incre-

ment of 2.

c. Use a counter named j that has an initial value of 1, a final value of 100, and an increment

of 5.

d. Use a counter named icount that has an initial value of 20, a final value of 1, and an incre-

ment of -1.

e. Use a counter named icount that has an initial value of 20, a final value of 1, and an incre-

ment of -2.

f. Use a counter named count that has an initial value of 1.0, a final value of 16.2, and an

increment of 0.2.

g. Use a counter named xcnt that has an initial value of 20.0, a final value of 10.0, and an

increment of -0.5.

F_C7785_05.1c 212F_C7785_05.1c 212 1/18/11 10:47 AM1/18/11 10:47 AM

213Chapter 5
The for Statement

2. (Desk check) Determine the number of times each for loop is executed for the for state-

ments written in Exercise 1.

3. (Desk check) Determine the value in total after each of the following loops is executed:

a. totalƒ=ƒ0;
forƒ(iƒ=ƒ1;ƒiƒ<=ƒ10;ƒiƒ=ƒiƒ+ƒ1)
ƒƒtotalƒ=ƒtotalƒ+ƒ1;

b. totalƒ=ƒ1;
forƒ(countƒ=ƒ1;ƒcountƒ<=ƒ10;ƒcountƒ=ƒcountƒ+ƒ1)
ƒƒtotalƒ=ƒtotalƒ*ƒ2;

c. totalƒ=ƒ0;
forƒ(iƒ=ƒ10;ƒiƒ<=ƒ15;ƒiƒ=ƒiƒ+ƒ1)
ƒƒtotalƒ=ƒtotalƒ+ƒi;

d. totalƒ=ƒ50;
forƒ(iƒ=ƒ1;ƒiƒ<=10;ƒiƒ=ƒiƒ+ƒ1)
ƒƒtotalƒ=ƒtotalƒ-ƒi;

e. totalƒ=ƒ1;
forƒ(icntƒ=ƒ1;ƒicntƒ<=ƒ8;ƒ++icnt)
ƒƒtotalƒ=ƒtotalƒ*ƒicnt;

f. totalƒ=ƒ1.0;
forƒ(jƒ=ƒ1;ƒjƒ<=ƒ5;ƒ++j)
ƒƒtotalƒ=ƒtotalƒ/ƒ2.0;

4. (Desk check) Determine the output of the following program:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒi;

ƒƒforƒ(iƒ=ƒ20;ƒiƒ>=ƒ0;ƒiƒ-=ƒ4)
ƒƒcoutƒ<<ƒi;

ƒƒreturnƒ0;
}

5. (Modify) Modify Program 5.10 to produce a table of the numbers 0 through 20 in increments

of 2, with their squares and cubes.

6. (Modify) Modify Program 5.10 to produce a table of numbers from 10 to 1, instead of 1 to 10,

as it currently does.

7. (Program) a. Write, compile, and run a C++ program that displays a table of 20 temperature

conversions from Fahrenheit to Celsius. The table should start with a Fahrenheit value of

20 degrees and be incremented in values of 4 degrees. Recall that Celsius = (5.0/9.0) ×

(Fahrenheit - 32.0).

b. Modify the program written for Exercise 7a to request the number of conversions to be made.

F_C7785_05.1c 213F_C7785_05.1c 213 1/18/11 10:47 AM1/18/11 10:47 AM

214 Repetition

8. (Program) Write, compile, and run a C++ program that converts Fahrenheit to Celsius tem-

perature in increments of 5 degrees. The initial value of Fahrenheit temperature and the total

conversions to be made should be requested as user input during program execution. Recall

that Celsius = (5.0/9.0) × (Fahrenheit - 32.0).

9. (Program) a. Write, compile, and run a C++ program that accepts five values of gallons, one

at a time, and converts each value entered to its liter equivalent before the next value is

requested. Use a for loop in your program. There are 3.785 liters in 1 gallon of liquid.

b. Modify the program written for Exercise 9a to request the number of data items to be

entered and converted first.

10. (Program) a. An old Arabian legend has it that a fabulously wealthy but unthinking king

agreed to give a beggar 1 cent and double the amount for 64 days. Using this information,

write, compile, and run a C++ program that displays how much the king must pay the beggar

on each day. The output of your program should appear as follows:

ƒƒƒƒƒƒƒDayƒƒƒƒƒƒAmountƒOwed
ƒƒƒƒƒƒƒ---ƒƒƒƒƒƒ-----------
ƒƒƒƒƒƒƒƒ1ƒƒƒƒƒƒƒƒƒƒ0.01
ƒƒƒƒƒƒƒƒ2ƒƒƒƒƒƒƒƒƒƒ0.02
ƒƒƒƒƒƒƒƒ3ƒƒƒƒƒƒƒƒƒƒ0.04
ƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒ64ƒƒƒƒƒƒƒƒƒƒƒ.

b. Modify the program you wrote for Exercise 10a to determine on which day the king will

have paid the beggar a total of one million dollars.

11. (Debug) Is the following program correct? If it is, determine its output. If it’s not, determine

the error and correct it so that the program will run.

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒfor(intƒiƒ=ƒ1;ƒiƒ<ƒ10;ƒi++)
ƒƒƒƒcoutƒ<<ƒiƒ<<ƒ‘\n’;

ƒƒforƒ(jƒ=ƒ1;ƒiƒ<ƒ5;ƒi++)
ƒƒƒƒcoutƒ<<ƒiƒ<<ƒendl;

ƒƒreturnƒ0;
}

F_C7785_05.1c 214F_C7785_05.1c 214 1/18/11 10:47 AM1/18/11 10:47 AM

215Chapter 5
The for Statement

12. (Program) a. Write, compile, and run a C++ program that calculates and displays the amount

of money available in a bank account that initially has $1000 deposited and earns interest at

the rate of 3% a year. Your program should display the amount available at the end of each year

for a period of 10 years. Use the relationship that the money available at the end of each year

= the amount of money in the account at the start of the year + .03 × the amount available at

the start of the year.

b. Modify the program written for Exercise 12a to prompt the user for the amount of money

initially deposited in the account.

c. Modify the program written for Exercise 12a to prompt the user for both the amount of

money initially deposited and the number of years to be displayed.

d. Modify the program written for Exercise 12a to prompt the user for the amount of money

initially deposited, the interest rate to be used, and the number of years to be displayed.

13. (Program) According to legend, the island of Manhattan was purchased from the native

Indian population in 1626 for $24. Assuming this money was invested in a Dutch bank paying

4% simple interest per year, construct a table showing how much money the native population

would have at the end of each 50-year period, starting in 1626 and ending 400 years later. Use

the relationship that the money available at the end of each 50-year period = the amount of

money in the account at the start of period × the quantity (1 + .04)50.

14. (Program) A well-regarded manufacturer of widgets has been losing 4% of its sales each year.

The company’s annual profit is 10% of sales. This year, the company has had $10 million in

sales and a profit of $1 million. Determine the expected sales and profit for the next 10 years.

Your program should produce a display in the following form:

ƒƒƒƒƒƒƒƒƒƒƒƒSALESƒANDƒPROFITƒPROJECTION
ƒƒƒƒƒƒƒƒƒƒƒƒ---------------------------

YEARƒƒƒƒƒƒƒƒEXPECTEDƒSALESƒƒƒƒƒƒƒƒPROJECTEDƒPROFIT
----ƒƒƒƒƒƒƒƒ--------------ƒƒƒƒƒƒƒƒ----------------
ƒ1ƒƒƒƒƒƒƒƒƒƒƒ$10000000.00ƒƒƒƒƒƒƒƒƒƒƒ$1000000.00
ƒ2ƒƒƒƒƒƒƒƒƒƒƒ$ƒ9600000.00ƒƒƒƒƒƒƒƒƒƒƒ$ƒ960000.00
ƒ3ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.
ƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.
ƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.
ƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.
10ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ.
--
Totals:ƒƒƒƒƒƒ$ƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ$ƒƒƒƒ.

F_C7785_05.1c 215F_C7785_05.1c 215 1/18/11 10:47 AM1/18/11 10:47 AM

216 Repetition

15. (Program) Four experiments are performed, and each experiment has six test results. The

results for each experiment are given in the following list. Write, compile, and run a C++ pro-

gram using a nested loop to compute and display the average of the test results for each

experiment.

1st experiment results: 23.2 31 16.9 27.5 25.4 28.6

2nd experiment results: 34.8 45.2 27.9 36.8 33.4 39.4

3rd experiment results: 19.4 16.8 10.2 20.8 18.9 13.4

4th experiment results: 36.9 39.5 49.2 45.1 42.7 50.6

16. (Modify) Modify the program written for Exercise 15 so that the number of test results for

each experiment is entered by the user. Write your program so that a different number of test

results can be entered for each experiment.

17. (Program) a. A bowling team consists of five players, and each player bowls three games.

Write, compile, and run a C++ program that uses a nested loop to enter each player’s scores

and then computes and displays the average score for each bowler. Assume each bowler has

the following scores:

1st bowler: 286 252 265

2nd bowler: 212 186 215

3rd bowler: 252 232 216

4th bowler: 192 201 235

5th bowler: 186 236 272

b. (Modify) Modify the program written for Exercise 17a to calculate and display the average

team score. (Hint: Use a second variable to store the total of all players’ scores.)

c. (Modify) Rewrite the program written for Exercise 17a to eliminate the inner loop. To do

this, you have to input three scores for each bowler rather than enter one at a time. Each

score must be stored in its own variable name before the average is calculated.

18. (Program) Write, compile, and run a C++ program that calculates and displays the yearly

amount available if $1000 is invested in a bank account for 10 years. Your program should

display the amounts available for interest rates from 6% to 12%, inclusive, in 1% increments.

Use a nested loop, with the outer loop having a fixed count of 7 and the inner loop having a

fixed count of 10. The first iteration of the outer loop should use an interest rate of 6% and

display the amount of money available at the end of the first 10 years. In each subsequent pass

through the outer loop, the interest rate should be increased by 1%. Use this relationship:

money available at end of each year = amount of money in account at start of the year + inter-

est rate × amount available at start of the year.

F_C7785_05.1c 216F_C7785_05.1c 216 1/18/11 10:47 AM1/18/11 10:47 AM

217Chapter 5
The do-while Statement

5.4 The do-while Statement

Both while and for statements evaluate an expression at the start of the repetition loop. In

some cases, however, testing an expression at the end of the loop is more convenient. For

example, suppose you have constructed the following while loop to calculate sales taxes:

coutƒ<<ƒ“Enterƒaƒprice:ƒ“;
cinƒƒ>>ƒprice;
whileƒ(priceƒ!=ƒSENTINEL)
{
ƒƒsalestaxƒ=ƒRATEƒ*ƒprice;
ƒƒcoutƒ<<ƒ“Theƒsalesƒtaxƒisƒ$”ƒ<<ƒsalestax;
ƒƒcoutƒ<<ƒ“\nEnterƒaƒprice:ƒ“;
ƒƒcinƒ>>ƒprice;
}

Using this while statement requires duplicating the prompt and cin statement before the

loop and then inside the loop, as done in this example, or resorting to another method to force

execution of statements in the while loop first.

A do-while statement, as its name implies, allows you to perform some statements before

an expression is evaluated at the end of the loop. In many situations, this approach can be used

to eliminate the duplication shown in the previous example. It has this general form in C++:

do
ƒƒstatement;
whileƒ(expression);ƒ don’t forget the final semicolon, which is required here

As with all C++ programs, the single statement in the do-while can be replaced with a

compound statement. Figure 5.8 shows a flow control diagram illustrating the operation of the

do statement.

F_C7785_05.1c 217F_C7785_05.1c 217 1/18/11 10:47 AM1/18/11 10:47 AM

218 Repetition

evaluate
the

expression

loop

(false condition)

expression’s value
is non-zero
(true condition)

execute the
statement
after the
word do

enter the
do statement

expression’s value
is zero

exit the
do statement

go back and
execute the statement

Figure 5.8 The do statement’s flow of control

As shown, all statements within the do-while statement are executed at least once before

the expression is evaluated. Then, if the expression has a non-zero value, the statements are

executed again. This process continues until the expression evaluates to zero (becomes false).

For example, take a look at the following do-while statement:

do
{
ƒƒcoutƒ<<ƒ“\nEnterƒaƒprice:ƒ“;
ƒƒcinƒƒ>>ƒprice;
ƒƒifƒ(ƒabs(priceƒ-ƒSENTINEL)ƒ<ƒ0.0001ƒ)ƒbreak;
ƒƒsalestaxƒ=ƒRATEƒ*ƒprice;
ƒƒcoutƒ<<ƒ“Theƒsalesƒtaxƒisƒ$”ƒ<<ƒsalestax;
}
whileƒ(priceƒ!=ƒSENTINEL);

F_C7785_05.1c 218F_C7785_05.1c 218 1/18/11 10:47 AM1/18/11 10:47 AM

219Chapter 5
The do-while Statement

Observe that only one prompt and cin statement are used because the tested expression

is evaluated at the end of the loop.

As with all repetition statements, the do-while statement can always replace or be

replaced by an equivalent while or for statement. The choice of which statement to use

depends on the application and the programmer’s preferred style. In general, while and for

statements are preferred because anyone reading the program can clearly see what’s being

tested up front, at the top of the program loop.

Validity Checks
The do-while statement is particularly useful in filtering user-entered input and providing

data validation checks. For example, an operator is required to enter a valid customer identifi-

cation number between 100 and 1999. A number outside this range is rejected, and a new

request for a valid number is made. The following section of code supplies the data filter

needed to verify the entry of a valid identification number:

do
{
ƒƒcoutƒ<<ƒ“\nEnterƒanƒidentificationƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒidNum;
}
whileƒ(idNumƒ<ƒ100ƒ||ƒidNumƒ>ƒ1999);

In this code, a request for an identification number is repeated until a valid number is

entered. This section of code is “bare bones,” in that it doesn’t alert the operator to the cause

of the new request for data or allow premature exit from the loop if a valid identification num-

ber can’t be found. The following code is an alternative for removing the first drawback:

do
{
ƒƒcoutƒ<<ƒ“\nEnterƒanƒidentificationƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒidNum;
ƒƒifƒ(idNumƒ<ƒ100ƒ||ƒidNumƒ>ƒ1999)
ƒƒ{
ƒƒƒƒcoutƒƒ<<ƒ“\nƒAnƒinvalidƒnumberƒwasƒjustƒentered”
ƒƒƒƒƒƒƒƒƒƒ<<ƒ“\nPleaseƒcheckƒtheƒIDƒnumberƒandƒreenter”;
ƒƒ}
ƒƒelse
ƒƒƒƒbreak;ƒƒƒƒƒ//ƒbreakƒifƒaƒvalidƒIDƒnumberƒwasƒentered
}ƒwhile(1);ƒƒƒƒ//ƒthisƒexpressionƒisƒalwaysƒtrue

A break statement is used to exit from the loop. Because the expression the do-while

statement is evaluating is always 1 (true), an infinite loop has been created that’s exited only

when the break statement is encountered.

F_C7785_05.1c 219F_C7785_05.1c 219 1/18/11 10:47 AM1/18/11 10:47 AM

220 Repetition

 EXERCISES 5.4

1. (Program) a. Using a do-while statement, write, compile, and run a C++ program to accept

a grade. The program should request a grade continuously as long as an invalid grade is

entered. An invalid grade is any grade less than 0 or greater than 100. After a valid grade has

been entered, your program should display the value of the grade entered.

b. Modify the program written for Exercise 1a so that the user is alerted when an invalid grade

has been entered.

c. Modify the program written for Exercise 1b so that it allows the user to exit the program by

entering the number 999.

d. Modify the program written for Exercise 1b so that it automatically terminates after five

invalid grades are entered.

2. (Program) a. Write, compile, and run a C++ program that continuously requests a grade to be

entered. If the grade is less than 0 or greater than 100, your program should print a message

informing the user that an invalid grade has been entered; else, the grade should be added to

a total. When a grade of 999 is entered, the program should exit the repetition loop and com-

pute and display the average of the valid grades entered.

b. Run the program written in Exercise 2a on a computer and verify the program by using

appropriate test data.

3. (Program) a. Write, compile, and run a C++ program to reverse the digits of a positive integer

number. For example, if the number 8735 is entered, the number displayed should be 5378.

(Hint : Use a do-while statement and continuously strip off and display the number’s units

digit. If the variable num initially contains the number entered, the units digit is obtained as

(numƒ%ƒ10)). After a units digit is displayed, dividing the number by 10 sets up the number

for the next iteration. Therefore, (8735ƒ%ƒ10) is 5 and (8735 / 10) is 873. The do-while

statement should continue as long as the remaining number is not 0.

b. Run the program written in Exercise 3a on a computer and verify the program by using

appropriate test data.

4. (Practice) Repeat any of the exercises in Section 5.3, using a do-while statement rather than

a for statement.

5.5 Common Programming Errors

When using repetition statements, beginning C++ programmers are prone to making the fol-

lowing seven errors:

1. The most troublesome error for new programmers is the “off by one” error, in which the

loop executes one too many or one too few times than was intended. For example,

the loop created by the statement for(iƒ=ƒ1;ƒiƒ<ƒ11;ƒi++) executes 10 times,

not 11, even though the number 11 is used in the statement. An equivalent loop can be

constructed by using the statement for(iƒ=ƒ1;ƒiƒ<=ƒ10;ƒi++).

F_C7785_05.1c 220F_C7785_05.1c 220 1/18/11 10:47 AM1/18/11 10:47 AM

221Chapter 5
Common Programming Errors

 However, if the loop is started with an initial value of iƒ=ƒ0, using the statement

for(iƒ=ƒ0;ƒiƒ<ƒ11;ƒi++), the loop is traversed 11 times, as is a loop constructed

with the statement for(iƒ=ƒ0;ƒiƒ<=ƒ10;ƒi++). In constructing loops, you must

pay particular attention to both the initial and final conditions used to control the loop

to make sure the number of loop traversals isn’t off by one too many or one too few

executions.

The next two errors pertain to the tested expression, and you have already encountered

them with the if and switch statements:

2. Inadvertently using the assignment operator, =, in place of the equality operator, ==, in

the tested expression—for example, typing the assignment expression aƒ=ƒ5 instead

of the correct relational expression a==5. Because the tested expression can be any

valid C++ expression, including arithmetic and assignment expressions, the compiler

doesn’t detect this error.

3. Using the equality operator, ==, when testing double-precision operands. For example,

the expression fnumƒ==ƒ0.01 should be replaced by a test requiring that the absolute

value fnumƒ-ƒ0.01 be less than an acceptable amount. The reason is that all numbers

are stored in binary form. Using a finite number of bits, decimal numbers such as 0.01

have no exact binary equivalent, so tests requiring equality with these numbers can fail.

(See Section 4.1 for a more complete description of this numerical accuracy problem.)

The next three errors are particular to the for statement:

4. Placing a semicolon at the end of for’s parentheses, which often produces a do-nothing

loop. For example, take a look at these statements:

for(countƒ=ƒ0;ƒcountƒ<ƒ10;ƒcount++);
ƒƒtotalƒ=ƒtotalƒ+ƒnum;

 The semicolon at the end of the first line of code is a null statement. It has the effect

of creating a loop that’s executed 10 times with nothing done except incrementing and

testing count. This error tends to occur because C++ programmers are used to ending

most lines with a semicolon.

5. Using commas to separate items in a for statement instead of the required semicolons,

as in this example:

forƒ(countƒ=ƒ1,ƒcountƒ<ƒ10,ƒcount++)

 Commas must be used to separate items in the initializing and altering lists, but semi-

colons must be used to separate these lists from the tested expression.

6. Changing the value of the control variable used in the tested condition both inside the

body of a for loop and in its altering list. For example, take a look at this for loop:

for(intƒi=0;ƒi<10;ƒi++)
ƒƒƒƒƒcoutƒ<<ƒi++;

 In this code, the value of the variable being tested (in this case, i) is changed in two

places, which is a serious logic error.

F_C7785_05.1c 221F_C7785_05.1c 221 1/18/11 10:47 AM1/18/11 10:47 AM

222 Repetition

7. The final common programming error is omitting the final semicolon from the do-
while statement. This error is usually made by programmers who have learned to omit

the semicolon after the parentheses of a while statement and carry over this habit

when encountering the reserved word while at the end of a do-while statement.

5.6 Chapter Summary
1. A section of repeating code is referred to as a loop. A loop is controlled by a repetition state-

ment that tests a condition to determine whether the code is to be executed. Each pass

through the loop is referred to as a repetition or an iteration. The tested condition must

always be set explicitly before its first evaluation by the repetition statement. Inside the

loop, there must always be a statement that permits altering the condition so that the loop,

after it’s entered, can be exited.

2. There are three basic type of loops: while, for, and do-while. The while and for loops

are pretest or entrance-controlled loops. In this type of loop, the tested condition is evalu-

ated at the beginning of the loop, which requires setting the tested condition explicitly

before loop entry. If the condition is true, loop repetitions begin; otherwise, the loop is not

entered. Iterations continue as long as the condition remains true. In C++, while and for
loops are constructed by using while and for statements.

 The do-while loop is a posttest or an exit-controlled loop, in which the tested condition is

evaluated at the end of the loop. This type of loop is always executed at least once. As long

as the tested condition remains true, do-while loops continue to execute.

3. Loops are also classified according to the type of tested condition. In a fixed-count loop,

the condition is used to keep track of how many repetitions have occurred. In a variable-

condition loop, the tested condition is based on a variable that can change interactively

with each pass through the loop.

4. In C++, a while loop is constructed by using a while statement. This is the most com-

monly used form of this statement:

whileƒ(expression)
{
ƒƒstatements;
}

 The expression in parentheses is the condition that’s tested to determine whether the

statement following the parentheses, which is generally a compound statement, is executed.

The expression is evaluated in the same manner as one in an if-else statement; the dif-

ference is how the expression is used. In a while statement, the statement following the

F_C7785_05.1c 222F_C7785_05.1c 222 1/18/11 10:47 AM1/18/11 10:47 AM

223Chapter 5
Chapter Summary

expression is executed repeatedly as long as the expression retains a non-zero value, instead

of just once, as in an if-else statement. An example of a while loop follows:

countƒ=ƒ1;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinitializeƒcount
whileƒ(countƒ<=ƒ10)
{
ƒƒcoutƒ<<ƒcountƒ<<ƒ“ƒƒ“;
ƒƒcount++;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒincrementƒcount
}

 The first assignment statement sets count equal to 1. The while statement is then

entered, and the expression is evaluated for the first time. Because the value of count is

less than or equal to 10, the expression is true, and the compound statement is executed.

The first statement in the compound statement uses the cout statement to display the

value of count.

 The next statement adds 1 to the value currently stored in count, making this value equal

to 2. The while statement then loops back to retest the expression. Because count is still

less than or equal to 10, the compound statement is executed again. This process continues

until the value of count reaches 11.

 Because the while statement always checks its expression at the top of the loop, any vari-

ables in the tested expression must have values assigned before the while is encountered.

In addition, the while loop must contain a statement that alters the tested expression’s value.

5. In C++, a for loop is constructed by using a for statement. This statement performs the

same functions as the while statement but uses a different form. In many situations, espe-

cially those using a fixed-count condition, the for statement format is easier to use than its

while statement equivalent. This is the most commonly used form of the for statement:

forƒ(initializing list;ƒexpression;ƒaltering list)
{
ƒƒstatements;
}

 Inside the parentheses of the for statement are three items, separated by semicolons. Each

of these items is optional, but the semicolons must be present.

 The initializing list is used to set any initial values before the loop is entered; gener-

ally, it’s used to initialize a counter. Statements in the initializing list are executed only once.

The expression in the for statement is the condition being tested: It’s tested at the start

of the loop and before each iteration. The altering list contains loop statements that

F_C7785_05.1c 223F_C7785_05.1c 223 1/18/11 10:47 AM1/18/11 10:47 AM

224 Repetition

aren’t within the compound statement; generally, it’s used to increment or decrement a

counter each time the loop is executed. Multiple statements in both initializing and altering

lists are separated by commas. Here’s an example of a for loop:

forƒ(totalƒ=ƒ0,ƒcountƒ=ƒ1;ƒcountƒ<ƒ10;ƒcount++)
{
ƒƒcoutƒ<<ƒ“Enterƒaƒgrade:ƒ“;
ƒƒtotalƒ=ƒtotalƒ+ƒgrade;
}

 In this for statement, the initializing list is used to initialize both total and count. The

expression determines that the loop will execute as long as the value in count is less than

10, and the altering list specifies that the value of count is incremented by 1 each time

through the loop.

6. The for statement is extremely useful in creating fixed-count loops because you can

include initializing statements, the tested expression, and statements affecting the tested

expression in parentheses at the top of a for loop for easy inspection and modification.

7. The do-while statement is used to create posttest loops because it checks its expression

at the end of the loop. Checking at the end of the loop ensures that the body of a do loop

is executed at least once. A do-while loop must contain at least one statement that alters

the tested expression’s value.

F_C7785_05.1c 224F_C7785_05.1c 224 1/18/11 10:47 AM1/18/11 10:47 AM

6 6.1 Function and Parameter
Declarations

 6.2 Returning a Single Value

 6.3 Returning Multiple Values

 6.4 Variable Scope

 6.5 Variable Storage Class

 6.6 Common Programming Errors

 6.7 Chapter Summary

 6.8 Chapter Supplement: Generating
Random Numbers

Professional programs are designed, coded, and tested much like hardware: as a set of modules inte-
grated to perform a completed whole. A good analogy is an automobile; one major module is the engine,
another is the transmission, a third the braking system, a fourth the body, and so on. All these modules
are linked together and placed under the driver’s control, which can be compared to a main() program
module. The whole now operates as a complete unit, able to do useful work, such as driving to the store.
During the assembly process, each module is constructed, tested, and found to be free of defects (bugs)
before it’s installed in the final product.

In this analogy, each major car component can be compared to a function. For example, the driver
calls on the engine when the gas pedal is pressed. The engine accepts inputs of fuel, air, and electricity to
turn the driver’s request into a useful product—power—and then sends this output to the transmission
for further processing. The transmission receives the engine’s output and converts it to a form the wheels
can use. An additional input to the transmission is the driver’s selection of gears (drive, reverse, neutral,
and so on).

The engine, transmission, and other modules “know” only the universe bounded by their inputs and
outputs. The driver doesn’t need to know the internal operation of the modules being controlled. All that’s
required is knowing what each module does and how to “call” on it when the module’s output is needed.

Chapter

Modularity Using
Functions

G_C7785_06.1c 225G_C7785_06.1c 225 1/18/11 10:47 AM1/18/11 10:47 AM

226 Modularity Using Functions

Communication between modules is restricted to passing inputs to each module as it’s called on to perform
its task, and each module operates in a fairly independent manner. Programmers use this same modular
approach to create and maintain reliable C++ programs by using functions.

As you have seen, each C++ program must contain a main() function. In addition to this required
function, C++ programs can also contain any number of other functions. In this chapter, you learn how
to write these functions, pass data to them, process the passed data, and return a result.

6.1 Function and Parameter Declarations

In creating C++ functions, you must be concerned with the function itself and how it interacts

with other functions, such as main(). Interaction with a function includes passing data to a

function correctly when it’s called (inputs) and returning values from a function (outputs)

when it ceases operation. This section describes the first part of the interface, passing data to

a function and having the function receive, store, and process the transmitted data correctly.

As you have already seen with mathematical functions, a function is called, or used, by

giving the function’s name and passing any data to it, as arguments, in the parentheses follow-

ing the function name (see Figure 6.1). The called function must be able to accept the data

passed to it by the function doing the calling. Only after the called function receives the data

successfully can the data be manipulated to produce a useful result.

function-name (data passed to function);

This identifies the
called function

This passes data
to the function

Figure 6.1 Calling and passing data to a function

To clarify the process of sending and receiving data, take a look at Program 6.1, which calls

a function named findMax(). The program, as shown, is not yet complete. After the function

findMax() is written and included in Program 6.1, the completed program, consisting of the

functions main() and findMax(), can be compiled and run.

 Program 6.1

#includeƒ<iostream>
usingƒnamespaceƒstd;
voidƒfindMax(int,ƒint);ƒƒ//ƒtheƒfunctionƒdeclarationƒ(prototype)

intƒmain()
{
ƒƒintƒfirstnum,ƒsecnum;

☞

G_C7785_06.1c 226G_C7785_06.1c 226 1/18/11 10:47 AM1/18/11 10:47 AM

227Chapter 6
Function and Parameter Declarations

ƒƒcoutƒ<<ƒ“\nEnterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒfirstnum;
ƒƒcoutƒ<<ƒ“Great!ƒPleaseƒenterƒaƒsecondƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒsecnum;

ƒƒfindMax(firstnum,ƒsecnum);ƒƒ//ƒtheƒfunctionƒisƒcalledƒhere

ƒƒreturnƒ0;
}

First, examine the declaration and calling of the findMax() function from main(). You

then see how to write findMax() to accept data passed to it, determine the largest or maxi-

mum value of the two passed values, and display the maximum value.

The findMax() function is referred to as the called function because it’s called or sum-

moned into action by its reference in main(). The function that does the calling—in this case,

main()—is referred to as the calling function. The terms “called” and “calling” come from

standard phone usage, in which one party calls the other: The person initiating the call is the

calling party, and the person receiving the call is the called party. The same terms describe

function calls. The called function—in this case, findMax()—is declared as a function that

expects to receive two integer numbers and to return no value (a void) to main(). This decla-

ration is formally called a function prototype. The function is then called by the last statement

in the program.

Function Prototypes
Before a function can be called, it must be declared to the function that will do the calling. The

declaration statement for a function is referred to as a function prototype. The function proto-

type tells the calling function the type of value that will be formally returned, if any, and the

data type and order of the values the calling function should transmit to the called function.

For example, the function prototype used in Program 6.1

voidƒfindMax(int,ƒint);

declares that the findMax() function expects two integer values to be sent to it and returns

no value (void).

Function prototypes can be placed with the variable declaration statements of the calling

function, above the calling function name, as in Program 6.1, or in a separate header file

specified with an #include preprocessor statement. The function prototype for findMax()

could have been placed before or after the statement #includeƒ<iostream>, before main(),

or within main(). (The reasons for the choice of placement are explained in Section 6.3.) The

general form of function prototype statements is as follows:

returnDataTypeƒfunctionName(listƒofƒargumentƒdataƒtypes);

G_C7785_06.1c 227G_C7785_06.1c 227 1/18/11 10:47 AM1/18/11 10:47 AM

228 Modularity Using Functions

The returnDataType refers to the type of value the function returns. Here are some

examples of function prototypes:

intƒfmax(int,ƒint);
doubleƒswap(int,ƒchar,ƒchar,ƒdouble);
voidƒdisplay(double,ƒdouble);

The function prototype for fmax() declares that this function expects to receive two

integer arguments and returns an integer value. The function prototype for swap() declares

that this function requires four arguments—consisting of an integer, two characters, and a

double-precision argument, in that order—and returns a double-precision number. Finally, the

function prototype for display() declares that this function requires two double-precision

arguments and doesn’t return any value. This function might be used to display the results of

a computation without returning any value to the called function.

Using function prototypes permits the compiler to error-check data types. If the function

prototype doesn’t agree with data types defined when the function is written, a warning mes-

sage is displayed when the program is compiled. The prototype also serves another task: It

ensures that all arguments passed to the function are converted to the declared data type when

the function is called.

Calling a Function
Calling a function is rather easy. The only requirements are using the name of the function and

enclosing any data passed to the function in the parentheses following the function name,

using the same order and type declared in the function prototype. The items enclosed in

parentheses are called arguments of the called function (see Figure 6.2).

findMax (firstnum, secnum);

This identifies
the findMax()

function

This causes two
values to be passed

to findMax()

Figure 6.2 Calling and passing two values to findMax()

If a variable is one of the arguments in a function call, the called function receives a copy

of the value stored in the variable. For example, the statement findMax(firstnum,ƒsecnum);

calls the findMax() function and causes the values stored in the variables firstnum and

secnum to be passed to findMax(). The variable names in parentheses are arguments that

provide values to the called function. After values are passed, control is transferred to the

called function.

As shown in Figure 6.3, the findMax() function does not receive the variables named

firstnum and secnum and has no knowledge of these variable names.1 The function simply

receives the values in these variables and must then determine where to store these values

before it does anything else. Although this procedure for passing data to a function might

seem surprising, it’s actually a safety measure for ensuring that a called function doesn’t

1In Section 6.3, you see how C++ also allows direct access to the calling function’s variables by using reference variables.

G_C7785_06.1c 228G_C7785_06.1c 228 1/18/11 10:47 AM1/18/11 10:47 AM

229Chapter 6
Function and Parameter Declarations

inadvertently change data stored in a variable. The function gets a copy of the data to use.

It can change its copy and, of course, change any variables declared inside it. However,

unless specific steps to do so are taken, a function isn’t allowed to change the contents of

variables declared in other functions.

findMax(firstnum, secnum);

G
et

 th
e

va
lu

e
stored in secnum

a value

G
et

 th
e

va
lu

e

stored in firstnum

a value

Send the
value to

findMax()

Send the
value to

findMax()

the variable
secnum

the variable
firstnum

Figure 6.3 The findMax() function receives actual values

Next, you begin writing the findMax() function to process the values passed to it.

Defining a Function
A function is defined when it’s written. Each function is defined once (that is, written once) in

a program and can then be used by any other function in the program that declares it suitably.

Like the main() function, every C++ function consists of two parts, a function header and

a function body, as shown in Figure 6.4. The function header’s purpose is to identify the data

type of the value the function returns, give the function a name, and specify the number,

order, and type of arguments the function expects. The function body’s purpose is to operate

on the passed data and return, at most, one value directly back to the calling function. (In

Section 6.3, you see how a function can be made to return multiple values indirectly by using

its arguments.)

The function header is always the first line of a function and contains the function’s return

value type, its name, and the names and data types of its arguments. Because findMax()

doesn’t formally return any value and receives two integer values, the following function

header can be used:

voidƒfindMax(intƒx,ƒintƒy)ƒ no semicolon

G_C7785_06.1c 229G_C7785_06.1c 229 1/18/11 10:47 AM1/18/11 10:47 AM

230 Modularity Using Functions

 function header line

{

}

Function header

Function body
constant and

any other C++ statements;
variable declarations;

Figure 6.4 The general format of a function

The argument names in parentheses in the header are called the formal parameters of the

function (or parameters, for short).2 Therefore, the parameter x is used to store the first value

passed to findMax() and the parameter y is used to store the second value passed at the time

of the function call. The function doesn’t know where the values come from when the call is

made from main(). The first part of the call procedure the computer executes involves going

to the variables firstnum and secnum and retrieving the stored values. These values are then

passed to findMax() and stored in the parameters x and y (see Figure 6.5).

findMax(int x, int y)

findMax(firstnum,secnum); This statement
calls findMax()

The value
in secnum
is passed

The value
in firstnum

is passed

The
parameter
named x

The
parameter
named y

Figure 6.5 Storing values in parameters

The function name and all parameter names in the header—in this case, findMax, x, and

y—are chosen by the programmer. Any names selected according to the rules for choosing

variable names can be used. Each parameter listed in the function header must include a data

type. If more than one parameter is declared in the function header, they must be separated

by commas and have their data types declared separately.

2The portion of the function header containing function names and parameters is formally referred to as a “function declarator.” The

items enclosed in parentheses, the parameters, are specifications for the arguments. The arguments are the values provided when the

function is called.

G_C7785_06.1c 230G_C7785_06.1c 230 1/18/11 10:47 AM1/18/11 10:47 AM

231Chapter 6
Function and Parameter Declarations

Now that the function header for findMax() has been written, you can construct its body.

The function is to select and display the larger of the two numbers passed to it.

A function body begins with an opening brace, {, contains any necessary declarations and

other C++ statements, and ends with a closing brace, }. This structure should be familiar

because it’s the same one used in all the main() functions you’ve seen so far. This required

structure shouldn’t be a surprise because main() is a function and must adhere to the rules for

constructing all legitimate functions, as shown here:

{
ƒƒvariableƒdeclarationsƒand
ƒƒotherƒC++ƒstatements
}

Point of Information
Function Definitions and Function Prototypes

When you write a function, you’re formally creating a function definition. Each definition
begins with a header line that includes a parameter list, if any, enclosed in parentheses
and ends with the closing brace that terminates the function’s body. The parentheses are
required whether or not the function uses any parameters. The following is a commonly
used syntax for a function definition:

returnDataTypeƒfunctionName(parameterƒlist)
{
ƒƒƒƒconstantƒdeclarations
ƒƒƒƒvariableƒdeclarations

ƒƒotherƒC++ƒstatements

ƒƒreturnƒvalue
}

As you’ve learned, a function prototype declares a function. The syntax for a function
prototype, which provides the function’s return data type, the function’s name, and the
function’s parameter list, is as follows:

returnDataTypeƒfunctionName(listƒofƒparameterƒdataƒtypes);

The prototype, along with precondition and postcondition comments (see the next
Point of Information box), should give users all the programming information needed to
call the function successfully.

Generally, all function prototypes are placed at the top of the program, and all defini-
tions are placed after the main() function. However, this placement can be changed.
The only requirement in C++ is that a function can’t be called before it has been
declared or defined.

G_C7785_06.1c 231G_C7785_06.1c 231 1/18/11 10:47 AM1/18/11 10:47 AM

232 Modularity Using Functions

In the body of the findMax() function, one variable is declared to store the maximum of

the two numbers passed to it. An if-else statement is then used to find the maximum of the

two numbers. Finally, a cout statement is used to display the maximum. The following shows

the complete function definition for findMax():

voidƒfindMax()ƒ(intƒx,ƒintƒy)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstartƒofƒfunctionƒbody
ƒƒintƒmaxnum;ƒƒƒƒƒƒ//ƒvariableƒdeclaration

ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒ//ƒfindƒtheƒmaximumƒnumber
ƒƒƒƒmaxnumƒ=ƒx;
ƒƒelse
ƒƒƒƒmaxnumƒ=ƒy;

ƒƒcoutƒ<<ƒ“\nTheƒmaximumƒofƒtheƒtwoƒnumbersƒisƒ“
ƒƒƒƒƒƒƒ<<ƒmaxnumƒ<<ƒendl;

ƒƒreturn;
}ƒƒ//ƒendƒofƒfunctionƒbodyƒandƒendƒofƒfunction

Notice that the parameter declarations are made in the function header, and the variable

declaration is made immediately after the function body’s opening brace. This placement is in

keeping with the concept that parameter values are passed to a function from outside the func-

tion, and variables are declared and assigned values from inside the function body. Program 6.2

includes the findMax() function in the program code previously listed in Program 6.1.

Point of Information
Preconditions and Postconditions

Preconditions are any set of conditions a function requires to be true if it’s to operate
correctly. Similarly, a postcondition is a condition that will be true after the function is
executed, assuming the preconditions are met.

Preconditions and postconditions are typically documented as user comments. For
example, examine the following declaration and comments:

boolƒleapyr(int)
//ƒPrecondition:ƒtheƒintegersƒmustƒrepresentƒaƒyearƒinƒa
//ƒƒƒƒƒƒƒƒƒƒƒƒƒ:ƒfour-digitƒform,ƒsuchƒasƒ2011
//ƒPostcondition:ƒaƒvalueƒofƒtrueƒisƒreturnedƒifƒtheƒyearƒis
//ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ:ƒaƒleapƒyear;ƒotherwise,ƒfalseƒisƒreturned

Precondition and postcondition comments should be included with function proto-
types and function definitions whenever clarification is needed.

G_C7785_06.1c 232G_C7785_06.1c 232 1/18/11 10:47 AM1/18/11 10:47 AM

233Chapter 6
Function and Parameter Declarations

 Program 6.2

#includeƒ<iostream>
usingƒnamespaceƒstd;
voidƒfindMax(int,ƒint);ƒƒƒƒƒƒƒ//ƒtheƒfunctionƒprototype

intƒmain()
{
ƒƒintƒfirstnum,ƒsecnum;

ƒƒcoutƒ<<ƒ“\nEnterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒfirstnum;
ƒƒcoutƒ<<ƒ“Great!ƒPleaseƒenterƒaƒsecondƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒsecnum;

ƒƒfindMax(firstnum,ƒsecnum);ƒƒ//ƒtheƒfunctionƒisƒcalledƒhere

ƒƒreturnƒ0;
}

//ƒfollowingƒisƒtheƒfunctionƒfindMax()

voidƒfindMax(intƒx,ƒintƒy)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstartƒofƒfunctionƒbody
ƒƒintƒmaxnum;ƒƒƒƒƒƒ//ƒvariableƒdeclaration

ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒ//ƒfindƒtheƒmaximumƒnumber
ƒƒƒƒmaxnumƒ=ƒx;
ƒƒelse
ƒƒƒƒmaxnumƒ=ƒy;

ƒƒcoutƒ<<ƒ“\nTheƒmaximumƒofƒtheƒtwoƒnumbersƒisƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒmaxnumƒ<<ƒendl;

ƒƒreturn;
}ƒƒƒƒ//ƒendƒofƒfunctionƒbodyƒandƒendƒofƒfunction

Program 6.2 can be used to select and print the maximum of any two integer numbers the

user enters. A sample run of Program 6.2 follows, with user-entered numbers shown in bold:

Enterƒaƒnumber:ƒ25
Great!ƒPleaseƒenterƒaƒsecondƒnumber:ƒ5

Theƒmaximumƒofƒtheƒtwoƒnumbersƒisƒ25

G_C7785_06.1c 233G_C7785_06.1c 233 1/18/11 10:47 AM1/18/11 10:47 AM

234 Modularity Using Functions

The placement of the findMax() function after the main() function in Program 6.2 is a

matter of choice. Usually, main() is listed first because it’s the driver function that gives any-

one reading the program an idea of what the complete program is about before encountering

the details of each function. In no case, however, can the definition of findMax() be placed

inside main(). This rule applies to all C++ functions, which must be defined by themselves

outside any other function. Each C++ function is a separate and independent entity with its

own parameters and variables; nesting functions is never permitted.

Placement of Statements
C++ doesn’t impose a rigid statement-ordering structure on programmers. The general rule for

placing statements in a C++ program is simply that all preprocessor directives, symbolic con-

stants, variables, and functions must be declared or defined before they can be used. As noted

previously, although this rule permits placing both preprocessor directives and declaration

statements throughout a program, doing so results in poor program structure.

As a matter of good programming form, the following statement ordering should form the

basic structure around which all C++ programs are constructed:

preprocessorƒdirectives
functionƒprototypes

ƒƒintƒmain()
ƒƒ{
ƒƒƒƒ//ƒsymbolicƒconstants
ƒƒƒƒ//ƒvariableƒdeclarations

ƒƒƒƒ//ƒotherƒexecutableƒstatements

ƒƒƒƒ//ƒreturnƒstatement
ƒƒ}

ƒƒ//ƒfunctionƒdefinitions

As always, comment statements can be intermixed anywhere in this basic structure.

Function Stubs
An alternative, used by all programmers, to completing each function required in a complete

program is writing the main() function first and then using placeholders for the final func-

tions. To understand how this alternative works, take another look at Program 6.1. For conve-

nience, its code has been reproduced here. As it’s currently written, this program can’t be

compiled and run until the findMax() function is included.

#includeƒ<iostream>
usingƒnamespaceƒstd;
voidƒfindMax(int,ƒint);ƒ//ƒtheƒfunctionƒdeclarationƒ(prototype)

intƒmain()
{

G_C7785_06.1c 234G_C7785_06.1c 234 1/18/11 10:47 AM1/18/11 10:47 AM

235Chapter 6
Function and Parameter Declarations

ƒƒintƒfirstnum,ƒsecnum;

ƒƒcoutƒ<<ƒ“\nEnterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒfirstnum;
ƒƒcoutƒ<<ƒ“Great!ƒPleaseƒenterƒaƒsecondƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒsecnum;

ƒƒfindMax(firstnum,ƒsecnum);ƒ//ƒtheƒfunctionƒisƒcalledƒhere

ƒƒreturnƒ0;
}

This program would be complete if there were a function definition for findMax().

However, you really don’t need a correct findMax() function to test and run what has been

written; you just need a function that acts as though it is. A “fake” findMax() that accepts the

correct number and types of parameters and returns values of the proper form for the function

call is all you need for initial testing. This fake function, called a stub, is the beginning of a

final function and can be used as a placeholder for the final function until it’s completed. A

stub for findMax() is as follows:

voidƒfindMax(intƒx,ƒintƒy)
{
ƒƒcoutƒ<<ƒ“InƒfindMax()\n”;
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒxƒisƒ“ƒ<<ƒxƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒyƒisƒ“ƒ<<ƒyƒ<<ƒendl;
}

This stub function can now be compiled and linked with the previously completed code

to produce an executable program. The code for the function can then be further developed

with the “real” code when it’s completed, replacing the stub portion.

The minimum requirement of a stub function is that it compiles and links with its calling

module. In practice, it’s a good idea to have a stub display a message that it has been entered

successfully and display the values of its received parameters, as in the stub for findMax().

As the function is refined, you let it do more, perhaps allowing it to return intermediate or

incomplete results. This incremental, or stepwise, refinement is an important concept in effi-

cient program development that gives you the means to run a program that doesn’t yet meet

all its final requirements.

Functions with Empty Parameter Lists
Although useful functions having an empty parameter list are extremely limited, they can

occur. (You see one such function in Exercise 15 at the end of this section.) The function pro-

totype for this type of function requires writing the keyword void or nothing at all between

the parentheses following the function’s name. For example, both these prototypes

intƒdisplay();

and

intƒdisplay(void);

G_C7785_06.1c 235G_C7785_06.1c 235 1/18/11 10:47 AM1/18/11 10:47 AM

236 Modularity Using Functions

Point of Information
Isolation Testing

One of the most successful software testing methods is always embedding the code
being tested in an environment of working code. For example, you have two untested
functions called in the following order, and the result the second function returns is
incorrect:

function 1
calls

function 2
Returned value

is incorrect

From the information shown in this figure, one or possibly both of the functions
could be operating incorrectly. The first order of business is to isolate the problem to a
specific function.

One powerful method of performing this code isolation is to decouple the functions.
You do this by testing each function separately or by testing one function first and, only
after you know it’s operating correctly, reconnecting it to the second function. Then, if
an error occurs, you have isolated the error to the transfer of data between functions or
to the internal operation of the second function.

This specific procedure is an example of the basic rule of testing, which states that
each function should be tested only in a program in which all other functions are known
to be correct. This rule means one function must first be tested by itself, using stubs if
needed for any called functions, and a second tested function should be tested by itself
or with a previously tested function, and so on. This testing procedure ensures that each
new function is isolated in a test bed of correct functions, with the final program built
from tested function code.

indicate that the display() function takes no parameters and returns an integer. A function

with an empty parameter list is called by its name with nothing written inside the required

parentheses following the function’s name. For example, the statement display(); correctly

calls the display() function, whose prototype is shown in the preceding example.

Default Arguments3

C++ provides default arguments in a function call for added flexibility. The primary use of

default arguments is to extend the parameter list of existing functions without requiring any

change in the calling argument lists already used in a program.

Default argument values are listed in the function prototype and transmitted automati-

cally to the called function when the corresponding arguments are omitted from the function

call. For example, the function prototype

voidƒexample(int,ƒintƒ=ƒ5,ƒdoubleƒ=ƒ6.78);

3This topic can be omitted on first reading without loss of subject continuity.

G_C7785_06.1c 236G_C7785_06.1c 236 1/18/11 10:47 AM1/18/11 10:47 AM

237Chapter 6
Function and Parameter Declarations

provides default values for the last two arguments. If any of these arguments are omitted when

the function is actually called, the C++ compiler supplies the default values. Therefore, all the

following function calls are valid:

example(7,ƒ2,ƒ9.3)ƒƒ//ƒnoƒdefaultsƒused
example(7,ƒ2)ƒƒƒƒƒƒƒ//ƒsameƒasƒexample(7,ƒ2,ƒ6.78)
example(7)ƒƒƒƒƒƒƒƒƒƒ//ƒsameƒasƒexample(7,ƒ5,ƒ6.78)

Four rules must be followed when using default arguments:

• Default values should be assigned in the function prototype.4

• If any parameter is given a default value in the function prototype, all parameters fol-

lowing it must also be supplied with default values.

• If one argument is omitted in the actual function call, all arguments to its right must

also be omitted. The second and third rules make it clear to the C++ compiler which

arguments are being omitted and enable the compiler to supply correct default values

for the missing arguments, starting with the rightmost argument and working in

toward the left.

• The default value used in the function prototype can be an expression consisting of

both constants and previously declared variables. If this kind of expression is used, it

must pass the compiler’s check for validly declared variables, even though the expres-

sion’s actual value is evaluated and assigned at runtime.

Default arguments are extremely useful when extending an existing function to include

more features that require additional arguments. Adding new arguments to the right of the

existing arguments and giving each new argument a default value permits all existing function

calls to remain as they are. In this way, the effect of the changes is conveniently isolated from

existing code in the program.

Reusing Function Names (Overloading)5

C++ provides the capability of using the same function name for more than one function,

referred to as function overloading. The only requirement for creating more than one function

with the same name is that the compiler must be able to determine which function to use

based on the parameters’ data types (not the data type of the return value, if any). For example,

take a look at these three functions, all named cdabs():

voidƒcdabs(intƒx)ƒ//ƒcomputeƒandƒdisplayƒabsoluteƒvalueƒofƒanƒinteger
{
ƒƒifƒ(ƒxƒ<ƒ0ƒ)
ƒƒƒƒxƒ=ƒ-x;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒtheƒintegerƒisƒ“ƒ<<ƒxƒ<<ƒendl;
}

4Some compilers accept default assignments in the function definition.
5This topic can be omitted on first reading without loss of subject continuity.

☞

G_C7785_06.1c 237G_C7785_06.1c 237 1/18/11 10:47 AM1/18/11 10:47 AM

238 Modularity Using Functions

voidƒcdabs(floatƒx)ƒ//ƒcomputeƒandƒdisplayƒabsoluteƒvalueƒofƒaƒfloat
{
ƒƒifƒ(ƒxƒ<ƒ0ƒ)
ƒƒƒƒxƒ=ƒ-x;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒtheƒfloatƒisƒ“ƒ<<ƒxƒ<<ƒendl;
}

voidƒcdabs(doubleƒx)ƒ//ƒcomputeƒandƒdisplayƒabsoluteƒvalueƒofƒaƒdouble
{
ƒƒifƒ(ƒxƒ<ƒ0ƒ)
ƒƒƒƒxƒ=ƒ-x;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒtheƒdoubleƒisƒ“ƒ<<ƒxƒ<<ƒendl;
}

Which of the three cdabs() functions is actually called depends on the argument types

supplied at the time of the call. Therefore, the function call cdabs(10); causes the compiler

to use the function named cdabs() that expects an integer argument, and the function call

cdabs(6.28f); causes the compiler to use the function named cdabs() that expects a

double-precision argument.6

Notice that overloading a function’s name simply means using the same name for more

than one function. Each function that uses the name must still be written and exists as a

separate entity. The use of the same function name doesn’t require code in the functions to be

similar, although good programming practice dictates that functions with the same name

should perform essentially the same operations. All that’s required to use the same function

name is ensuring that the compiler can distinguish which function to select, based on the data

types of the arguments when the function is called. Clearly, however, if the only difference in

the overloaded functions is the argument types, a better programming solution is simply creat-

ing a function template, discussed in the next section. Using overloaded functions, however, is

extremely useful with constructor functions, explained in Section 10.3.

6Selection of the correct function is accomplished by a process called “name mangling.” Using this process, the function name the C++

compiler actually generates differs from the function name used in the source code. The compiler appends information to the source

code function name, depending on the type of data being passed, and the resulting name is said to be a “mangled” version of the source

code name.
7This topic can be omitted on first reading without loss of subject continuity.

Function Templates7

In most high-level languages, including C++’s immediate predecessor, C, each function must

be coded separately, even if function overloading is used to give multiple functions the same

name. For example, consider determining and displaying a number’s absolute value. If the

number passed to the function can be an integer, a single-precision, or a double-precision

G_C7785_06.1c 238G_C7785_06.1c 238 1/18/11 10:47 AM1/18/11 10:47 AM

239Chapter 6
Function and Parameter Declarations

value, three distinct functions must be written to handle each case correctly. Therefore, if the

function name abs() is used, these three functions would have the following prototypes:

voidƒabs(int);
voidƒabs(float);
voidƒabs(double);

Clearly, each of these functions performs essentially the same operation but on different

parameter data types. A much cleaner solution is writing a general function that handles all

three parameter data types, but the compiler can set parameters, variables, and even return

type based on the data type used when the function is called. You can write this type of func-

tion in C++ by using a function template, which is a single, complete function that serves as a

model for a family of functions. The function from the family that’s actually created depends

on subsequent function calls. To make this concept more concrete, take a look at a function

template that computes and displays the absolute value of a passed argument:

templateƒ<classƒT>
voidƒshowabs(Tƒnumber)
{
ƒƒifƒ(numberƒ<ƒ0)
ƒƒƒƒnumberƒ=ƒ-number;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒtheƒnumberƒ“
ƒƒƒƒƒƒƒ<<ƒ“ƒisƒ“ƒ<<ƒnumberƒ<<ƒendl;

ƒƒreturn;
}

For the moment, ignore the first line, templateƒ<classƒT>, and look at the second line,

consisting of the function header voidƒshowabs(Tƒnumber). Notice that this function header

has the same syntax used for all function definitions, except the T where a data type is usually

placed. For example, if the function header were voidƒshowabs(intƒnumber), you should

recognize it as a function named showabs() that expects one integer argument to be passed to

it and returns no value. Similarly, if the function header were voidƒshowabs(doubleƒnumber),

you should recognize it as a function that expects one double-precision argument to be passed

to it when the function is called.

The advantage of using the T in the function template header is that it represents a gen-

eral data type that’s replaced by an actual data type, such as int, float, double, and so forth,

when the compiler encounters an actual function call. For example, if a function call with an

integer argument is encountered, the compiler uses the function template to construct a func-

tion that expects an integer parameter. Similarly, if a call is made with a double-precision argu-

ment, the compiler constructs a function that expects a double-precision parameter. As a spe-

cific example, take a look at Program 6.3.

G_C7785_06.1c 239G_C7785_06.1c 239 1/18/11 10:47 AM1/18/11 10:47 AM

240 Modularity Using Functions

 Program 6.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

templateƒ<classƒT>
voidƒshowabs(Tƒnumber)
{
ƒƒifƒ(numberƒ<ƒ0)
ƒƒƒƒnumberƒ=ƒ-number;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒtheƒnumberƒisƒ“
ƒƒƒƒƒƒƒ<<ƒnumberƒ<<ƒendl;

ƒƒreturn;
}

intƒmain()
{
ƒƒintƒnum1ƒ=ƒ-4;
ƒƒfloatƒnum2ƒ=ƒ-4.23F;
ƒƒdoubleƒnum3ƒ=ƒ-4.23456;

ƒƒshowabs(num1);
ƒƒshowabs(num2);
ƒƒshowabs(num3);

ƒƒreturnƒ0;
}

Notice the three function calls made in the main() function; they call the function

showabs() with an integer, float, and double value. Now review the function template for

showabs() and look at the first line, templateƒ<classƒT>. This line, called a template prefix,

is used to inform the compiler that the function immediately following is a template using a

data type named T. In the function template, the T is used in the same manner as any other

data type, such as int, float, and double. When the compiler encounters an actual function

call for showabs(), the data type of the argument passed in the call is substituted for T

throughout the function. In effect, the compiler creates a specific function, using the template,

that expects the argument type in the call.

G_C7785_06.1c 240G_C7785_06.1c 240 1/18/11 10:47 AM1/18/11 10:47 AM

241Chapter 6
Function and Parameter Declarations

Because Program 6.3 makes three calls to showabs(), each with a different argument data

type, the compiler creates three separate showabs() functions. The compiler knows which

function to use based on the arguments passed at the time of the call. This is the output dis-

played when Program 6.3 runs:

Theƒabsoluteƒvalueƒofƒtheƒnumberƒisƒ4
Theƒabsoluteƒvalueƒofƒtheƒnumberƒisƒ4.23
Theƒabsoluteƒvalueƒofƒtheƒnumberƒisƒ4.23456

The letter T in the template prefix templateƒ<classƒT> is simply a placeholder for a

data type that’s defined when the function is actually called. Any letter or identifier that’s not

a keyword can be used instead, so the showabs() function template could just as well have

been defined as follows:

templateƒ<classƒDTYPE>
voidƒshowabs(DTYPEƒnumber)
{
ƒƒifƒ(numberƒ<ƒ0)
ƒƒƒƒnumberƒ=ƒ-number;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒtheƒnumberƒisƒ“
ƒƒƒƒƒƒƒ<<ƒnumberƒ<<ƒendl;

ƒƒreturn;
}

In this regard, sometimes it’s simpler and clearer to read the word class in the template

prefix as the words data type. With this substitution, you can read the template prefix

templateƒ<classƒT> as “I’m defining a function template that has a data type named T.”

Then, in the defined function’s header and body, the data type T (or any other letter or identi-

fier defined in the prefix) is used in the same manner as any built-in data type, such as int,

float, and double.

 EXERCISES 6.1

1. (Practice) For the following function headers, determine the number, type, and order

(sequence) of the values that must be passed to the function:

a. voidƒfactorial(intƒn)

b. voidƒprice(intƒtype,ƒdoubleƒyield,ƒdoubleƒmaturity)

c. voidƒyield(intƒtype,ƒdoubleƒprice,ƒdoubleƒmaturity)

d. voidƒinterest(charƒflag,ƒdoubleƒprice,ƒdoubleƒtime)

e. voidƒtotal(doubleƒamount,ƒdoubleƒrate)

f. voidƒroi(intƒa,ƒintƒb,ƒcharƒc,ƒcharƒd,ƒdoubleƒe,ƒdoubleƒf)

g. voidƒgetVal(intƒitem,ƒintƒiter,ƒcharƒdecflag,ƒcharƒdelim)

G_C7785_06.1c 241G_C7785_06.1c 241 1/18/11 10:47 AM1/18/11 10:47 AM

242 Modularity Using Functions

2. (Practice) a. Write a function named check() that has three parameters. The first parameter

should accept an integer number, and the second and third parameters should accept a double-

precision number. The function body should just display the values of data passed to the func-

tion when it’s called. (Note: When tracing errors in functions, having the function display values

it has been passed is helpful. Quite often, the error isn’t in what the function body does with

data, but in the data received and stored.)

b. Include the function written in Exercise 2a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

3. (Practice) a. Write a function named findAbs() that accepts a double-precision number

passed to it, computes its absolute value, and displays the absolute value. A number’s absolute

value is the number itself if the number is positive and the negative of the number if the

number is negative.

b. Include the function written in Exercise 3a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

4. (Practice) a. Write a function called mult() that accepts two double-precision numbers as

parameters, multiplies these two numbers, and displays the result.

b. Include the function written in Exercise 4a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

5. (Practice) a. Write a function named sqrIt() that computes the square of the value passed

to it and displays the result. The function should be capable of squaring numbers with decimal

points.

b. Include the function written in Exercise 5a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

6. (Practice) a. Write a function named powfun() that raises an integer number passed to it to

a positive integer power and displays the result. The positive integer should be the second

value passed to the function. Declare the variable used to store the result as a long-integer data

type to ensure enough storage for the result.

b. Include the function written in Exercise 6a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

7. (Practice) a. Write a function that produces a table of the numbers from 1 to 10, their squares,

and their cubes. The function should produce the same display as Program 5.10.

b. Include the function written in Exercise 7a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

8. (Modify) a. Modify the function written for Exercise 7a to accept the starting value of the

table, the number of values to be displayed, and the increment between values. If the incre-

ment isn’t set explicitly, the function should use a default value of 1. Name your function

selTab(). A call to selTab(6,5,2); should produce a table of five lines, the first line start-

ing with the number 6 and each succeeding number increasing by 2.

b. Include the function written in Exercise 8a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

G_C7785_06.1c 242G_C7785_06.1c 242 1/18/11 10:47 AM1/18/11 10:47 AM

243Chapter 6
Function and Parameter Declarations

9. (Program) a. The time in hours, minutes, and seconds is to be passed to a function named

totsec(). Write totsec() to accept these values, determine the total number of seconds in

the passed data, and display the calculated value.

b. Include the totsec() function written for Exercise 9a in a working program. The main()

function should correctly call totsec() and display the value the function returns. Use

the following test data to verify your program’s operation: hours = 10, minutes = 36, and

seconds = 54. Make sure to do a hand calculation to verify the result your program displays.

10. (Program) a. The volume, V, of a sphere is given by this formula, where r is the sphere’s

radius:

Volume =
3

34 rπ

 Using this formula, write, compile, and run a C++ function named spherevol() that accepts

a sphere’s radius and then calculates and displays its volume.

b. Include the function written in Exercise 10a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

11. (Program) a. Write and test a C++ function named makeMilesKmTable() to display a table

of miles converted to kilometers. The arguments to the function should be the starting and

stopping values of miles and the increment. The output should be a table of miles and their

equivalent kilometer values. Use the relationship that 1 mile = 1.61 kilometers.

b. Modify the function written for Exercise 12a so that two columns are displayed. For exam-

ple, if the starting value is 1 mile, the ending value is 20 miles, and the increment is 1, the

display should look like the following:

ƒƒƒƒƒƒƒMilesƒƒ=ƒƒKilometersƒƒƒƒMilesƒ=ƒKilometers
ƒƒƒƒƒƒƒƒ1ƒƒƒƒƒƒƒƒƒƒƒ1.61ƒƒƒƒƒƒƒƒ11ƒƒƒƒƒƒƒ17.70
ƒƒƒƒƒƒƒƒ2ƒƒƒƒƒƒƒƒƒƒƒ3.22ƒƒƒƒƒƒƒƒ12ƒƒƒƒƒƒƒ19.31
ƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒƒƒ.ƒƒƒƒƒƒƒƒƒ.
ƒƒƒƒƒƒƒ10ƒƒƒƒƒƒƒƒƒƒ16.09ƒƒƒƒƒƒƒƒ20ƒƒƒƒƒƒƒ32.18

 (Hint : Find split = (start + stop) / 2. Let a loop execute from miles = start to split, and calculate

and print across one line the values of miles and kilometers for both miles and (miles - start +

split + 1).)

12. (Program) a. Write a C++ function that accepts an integer argument, determines whether the

passed integer is even or odd, and displays the result of this determination. (Hint: Use the %

operator.)

b. Include the function written in Exercise 12a in a working program. Make sure your function

is called from main(). Test the function by passing various data to it.

13. (Program) A useful function using no parameters can be constructed to return a value for π

that’s accurate to the maximum number of decimal places your computer allows. This value is

obtained by taking the arcsine of 1.0, which is π / 2, and multiplying the result by 2. In C++,

the required expression is 2.0ƒ*ƒasin(1.0); the asin() function is included in the standard

G_C7785_06.1c 243G_C7785_06.1c 243 1/18/11 10:47 AM1/18/11 10:47 AM

244 Modularity Using Functions

C++ mathematics library. (Remember to include cmath in your preprocessor directives.) Using

this expression, write a C++ function named pi() that calculates and displays the value of π.

(In the next section, you see how to return this value to the calling function.)

14. (Program) a. Write a function template named display() that displays the value of the

single argument passed to it when the function is called.

b. Include the function template created in Exercise 14a in a complete C++ program that calls

the function three times: once with a character argument, once with an integer argument,

and once with a double-precision argument.

6.2 Returning a Single Value

Using the method of passing data to a function explained in the previous section, the called

function receives only copies of the values contained in arguments at the time of the call.

(Review Figure 6.3 if it’s unclear to you.) When a value is passed to a called function in this

manner, the passed argument is referred to as a passed by value and is a distinct advantage of

C++.8 Because the called function doesn’t have direct access to the variables used as argu-

ments by the calling function, it can’t inadvertently alter the value stored in one of these

variables.

The function receiving the passed by value arguments can process the values sent to it in

any fashion and return one, and only one, “legitimate” value directly to the calling function

(see Figure 6.6). In this section, you see how this value is returned to the calling function. As

you might expect, given C++’s flexibility, there’s a way of returning more than a single value,

but that’s the topic of the next section.

A function can receive many values

Only one value can
be directly returned

Figure 6.6 A function directly returns at most one value

8This argument is also referred to as a “call by value.” These terms, however, don’t refer to the function call as a whole, but to how the

calling function passes values to the called function.

G_C7785_06.1c 244G_C7785_06.1c 244 1/18/11 10:47 AM1/18/11 10:47 AM

245Chapter 6
Returning a Single Value

As with calling a function, returning a value directly requires handling the interface

between the called and calling functions correctly. From its side of the return transaction, the

called function must provide the following items:

• The data type of the returned value

• The actual value being returned

A function returning a value must specify, in its header, the data type of the value to be

returned. Recall that the function header includes both the function name and a parameter list.

For example, the findMax() function written previously determines the maximum value of

two numbers passed to it. For convenience, the findMax() code is listed again:

voidƒfindMax(intƒx,ƒintƒy)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstartƒofƒfunctionƒbody
ƒƒintƒmaxnum;ƒƒƒƒƒƒƒƒ//ƒvariableƒdeclaration

ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒƒƒ//ƒfindƒtheƒmaximumƒnumber
ƒƒƒƒmaxnumƒ=ƒx;
ƒƒelse
ƒƒƒƒmaxnumƒ=ƒy;

ƒƒcoutƒƒ<<ƒ“\nTheƒmaximumƒofƒtheƒtwoƒnumbersƒisƒ“
ƒƒƒƒƒƒƒƒ<<ƒmaxnumƒ<<ƒendl;
ƒƒreturn;
}ƒƒ//ƒendƒofƒfunctionƒbodyƒandƒendƒofƒfunction

In this function header, x and y are the names chosen for the function’s parameters:

voidƒfindMax(intƒx,ƒintƒy)

If findMax() is to return a value, its header must be amended to include the data type of

the value being returned. For example, if an integer value is to be returned, this is the correct

function header:

intƒfindMax(intƒx,ƒintƒy)

Similarly, if the function is to receive two floating-point values and return a floating-point

value, this is the correct function header:

floatƒfindMax(floatƒx,ƒfloatƒy)

If the function is to receive two double-precision values and return a double-precision

value, the function header should be the following:9

doubleƒfindMax(doubleƒx,ƒdoubleƒy)

9The return data type is related to the parameter data types only as much as the returned value is determined by the parameter values.

In this case, because the function is used to return the maximum value of its parameters, it would make little sense to return a data

type that doesn’t match the function’s parameter data types.

G_C7785_06.1c 245G_C7785_06.1c 245 1/18/11 10:47 AM1/18/11 10:47 AM

246 Modularity Using Functions

Now see how to modify the findMax() function to return the maximum value of the two

numbers passed to it. To do this, you must first determine the data type of the value to be

returned and include this data type in the function header. Because the maximum value deter-

mined by findMax() is stored in the integer variable maxnum, the function should return this

variable’s value. Returning an integer value from findMax() requires the following function

declaration:

intƒfindMax(intƒx,ƒintƒy)

Observe that it’s the same as the original function header for findMax(), with the key-

word int substituted for the keyword void.

Having declared the data type that findMax() will return, all that remains is including a

statement in the function to cause the return of the correct value. To return a value, a function

must use a return statement, which has this form:10

returnƒexpression;

When the return statement is encountered, the expression is evaluated first. The value

of the expression is then automatically converted to the data type declared in the function

header before being sent back to the calling function. After the value is returned, program

control reverts to the calling function. Therefore, to return the value stored in maxnum, all

you need to do is include the statement returnƒmaxnum; before the closing brace of the

findMax() function. The complete function code is as follows:

 int findMax(int x, int y) // function header
{ // start of function body
 int maxnum; // variable declaration
 if (x >= y)
 maxnum = x;
 else
 maxnum = y;

 return maxnum; // return statement
}

These should
be the same
data type

In this new code for the findMax() function, notice that the data type of the expression in

the return statement matches the data type in the function header. It’s up to the programmer

to ensure this match for every function returning a value. Failure to match the return value with

the function’s declared data type exactly might not result in an error when your program is

compiled, but it could lead to undesired results because the return value is always converted to

the data type declared in the function declaration. Usually, this is a problem only when the

fractional part of a returned floating-point or double-precision number is truncated because the

function was declared to return an integer value.

10Many programmers place the expression in parentheses, as in returnƒ(expression);. Although either form (with or without

parentheses) can be used, choose one and stay with it for consistency.

G_C7785_06.1c 246G_C7785_06.1c 246 1/18/11 10:47 AM1/18/11 10:47 AM

247Chapter 6
Returning a Single Value

Having taken care of the sending side of the return transaction, you must now prepare the

calling function to receive the value sent by the called function. On the calling (receiving) side,

the calling function must

• Be alerted to the type of value to expect back from the called function.

• Use the return value correctly.

Alerting the calling function to the type of return value to expect is taken care of by the

function prototype. For example, including the function prototype

intƒfindMax(int,ƒint);

before the main() function is enough to alert main() that findMax() is a function that

returns an integer value.

To actually use a return value, you must provide a variable to store the value or use the

value in an expression. To store the return value in a variable, you use a standard assignment

statement. For example, the following assignment statement can be used to store the value

returned by findMax() in the variable max:

maxƒ=ƒfindMax(firstnum,ƒsecnum);

This assignment statement does two things. First, the right side of the assignment state-

ment calls findMax(), and then the result returned by findMax() is stored in the variable

max. Because the value returned by findMax() is an integer, the variable max must also be

declared as an integer variable in the calling function’s variable declarations.

The value a function returns need not be stored in a variable, but it can be used wher-

ever an expression is valid. For example, the expression 2ƒ*ƒfindMax(firstnum,ƒsecnum)

multiplies the value returned by findMax() by 2, and the following statement displays the

return value:

coutƒ<<ƒfindMax(firstnum,ƒsecnum);

Program 6.4 illustrates including prototype and assignment statements for main() to

declare, call, and store a return value from findMax() correctly. As before, and in keeping

with the convention of placing the main() function first, the findMax() function is placed

after main().

 Program 6.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒfindMax(int,ƒint);ƒ//ƒtheƒfunctionƒprototype

intƒmain()
{
ƒƒintƒfirstnum,ƒsecnum,ƒmax;

☞

G_C7785_06.1c 247G_C7785_06.1c 247 1/18/11 10:47 AM1/18/11 10:47 AM

248 Modularity Using Functions

ƒƒcoutƒ<<ƒ“\nEnterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒfirstnum;
ƒƒcoutƒ<<ƒ“Great!ƒPleaseƒenterƒaƒsecondƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒsecnum;

ƒƒmaxƒ=ƒfindMax(firstnum,ƒsecnum);ƒ//ƒtheƒfunctionƒisƒcalledƒhere

ƒƒcoutƒ<<ƒ“\nTheƒmaximumƒofƒtheƒtwoƒnumbersƒisƒ“ƒ<<ƒmaxƒ<<ƒendl;

ƒƒreturnƒ0;
}

intƒfindMax(intƒx,ƒintƒy)
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstartƒofƒfunctionƒbody
ƒƒintƒmaxnum;ƒƒƒƒƒƒƒƒƒ//ƒvariableƒdeclaration

ƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒƒƒƒ//ƒfindƒtheƒmaximumƒnumber
ƒƒƒƒmaxnumƒ=ƒx;
ƒƒelse
ƒƒƒƒmaxnumƒ=ƒy;

ƒƒreturnƒmaxnum;ƒƒƒƒƒƒ//ƒreturnƒstatement
}

In reviewing Program 6.4, note the four items introduced in this section. First, the function

prototype for findMax() is a statement ending with a semicolon, as all declaration statements

do; it alerts main() and any subsequent functions using findMax() to the data type that

findMax() returns. Second, an assignment statement is used in main() to store the return

value from the findMax() call in the variable max. In Program 6.4, max is declared correctly as

an integer in main()’s variable declarations so that it matches the return value’s data type.

The third and fourth items concern coding the findMax() function: The first line of

findMax() declares that the function returns an integer value, and the expression in the

return statement evaluates to a matching data type. Therefore, findMax() is internally con-

sistent in sending an integer value back to main(), and main() has been alerted to receive

and use the returned integer.

In writing your own functions, always keep these four items in mind. For another example,

see whether you can identify these four items in Program 6.5.

G_C7785_06.1c 248G_C7785_06.1c 248 1/18/11 10:47 AM1/18/11 10:47 AM

249Chapter 6
Returning a Single Value

 Program 6.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

doubleƒtempvert(double);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒconstƒintƒCONVERTSƒ=ƒ4;ƒƒ//ƒnumberƒofƒconversionsƒtoƒbeƒmade
ƒƒintƒcount;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstartƒofƒvariableƒdeclarations
ƒƒdoubleƒfahren;

ƒƒfor(countƒ=ƒ1;ƒcountƒ<=ƒCONVERTS;ƒcount++)
ƒƒ{
ƒƒcoutƒ<<ƒ“\nEnterƒaƒFahrenheitƒtemperature:ƒ“;
ƒƒcinƒƒ>>ƒfahren;
ƒƒcoutƒ<<ƒ“TheƒCelsiusƒequivalentƒisƒ“
ƒƒƒƒƒƒƒ<<ƒtempvert(fahren)ƒ<<ƒendl;
ƒƒ}

ƒƒreturnƒ0;
}

//ƒconvertƒfahrenheitƒtoƒcelsius
doubleƒtempvert(doubleƒinTemp)
{
ƒƒreturnƒ(5.0/9.0)ƒ*ƒ(inTempƒ-ƒ32.0);
}

In reviewing Program 6.5, first analyze the tempvert() function. Its definition begins with

the function header and ends with the closing brace after the return statement. The function

is declared as a double, meaning the expression in the function’s return statement must

evaluate to a double-precision number, which it does. Because a function header is not a state-

ment but the start of the code defining the function, it doesn’t end with a semicolon.

On the receiving side, main() has a prototype for the tempvert() function that agrees

with tempvert()’s function definition. No variable is declared in main() to store the returned

value from tempvert() because the returned value is passed immediately to cout for display.

G_C7785_06.1c 249G_C7785_06.1c 249 1/18/11 10:47 AM1/18/11 10:47 AM

250 Modularity Using Functions

Finally, one purpose of declarations, as you learned in Chapter 2, is to alert the computer

to the amount of internal storage reserved for data. The prototype for tempvert() performs

this task and alerts the compiler to the type of storage needed for the return value. Had the

tempvert() function definition been placed before main(), the function header would serve

the same purpose, and the function prototype could be eliminated. Because main() is always

the first function in a program, however, you must include function prototypes for all functions

called by main() and any subsequent functions.

Inline Functions11

Calling a function places a certain amount of overhead on a computer. This overhead consists

of the following steps:

1. Placing argument values in a reserved memory region (called the stack) that the func-

tion has access to

2. Passing control to the function

3. Providing a reserved memory location for any return value (again, using the stack for

this purpose)

4. Returning to the correct point in the calling program

Paying this overhead is justified when a function is called many times because it can

reduce a program’s size substantially. Instead of the same code being repeated each time it’s

needed, the code is written once, as a function, and called whenever it’s needed.

For small functions that aren’t called many times, however, the overhead of passing and

returning values might not be warranted. It would still be convenient to group repeating lines

of code under a common function name and have the compiler place this code in the program

wherever the function is called. Inline functions provide this capability.

Telling the C++ compiler that a function is inline causes a copy of the function code to be

placed in the program at the point the function is called. For example, because the tempvert()

function in Program 6.5 is fairly short, it’s an ideal candidate to be an inline function. To make

it, or any other function, an inline one simply requires placing the reserved keyword inline

before the function name and defining the function before any calls are made to it. Program 6.6

makes tempvert() an inline function.

 Program 6.6

#includeƒ<iostream>
usingƒnamespaceƒstd;

inlineƒdoubleƒtempvert(doubleƒinTemp)ƒƒ//ƒanƒinlineƒfunction
{
ƒƒreturnƒ(5.0/9.0)ƒ*ƒ(inTempƒ-ƒ32.0);
}

11This section is optional and can be omitted on first reading without loss of subject continuity.

☞

G_C7785_06.1c 250G_C7785_06.1c 250 1/18/11 10:47 AM1/18/11 10:47 AM

251Chapter 6
Returning a Single Value

intƒmain()
{
ƒƒconstƒintƒCONVERTSƒ=ƒ4;ƒƒ//ƒnumberƒofƒconversionsƒtoƒbeƒmade
ƒƒintƒcount;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstartƒofƒvariableƒdeclarations
ƒƒdoubleƒfahren;

ƒƒfor(countƒ=ƒ1;ƒcountƒ<=ƒCONVERTS;ƒcount++)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nEnterƒaƒFahrenheitƒtemperature:ƒ“;
ƒƒƒƒcinƒƒ>>ƒfahren;
ƒƒƒƒcoutƒ<<ƒ“TheƒCelsiusƒequivalentƒisƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒtempvert(fahren)ƒ<<ƒendl;
ƒƒ}

ƒƒreturnƒ0;
}

Observe in Program 6.6 that the inline function is placed ahead of any calls to it. This

placement is a requirement of all inline functions, so a function prototype isn’t needed before

subsequent calling functions. Because the function is now inline, its code is expanded into the

program wherever it’s called.

The advantage of using an inline function is an increase in execution speed. Because the

inline function is expanded and included in every expression or statement calling it, no execu-

tion time is lost because of the call, return, and stack overhead a non-inline function requires.

The disadvantage is the increase in program size when an inline function is called repeatedly.

Each time an inline function is referenced, the complete function code is reproduced and

stored as an integral part of the program. A non-inline function, however, is stored in memory

only once. No matter how many times the function is called, the same code is used. Therefore,

inline functions should be used only for small functions that aren’t called extensively in a

program.

Templates with a Return Value12

In Section 6.1, you saw how to construct a function template. Returning a value from a func-

tion template is identical to returning a value from a function. For example, take a look at the

following function template:

templateƒ<classƒT>ƒ//ƒtemplateƒprefix
Tƒabs(Tƒvalue)ƒƒƒƒƒ//ƒfunctionƒheader
{
ƒƒTƒabsnum;ƒƒ//ƒvariableƒdeclaration

ƒƒifƒ(valueƒ<ƒ0)
ƒƒƒƒabsnumƒ=ƒ-value;

12This section is optional and can be omitted on first reading without loss of subject continuity.

☞

G_C7785_06.1c 251G_C7785_06.1c 251 1/18/11 10:47 AM1/18/11 10:47 AM

252 Modularity Using Functions

ƒƒelse
ƒƒƒƒabsnumƒ=ƒvalue;

ƒƒreturnƒabsnum;
}

In this template definition, the date type T is used to declare three items: the return type

of the function, the data type of a single function parameter named value, and one variable

declared within the function. Program 6.7 shows how this function template could be used in

the context of a complete program.

 Program 6.7

#includeƒ<iostream>
usingƒnamespaceƒstd;

templateƒ<classƒT>ƒ//ƒtemplateƒprefix
Tƒabs(Tƒvalue)ƒƒƒƒƒ//ƒfunctionƒheader
{
ƒƒTƒabsnum;ƒƒƒƒƒƒƒƒ//ƒvariableƒdeclaration

ƒƒifƒ(valueƒ<ƒ0)
ƒƒƒƒabsnumƒ=ƒ-value;
ƒƒelse
ƒƒƒƒabsnumƒ=ƒvalue;

ƒƒreturnƒabsnum;
}

intƒmain()
{
ƒƒintƒnum1ƒ=ƒ-4;
ƒƒfloatƒnum2ƒ=ƒ-4.23F;
ƒƒdoubleƒnum3ƒ=ƒ-4.23456;

ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒ“ƒ<<ƒnum1
ƒƒƒƒƒƒƒ<<ƒ“ƒisƒ“ƒ<<ƒabs(num1)ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒ“ƒ<<ƒnum2
ƒƒƒƒƒƒƒ<<ƒ“ƒisƒ“ƒ<<ƒabs(num2)ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒ“ƒ<<ƒnum3
ƒƒƒƒƒƒƒ<<ƒ“ƒisƒ“ƒ<<ƒabs(num3)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

G_C7785_06.1c 252G_C7785_06.1c 252 1/18/11 10:47 AM1/18/11 10:47 AM

253Chapter 6
Returning a Single Value

In the first call to abs() made within main(), an integer value is passed as an argument.

In this case, the compiler substitutes an int data type for the T data type in the function tem-

plate and creates the following function:

intƒabs(intƒvalue)ƒ//ƒfunctionƒheader
{
ƒƒintƒabsnum;ƒƒƒƒƒƒ//ƒvariableƒdeclaration

ƒƒifƒ(valueƒ<ƒ0)
ƒƒƒƒabsnumƒ=ƒ-value;
ƒƒelse
ƒƒƒƒabsnumƒ=ƒvalue;

ƒƒreturnƒ(absnum);
}

Similarly, in the second and third function calls, the compiler creates two more functions:

one in which the data type T is replaced by the keyword float and one in which the data type

T is replaced by the keyword double. This is the output produced by Program 6.7:

Theƒabsoluteƒvalueƒofƒ-4ƒisƒ4
Theƒabsoluteƒvalueƒofƒ-4.23ƒisƒ4.23
Theƒabsoluteƒvalueƒofƒ-4.23456ƒisƒ4.23456

The value of using a function template is that one function definition has been used to

create three different functions, each of which uses the same logic and operations but operates

on different data types.

Finally, although both Programs 6.3 and 6.7 define a function template using a single

placeholder data type, function templates with more than one data type can be defined. For

example, the following template prefix can be used to create a function template requiring

three different data types:

templateƒ<classƒDTYPE1,ƒclassƒDTYPE2,ƒclassƒDTYPE3>

As before, in the function template’s header and body, the data types DTYPE1, DTYPE2, and

DTYPE3 are used in the same manner as any built-in data type, such as an int, float, and

double. Also, as noted previously, the names DTYPE1, DTYPE2, and DTYPE3 can be any non-

keyword identifier. Conventionally, the letter T followed by zero or more digits is used, such

as T, T1, T2, T3, and so forth.

 EXERCISES 6.2

1. (Modify) Rewrite Program 6.4 so that the findMax() function accepts two double-precision

arguments and returns a double-precision value to main(). Make sure to modify main() to

pass two double-precision values to findMax() and to accept and store the double-precision

value returned by findMax().

G_C7785_06.1c 253G_C7785_06.1c 253 1/18/11 10:47 AM1/18/11 10:47 AM

254 Modularity Using Functions

2. (Practice) Write function headers for the following functions:

a. A function named check(), which has three parameters. The first parameter should accept

an integer number, the second parameter a floating-point number, and the third parameter

a double-precision number. The function returns no value.

b. A function named findAbs() that accepts a double-precision number passed to it and

returns that number’s absolute value.

c. A function named mult() that accepts two floating-point numbers as parameters, multi-

plies these two numbers, and returns the result.

d. A function named square() that computes and returns the square of the integer value

passed to it.

e. A function named powfun() that raises an integer number passed to it to a positive integer

power (also passed as an argument) and returns the result as an integer.

f. A function named table() that produces a table of numbers from 1 to 10, their squares, and

their cubes. No arguments are to be passed to the function, and the function returns no value.

3. (Program) a. Write a function named rightTriangle() that accepts the lengths of two sides

of a right triangle as the arguments a and b. The subroutine should determine and return the

hypotenuse, c, of the triangle. (Hint: Use Pythagoras’ theorem, c2 = a2 + b2.)

b. Include the function written for Exercise 3a in a working program. The main() function

should call rightTriangle() correctly and display the value the function returns. Test the

function by passing various data to it and verifying the returned value.

4. (Program) a. Write a C++ function named findAbs() that accepts a double-precision num-

ber passed to it, computes its absolute value, and returns the absolute value to the calling

function. A number’s absolute value is the number itself if the number is positive and the

negative of the number if the number is negative.

b. Include the function written in Exercise 4a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

5. (Program) a. The volume, V, of a cylinder is given by the formula

 V = π r 2 L

 where r is the cylinder’s radius and L is its length. Using this formula, write a C++ function

named cylvol() that accepts a cylinder’s radius and length and returns its volume.

b. Include the function written in Exercise 5a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

6. (Program) a. The surface area, S, of a cylinder is given by the formula

 S = 2 π r l

 where r is the cylinder’s radius, and l is the length of the cylinder. Using this formula, write a

C++ function named surfarea() that accepts a cylinder’s radius and length and returns its

surface area.

G_C7785_06.1c 254G_C7785_06.1c 254 1/18/11 10:47 AM1/18/11 10:47 AM

255Chapter 6
Returning a Single Value

b. Include the function written in Exercise 6a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

7. (Program) a. Write a function named totamt() that uses four parameters named quarters,

dimes, nickels, and pennies, which represent the number of each of these coins in a pig-

gybank. The function should determine the dollar value of the number of quarters, dimes,

nickels, and pennies passed to it and return the calculated value.

b. Include the function written in Exercise 7a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

8. (Program) a. Write a function named daycount() that accepts a month, day, and year as its

input arguments; calculates an integer representing the total number of days from the turn of

the century to the date that’s passed; and returns the calculated integer to the calling function.

For this problem, assume each year has 365 days and each month has 30 days. Test your func-

tion by verifying that the date 1/1/00 returns a day count of 1.

b. Include the daycount() function written for Exercise 8a in a working program. The

main() function should correctly call daycount() and display the integer returned by the

function. Test the function by passing various data to it and verifying the returned value.

9. (Program) a. A clever and simple method of preparing to sort dates into ascending (increas-

ing) or descending (decreasing) order is to convert a date in the form month/day/year into an

integer number with the formula date = year × 10000 + month × 100 + day. For example, using

this formula, the date 12/6/1999 converts to the integer 19991206, and the date 2/28/2011 con-

verts to the integer 20110228. Sorting the resulting integer numbers puts dates into the correct

order automatically. Using this formula, write a function named convertdays() that accepts

a month, day, and year; converts the passed data into a single date integer; and returns the

integer to the calling function.

b. Include the convertdays() function written for Exercise 9a in a working program. The

main() function should call convertdays() correctly and display the integer the function

returns. Test the function by passing various data to it and verifying the returned value.

10. (Program) a. Write a function named ReadOneChar() that reads a key pressed on the key-

board and displays the integer code of the entered character.

b. Include the ReadOneChar() function written for Exercise 10a in a working program. The

main() function should correctly call ReadOneChar() and display the integer the function

returns. Test the function by passing various data to it and verifying the returned value.

11. (Program) Heron’s formula for the area, A, of a triangle with sides of length a, b, and c is

A s s a s b s c= ()()()⎡⎣ ⎤⎦- - -

where

s
a b c

=
+ +()

2

G_C7785_06.1c 255G_C7785_06.1c 255 1/18/11 10:47 AM1/18/11 10:47 AM

256 Modularity Using Functions

 Write, test, and execute a function that accepts the values of a, b, and c as parameters from a

calling function, and then calculates the values of s and [s(s - a)(s - b)(s - c)]. If this quantity is

positive, the function calculates A. If the quantity is negative, a, b, and c do not form a triangle,

and the function should set A = -1. The value of A should be returned by the function. Test

the function by passing various data to it and verifying the returned value.

12. (Program) a. Write a function named whole() that returns the integer part of any number

passed to the function. (Hint: Assign the passed argument to an integer variable.)

b. Include the function written in Exercise 12a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

13. (Program) a. Write a C++ function named fracpart() that returns the fractional part of any

number passed to it. For example, if the number 256.879 is passed to fracpart(), the num-

ber 0.879 should be returned. Have fracpart() call the whole() function you wrote in

Exercise 12. The number returned can then be determined as the number passed to

fracpart() less the returned value when the same argument is passed to whole(). The

completed program should consist of main() followed by fracpart() followed by whole().

b. Include the function written in Exercise 13a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

14. (Program) a. Years that are evenly divisible by 400 or are evenly divisible by 4 but not by 100

are leap years. For example, because 1600 is evenly divisible by 400, 1600 was a leap year.

Similarly, because 1988 is evenly divisible by 4 but not by 100, it was also a leap year. Using

this information, write a C++ function that accepts the year as user input and returns a 1 if the

passed year is a leap year or a 0 if it isn’t.

b. Include the function written in Exercise 14a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

15. (Program) a. A second-degree polynomial in x is given by the expression ax2 + bx + c, where a,

b, and c are known numbers and a is not equal to 0. Write a C++ function named polyTwo
(a,b,c,x) that computes and returns the value of a second-degree polynomial for any passed

values of a, b, c, and x.

b. Include the function written in Exercise 15a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

G_C7785_06.1c 256G_C7785_06.1c 256 1/18/11 10:47 AM1/18/11 10:47 AM

257Chapter 6
Returning Multiple Values

16. (Program) a. The following is a useful programming algorithm for rounding a real number to

n decimal places:

Step 1: Multiply the number by 10n.

Step 2: Add 0.5.

Step 3: Delete the fractional part of the result.

Step 4: Divide by 10n.

 For example, using this algorithm to round the number 78.374625 to three decimal places

yields:

Step 1: 78.374625 × 103 = 78374.625

Step 2: 78374.625 + 0.5 = 78375.125

Step 3: Retaining the integer part = 78375

Step 4: 78375 divided by 103 = 78.375

 Using this algorithm, write a C++ function that accepts a user-entered value and returns the

result rounded to two decimal places.

b. Include the function written in Exercise 16a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

6.3 Returning Multiple Values

In a typical function invocation, the called function receives values from its calling function,

stores and manipulates the passed values, and directly returns at most one value. When data is

passed in this manner, it’s referred to as a pass by value.

Calling a function and passing arguments by value is a distinct advantage of C++. It allows

functions to be written as independent entities that can use any variable or parameter name

without concern that other functions might be using the same name. It also alleviates any

concern that altering a parameter or variable in one function could inadvertently alter a param-

eter or variable’s value in another function. In this approach, parameters can be considered

initialized variables, or variables assigned values when the function is executed. At no time,

however, does the called function have direct access to any variable defined in the calling func-

tion, even if the variable is used as an argument in the function call.

At times, however, you need to modify this approach by giving a called function direct

access to its calling function’s variables. This approach allows one function—the called

function—to use and change the value of variables that have been defined in the calling func-

tion. Doing so requires passing the variable’s address to the called function. After the called

function has the variable’s address, it “knows where the variable lives,” so to speak, and can

access and change the value stored there.

G_C7785_06.1c 257G_C7785_06.1c 257 1/18/11 10:47 AM1/18/11 10:47 AM

258 Modularity Using Functions

Passing addresses is referred to as a function pass by reference13 because the called func-

tion can reference, or access, the variable whose address has been passed. C++ provides two

types of address parameters: references and pointers. The next section describes the method

that uses reference parameters.

Passing and Using Reference Parameters
As always, when exchanging data between two functions, you must be concerned with both

the sending and receiving sides. From the sending side, calling a function and passing an

address as an argument that’s accepted as a reference parameter on the receiving side is the

same as calling a function and passing a value; the called function is summoned into action by

giving its name and a list of arguments. For example, the statement newval(firstnum,

secnum); calls the function named newval() and passes two arguments to it. Whether a value

or an address is actually passed depends on the parameter types declared for newval(). Now

take a look at writing the newval() function and prototype so that it receives the addresses

rather than the values of the variables firstnum and secnum, which are assumed to be double-

precision variables.

One of the first requirements in writing newval() is to declare two reference parameters

for accepting passed addresses. In C++, a reference parameter is declared with this syntax:

dataType&ƒreferenceName

For example, the reference declaration

double&ƒnum1;

declares that num1 is a reference parameter used to store the address of a double. Similarly,

int&ƒsecnum; declares that secnum is a reference to an integer, and char&ƒkey; declares

that key is a reference to a character.

The ampersand, &, in C++ means “the address of.” Additionally, when & is used in a dec-

laration, it refers to “the address of” the preceding data type. Using this information, declara-

tions such as double&ƒnum1 and int&ƒsecnum are sometimes more clearly understood if

they’re read backward. Reading the declaration double&ƒnum1 in this manner yields the infor-

mation “num1 is the address of a double-precision value.” (This topic is discussed in more

detail in Section 8.1.)

Because you need to accept two addresses in the parameter list for newval(), the declara-

tions double&ƒnum1 and double&ƒnum2 can be used. Including these declarations in the

parameter list for newval(), and assuming the function returns no value (void), the function

header for newval() becomes the following:

voidƒnewval(double&ƒnum1,ƒdouble&ƒnum2)

For this function header, the following is a suitable function prototype:

voidƒnewval(double&,ƒdouble&);

13It’s also referred to as a “call by reference,” and again, both terms refer only to the argument whose address has been passed.

G_C7785_06.1c 258G_C7785_06.1c 258 1/18/11 10:47 AM1/18/11 10:47 AM

259Chapter 6
Returning Multiple Values

This prototype and function header are included in Program 6.8, which uses a newval()

function body that displays and alters the values stored in these reference variables from

within the called function.

 Program 6.8

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒnewval(double&,ƒdouble&);ƒƒ//ƒprototypeƒwithƒtwoƒreferenceƒparameters

intƒmain()
{
ƒƒdoubleƒfirstnum,ƒsecnum;

ƒƒcoutƒ<<ƒ“Enterƒtwoƒnumbers:ƒ“;
ƒƒcinƒƒ>>ƒfirstnumƒ>>ƒsecnum;
ƒƒcoutƒ<<ƒ“\nTheƒvalueƒinƒfirstnumƒis:ƒ“ƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒinƒsecnumƒis:ƒ“ƒ<<ƒsecnumƒ<<ƒ“\n\n”;

ƒƒnewval(firstnum,ƒsecnum);ƒƒƒƒƒ//ƒcallƒtheƒfunction

ƒƒcoutƒ<<ƒ“Theƒvalueƒinƒfirstnumƒisƒnow:ƒ“ƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒinƒsecnumƒisƒnow:ƒ“ƒ<<ƒsecnumƒ<<ƒendl;

ƒƒreturnƒ0;
}

voidƒnewval(double&ƒxnum,ƒdouble&ƒynum)
{
ƒƒcoutƒ<<ƒ“Theƒvalueƒinƒxnumƒis:ƒ“ƒ<<ƒxnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒinƒynumƒis:ƒ“ƒ<<ƒynumƒ<<ƒ“\n\n”;
ƒƒxnumƒ=ƒ89.5;
ƒƒynumƒ=ƒ99.5;

ƒƒreturn;
}

In calling the newval() function in Program 6.8, you need to understand the connection

between the arguments used in the function call, firstnum and secnum, and the parameters

used in the function header, xnum and ynum. Both refer to the same data items. The signifi-

cance is that the values in the arguments (firstnum and secnum) can now be altered from

within newval() by using the parameter names (xnum and ynum). Therefore, the parameters

G_C7785_06.1c 259G_C7785_06.1c 259 1/18/11 10:47 AM1/18/11 10:47 AM

260 Modularity Using Functions

xnum and ynum don’t store copies of the values in firstnum and secnum; instead, they access

the locations in memory set aside for these two arguments.

Figure 6.7 shows the equivalence of argument names in Program 6.8, which is the essence

of a pass by reference. The argument names and their matching parameter names are simply

different names referring to the same memory storage areas. In main(), these memory loca-

tions are referenced by the argument names firstnum and secnum, and in newval(), the

same locations are referenced by the parameter names xnum and ynum.

firstnum

xnum

One value is stored

secnum

ynum

In main() the values
are referenced as

In newval() the same values
are referenced as

One value is stored

Figure 6.7 The equivalence of arguments and parameters in Program 6.8

The following is a sample run of Program 6.8:

Enterƒtwoƒnumbers:ƒ22.5ƒ33.0

Theƒvalueƒinƒfirstnumƒis:ƒ22.5
Theƒvalueƒinƒsecnumƒis:ƒ33

Theƒvalueƒinƒxnumƒis:ƒ22.5
Theƒvalueƒinƒynumƒis:ƒ33
Theƒvalueƒinƒfirstnumƒisƒnow:ƒ89.5
Theƒvalueƒinƒsecnumƒisƒnow:ƒ99.5

In reviewing this output, notice that the values initially displayed for the parameters xnum

and ynum are the same as those displayed for the arguments firstnum and secnum. Because

xnum and ynum are reference parameters, however, newval() now has direct access to the

arguments firstnum and secnum. Therefore, any change to xnum in newval() alters the

value of firstnum in main(), and any change to ynum changes secnum’s value. As the final

displayed values show, the assignment of values to xnum and ynum in newval() is reflected in

main() as the altering of firstnum’s and secnum’s values.

The equivalence between actual calling arguments and function parameters shown in

Program 6.8 provides the basis for returning multiple values from within a function. For

example, say you want to write a function to accept three values, compute these values’ sum

G_C7785_06.1c 260G_C7785_06.1c 260 1/18/11 10:47 AM1/18/11 10:47 AM

261Chapter 6
Returning Multiple Values

and product, and return these computed results to the calling routine. By naming the function

calc() and providing five parameters (three for input data and two references for returned

values), the following function can be used:

voidƒcalc(doubleƒn1,ƒdoubleƒn2,ƒdoubleƒn3,ƒdouble&ƒsum,ƒdouble&ƒproduct)
{
ƒƒsumƒ=ƒn1ƒ+ƒn2ƒ+ƒn3;
ƒƒproductƒ=ƒn1ƒ*ƒn2ƒ*ƒn3;
ƒƒreturn;
}

This function has five parameters named n1, n2, n3, sum, and product. Only the last two

are declared as references, so the first three arguments are passed by value and the last two

arguments are passed by reference. In this function, only the last two parameters are altered.

The value of the fourth parameter, sum, is calculated as the sum of the first three parameters,

and the last parameter, product, is computed as the product of the parameters n1, n2, and n3.

Program 6.9 includes this function in a complete program.14

 Program 6.9

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒcalc(double,ƒdouble,ƒdouble,ƒdouble&,ƒdouble&);ƒ//ƒprototype

intƒmain()
{
ƒƒdoubleƒfirstnum,ƒsecnum,ƒthirdnum,ƒsum,ƒproduct;

ƒƒcoutƒ<<ƒ“Enterƒthreeƒnumbers:ƒ“;
ƒƒcinƒƒ>>ƒfirstnumƒ>>ƒsecnumƒ>>ƒthirdnum;

ƒƒcalc(firstnum,ƒsecnum,ƒthirdnum,ƒsum,ƒproduct);ƒ//ƒfunctionƒcall

ƒƒcoutƒ<<ƒ“\nTheƒsumƒofƒtheƒnumbersƒis:ƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒproductƒofƒtheƒnumbersƒis:ƒ“ƒ<<ƒproductƒ<<ƒendl;

ƒƒreturnƒ0;
}

voidƒcalc(doubleƒn1,ƒdoubleƒn2,ƒdoubleƒn3,ƒdouble&ƒsum,ƒdouble&ƒproduct)
{

14One of these values could, of course, be returned directly by the function.

☞

G_C7785_06.1c 261G_C7785_06.1c 261 1/18/11 10:47 AM1/18/11 10:47 AM

262 Modularity Using Functions

ƒƒsumƒ=ƒn1ƒ+ƒn2ƒ+ƒn3;
ƒƒproductƒ=ƒn1ƒ*ƒn2ƒ*ƒn3;
ƒƒreturn;
}

In main(), the calc() function is called with the five arguments firstnum, secnum,

thirdnum, sum, and product. As required, these arguments agree in number and data type

with the parameters declared by calc(). Of the five arguments passed, only firstnum,

secnum, and thirdnum have been assigned values when the call to calc() is made. The

remaining two arguments haven’t been initialized and are used to receive values back from

calc(). Depending on the compiler used, these arguments initially contain zeros or “garbage”

values. Figure 6.8 shows the relationship between actual and parameter names and the values

they contain after the return from calc().

num2
num3

num1

10.06.02.5

A value is passed
main()

calc()

Argument names used in main()

Parameter names used in calc()

10.0

thirdnum

6.0

secnum

2.5

firstnum

total

18.5

sum

product

150.0

product

Figure 6.8 The relationship between argument and parameter names

After calc() is called, it uses its first three parameters to calculate values for sum and

product and then returns control to main(). Because of the order of its actual calling argu-

ments, main() knows the values calculated by calc() as sum and product, which are then

displayed. Following is a sample run of Program 6.9:

Enterƒthreeƒnumbers:ƒ2.5ƒ6.0ƒ10.0

Theƒsumƒofƒtheƒenteredƒnumbersƒis:ƒ18.5
Theƒproductƒofƒtheƒenteredƒnumbersƒis:ƒ150

As a final example of the usefulness of passing references to a called function, take a look

at constructing a function named swap() that exchanges the values of two of main()’s double-

precision variables. This type of function is useful when sorting a list of numbers.

G_C7785_06.1c 262G_C7785_06.1c 262 1/18/11 10:47 AM1/18/11 10:47 AM

263Chapter 6
Returning Multiple Values

Because the value of more than one variable is affected, swap() can’t be written as a pass

by value function that returns a single value. The exchange of main()’s variables by swap()

can be accomplished only by giving swap() access to main()’s variables. One way of doing

this is using reference parameters.

You have already seen how to pass references to two variables in Program 6.8. Now you

see how to construct a function to exchange the values in the passed reference parameters.

Exchanging values in two variables is done with this three-step exchange algorithm:

1. Save the first parameter’s value in a temporary location (see Figure 6.9a).

num1temp num2

Figure 6.9a Save the first value

2. Store the second parameter’s value in the first variable (see Figure 6.9b).

num1temp num2

Figure 6.9b Replace the first value with the second value

3. Store the temporary value in the second parameter (see Figure 6.9c).

num2num1temp

Figure 6.9c Change the second value

Following is the swap() function written according to these specifications:

voidƒswap(double&ƒnum1,ƒdouble&ƒnum2)
{
ƒƒdoubleƒtemp;

ƒƒtempƒ=ƒnum1;ƒƒƒƒƒ//ƒsaveƒnum1'sƒvalue
ƒƒnum1ƒ=ƒnum2;ƒƒƒƒƒ//ƒstoreƒnum2'sƒvalueƒinƒnum1
ƒƒnum2ƒ=ƒtemp;ƒƒƒƒƒ//ƒchangeƒnum2'sƒvalue

ƒƒreturn;
}

G_C7785_06.1c 263G_C7785_06.1c 263 1/18/11 10:47 AM1/18/11 10:47 AM

264 Modularity Using Functions

Notice that the use of references in swap()’s function header gives swap() access to

equivalent arguments in the calling function. Therefore, any changes to the two reference

parameters in swap() change the values in the calling function’s arguments automatically.

Program 6.10 contains swap() in a complete program.

 Program 6.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒswap(double&,ƒdouble&);ƒƒ//ƒfunctionƒreceivesƒtwoƒreferences

intƒmain()
{
ƒƒdoubleƒfirstnumƒ=ƒ20.5,ƒsecnumƒ=ƒ6.25;

ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒfirstnumƒis:ƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒsecnumƒis:ƒ“
ƒƒƒƒƒƒƒ<<ƒsecnumƒ<<ƒ“\n\n”;

ƒƒswap(firstnum,ƒsecnum);ƒƒ//ƒcallƒtheƒfunctionƒwithƒreferences

ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒfirstnumƒisƒnow:ƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒsecnumƒisƒnow:ƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒsecnumƒ<<ƒendl;

ƒƒreturnƒ0;
}

voidƒswap(double&ƒnum1,ƒdouble&ƒnum2)
{
ƒƒdoubleƒtemp;

ƒƒtempƒ=ƒnum1;ƒƒƒƒƒƒ//ƒsaveƒnum1'sƒvalue
ƒƒnum1ƒ=ƒnum2;ƒƒƒƒƒƒ//ƒstoreƒnum2'sƒvalueƒinƒnum1
ƒƒnum2ƒ=ƒtemp;ƒƒƒƒƒƒ//ƒchangeƒnum2'sƒvalue

ƒƒreturn;
}

G_C7785_06.1c 264G_C7785_06.1c 264 1/18/11 10:47 AM1/18/11 10:47 AM

265Chapter 6
Returning Multiple Values

The following is a sample run of Program 6.10:

Theƒvalueƒstoredƒinƒfirstnumƒis:ƒ20.5
Theƒvalueƒstoredƒinƒsecnumƒis:ƒ6.25

Theƒvalueƒstoredƒinƒfirstnumƒisƒnow:ƒ6.25
Theƒvalueƒstoredƒinƒsecnumƒisƒnow:ƒ20.5

As shown by this output, the values stored in main()’s variables have been modified from

within swap(), which was made possible by using reference parameters. If a pass by value had

been used instead, the exchange in swap() would affect only swap()’s parameters and accom-

plish nothing with main()’s variables. A function such as swap() can be written only by using

a reference or some other means that provides access to main()’s variables. (This other means

is by pointers, the topic of Chapter 8.)

In using reference parameters, two cautions need to be mentioned. First, reference param-

eters must be variables (that is, they can’t be used to change constants). For example, calling

swap() with two constants, as in the call swap(20.5,ƒ6.5), passes two constants to the func-

tion. Although swap() can execute, it doesn’t change the values of these constants.15

Second, a function call gives no indication that the called function will be using reference

parameters. The default in C++ is to make passes by value rather than passes by reference,

specifically to limit a called function’s capability to alter variables in the calling function. This

calling procedure should be adhered to whenever possible, which means reference parameters

should be used only in restricted situations that require multiple return values, as in the

swap() function in Program 6.10. The calc() function, included in Program 6.9, although

useful for illustration purposes, could also be written as two separate functions, each returning

a single value.

 EXERCISES 6.3

1. (Practice) Write parameter declarations for the following:

a. A parameter named amount that will be a reference to a double-precision value

b. A parameter named price that will be a reference to a double-precision number

c. A parameter named minutes that will be a reference to an integer number

d. A parameter named key that will be a reference to a character

e. A parameter named yield that will be a reference to a double-precision number

2. (Practice) Three integer arguments are to be used in a call to a function named time(). Write

a suitable function header for time(), assuming that time() accepts these variables as the

reference parameters sec, min, and hours and returns no value to its calling function.

3. (Modify) a. Rewrite the findMax() function in Program 6.4 so that the variable max,

declared in main(), is used to store the maximum value of the two passed numbers. The

value of max should be set from within findMax(). (Hint : A reference to max has to be

accepted by findMax().)

15Most compilers catch this error.

G_C7785_06.1c 265G_C7785_06.1c 265 1/18/11 10:47 AM1/18/11 10:47 AM

266 Modularity Using Functions

b. Include the function written in Exercise 3a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

4. (Program) a. Write a function named change() that has an integer parameter and six integer

reference parameters named hundreds, fifties, twenties, tens, fives, and ones. The

function is to consider the passed integer value as a dollar amount and convert the value into

the fewest number of equivalent bills. Using the reference parameters, the function should

alter the arguments in the calling function.

b. Include the function written in Exercise 4a in a working program. Make sure your function

is called from main() and returns a value to main() correctly. Have main() use a cout

statement to display the returned value. Test the function by passing various data to it and

verifying the returned value.

5. (Program) Write a function named time() that has an integer parameter named seconds

and three integer reference parameters named hours, mins, and secs. The function is to

convert the passed number of seconds into an equivalent number of hours, minutes, and sec-

onds. Using the reference parameters, the function should alter the arguments in the calling

function.

6. (Program) Write a function named yearCalc() that has an integer parameter representing

the total number of days from the date 1/1/2000 and reference parameters named year, month,

and day. The function is to calculate the current year, month, and day given the number of days

passed to it. Using the reference parameters, the function should alter the arguments in the

calling function. For this problem, assume each year has 365 days, and each month has 30 days.

7. (Program) Write a function named liquid() that has an integer number parameter and

reference parameters named gallons, quarts, pints, and cups. The passed integer repre-

sents the total number of cups, and the function is to determine the numbers of gallons, quarts,

pints, and cups in the passed value. Using the reference parameters, the function should alter

the arguments in the calling function. Use these relationships: 2 cups = 1 pint, 4 cups = 1 quart,

and 16 cups = 1 gallon.

8. (Desk check) The following program uses the same argument and parameter names in both

the calling and called functions. Determine whether doing so causes any problem for the

compiler.

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒtime(int&,ƒint&);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒintƒmin,ƒhour;

☞

G_C7785_06.1c 266G_C7785_06.1c 266 1/18/11 10:47 AM1/18/11 10:47 AM

267Chapter 6
Variable Scope

ƒƒcoutƒ<<ƒ“Enterƒtwoƒnumbersƒ:”;
ƒƒcinƒƒ>>ƒminƒ>>ƒhour;
ƒƒtime(min,ƒhour);

ƒƒreturnƒ0;
}

voidƒtime(int&ƒmin,ƒint&ƒhour)ƒƒƒ//ƒacceptƒtwoƒreferences
{
ƒƒintƒsec;

ƒƒsecƒ=ƒ(hourƒ*ƒ60ƒ+ƒmin)ƒ*ƒ60;
ƒƒcoutƒ<<ƒ“Theƒtotalƒnumberƒofƒsecondsƒisƒ“ƒ<<ƒsecƒ<<ƒendl;

ƒƒreturn;

6.4 Variable Scope

Now that you have begun to write programs containing more than one function, you can look

more closely at the variables declared in each function and their relationship to variables in

other functions. By their nature, C++ functions are constructed to be independent modules. As

you have seen, values are passed to a function by using the function’s parameter list, and a

single value can be returned from a function by using a return statement. Seen in this light,

a function can be thought of as a closed box, with slots at the top to receive values and a single

slot at the bottom to return a value (see Figure 6.10).

Values passed to the function

......

A single value directly
returned by the function

Figure 6.10 A function can be considered a closed box

The metaphor of a closed box is useful because it emphasizes that what goes on inside the

function (including all variable declarations in the function body) is hidden from the view of

all other functions. Because the variables created in a function are conventionally available

only to the function, they are said to be local to the function, or local variables. This term refers

G_C7785_06.1c 267G_C7785_06.1c 267 1/18/11 10:47 AM1/18/11 10:47 AM

268 Modularity Using Functions

to the scope of an identifier; scope is the section of the program where the identifier, such as a

variable, is valid or “known.” This section of the program is also referred to as where the vari-

able is “visible.”

A variable can have a local scope or a global scope. A variable with a local scope is simply

one with storage locations set aside for it by a declaration statement in a function body. Local

variables are meaningful only when used in expressions or statements inside the function that

declared them, so the same variable name can be declared and used in more than one function.

For each function that declares the variable, a separate and distinct variable is created.

All the variables you have used until now have been local variables, a result of placing

declaration statements inside functions and using them as definition statements that cause the

computer to reserve storage for the declared variable. As you’ll see in the next section, declara-

tion statements can be placed outside functions and need not act as definitions that reserve

new storage areas for the declared variable.

A variable with global scope, more commonly termed a global variable, has storage created

for it by a declaration statement located outside any function. These variables can be used by

all functions placed after the global variable declaration. Program 6.11 shows using a global

variable, and the same variable name has been used on purpose inside both functions in the

program.

 Program 6.11

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒfirstnum;ƒƒƒƒƒƒ//ƒcreateƒaƒglobalƒvariableƒnamedƒfirstnum

voidƒvalfun();ƒƒƒƒƒ//ƒfunctionƒprototypeƒ(declaration)

intƒmain()
{
ƒƒintƒsecnum;ƒƒƒƒƒƒ//ƒcreateƒaƒlocalƒvariableƒnamedƒsecnum

ƒƒfirstnumƒ=ƒ10;ƒƒƒ//ƒstoreƒaƒvalueƒintoƒtheƒglobalƒvariable
ƒƒsecnumƒ=ƒ20;ƒƒƒƒƒ//ƒstoreƒaƒvalueƒintoƒtheƒlocalƒvariable

ƒƒcoutƒ<<ƒ“Fromƒmain():ƒfirstnumƒ=ƒ“ƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Fromƒmain():ƒsecnumƒ=ƒ“ƒ<<ƒsecnumƒ<<ƒendl;

ƒƒvalfun();ƒƒƒƒƒƒƒƒ//ƒcallƒtheƒfunctionƒvalfun

ƒƒcoutƒ<<ƒ“\nFromƒmain()ƒagain:ƒfirstnumƒ=ƒ“ƒ
ƒƒƒƒƒƒƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Fromƒmain()ƒagain:ƒsecnumƒ=ƒ“ƒ<<ƒsecnumƒ<<ƒendl;

☞

G_C7785_06.1c 268G_C7785_06.1c 268 1/18/11 10:47 AM1/18/11 10:47 AM

269Chapter 6
Variable Scope

ƒƒreturnƒ0;
}

voidƒvalfun()ƒƒ//ƒnoƒvaluesƒareƒpassedƒtoƒthisƒfunction
{
ƒƒintƒsecnum;ƒƒ//ƒcreateƒaƒsecondƒlocalƒvariableƒnamedƒsecnum

ƒƒsecnumƒ=ƒ30;ƒ//ƒthisƒonlyƒaffectsƒthisƒlocalƒvariable'sƒvalue

ƒƒcoutƒ<<ƒ“\nFromƒvalfun():ƒfirstnumƒ=ƒ“ƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Fromƒvalfun():ƒsecnumƒ=ƒ“ƒ<<ƒsecnumƒ<<ƒendl;

ƒƒfirstnumƒ=ƒ40;ƒƒƒ//ƒchangesƒfirstnumƒforƒbothƒfunctions

ƒƒreturn;
}

The variable firstnum in Program 6.11 is a global variable because its storage is created

by a definition statement located outside a function. Because both main() and valfun() fol-

low the definition of firstnum, both functions can use this global variable with no further

declaration needed.

Program 6.11 also contains two separate local variables, both named secnum. Storage for

the secnum variable named in main() is created by the definition statement in main(). A

different storage area for the secnum variable in valfun() is created by the definition state-

ment in the valfun() function. Figure 6.11 shows the three distinct storage areas reserved by

the three definition statements in Program 6.11.

Each variable named secnum is local to the function in which its storage is created, and

each variable can be used only from within its corresponding function. Therefore, when secnum

is used in main(), the storage area main() reserves for its secnum variable is accessed, and

when secnum is used in valfun(), the storage area valfun() reserves for its secnum variable

is accessed. The following output is produced when Program 6.11 runs:

Fromƒmain():ƒfirstnumƒ=ƒ10
Fromƒmain():ƒsecnumƒ=ƒ20

Fromƒvalfun():ƒfirstnumƒ=ƒ10
Fromƒvalfun():ƒsecnumƒ=ƒ30

Fromƒmain()ƒagain:ƒfirstnumƒ=ƒ40
Fromƒmain()ƒagain:ƒsecnumƒ=ƒ20

Now analyze this output to see how local and global variables work. Because firstnum is

a global variable, both main() and valfun() can use and change its value. Initially, both func-

tions print the value of 10 that main() stored in firstnum. Before returning, valfun()

changes the value of firstnum to 40, which is the value displayed when firstnum is next

displayed from within main().

G_C7785_06.1c 269G_C7785_06.1c 269 1/18/11 10:47 AM1/18/11 10:47 AM

270 Modularity Using Functions

firstnum

main()
secnum

storage for
one integer

valfun()
secnum

storage for
one integer

Figure 6.11 The three storage areas reserved by Program 6.11

Because each function “knows” only its own local variables, main() can send only the

value of its secnum to cout, and valfun() can send only the value of its secnum to cout.

Therefore, whenever secnum is obtained from main(), the value of 20 is displayed, and when-

ever secnum is obtained from valfun(), the value 30 is displayed. C++ doesn’t confuse the

two secnum variables because only one function can execute at a time. While a function is

executing, only variables and parameters that are “in scope” for that function (global and local)

can be accessed.

The scope of a variable in no way influences or restricts its data type. Just as a local vari-

able can be a character, integer, Boolean, double, or any other data type that’s been introduced,

global variables can be all these data types, as shown in Figure 6.12. A variable’s scope is deter-

mined by the placement of the definition statement that reserves storage for it and optionally

by a declaration statement that makes it visible, whereas a variable’s data type is determined

by using a keyword (char, int, bool, double, and so on) before the variable’s name in a dec-

laration statement.

char int bool double

local

char int bool double

global

Scope

Data type

Figure 6.12 Relating the scope and type of a variable

G_C7785_06.1c 270G_C7785_06.1c 270 1/18/11 10:47 AM1/18/11 10:47 AM

271Chapter 6
Variable Scope

Scope Resolution Operator
When a local variable has the same name as a global variable, all references to the variable

name made within the local variable’s scope refer to the local variable. This situation is shown

in Program 6.12, where the variable name number is defined as both a global and local variable.

 Program 6.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

doubleƒnumberƒ=ƒ42.8;ƒƒƒƒƒƒ//ƒaƒglobalƒvariableƒnamedƒnumber

intƒmain()
{
ƒƒdoubleƒnumberƒ=ƒ26.4;ƒƒƒƒ//ƒaƒlocalƒvariableƒnamedƒnumber

ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒnumberƒisƒ“ƒ<<ƒnumberƒ<<ƒendl;

ƒƒreturnƒ0;
}

When Program 6.12 runs, the following output is displayed:

Theƒvalueƒofƒnumberƒisƒ26.4

As this output shows, the local variable name takes precedence over the global variable.

In these cases, you can still access the global variable by using C++’s scope resolution operator,

which has the symbol ::. This operator must be placed immediately before the variable name,

as in ::number. When used in this manner, the :: tells the compiler to use the global variable.

As an example, the scope resolution operator is used in Program 6.12a.

 Program 6.12a

#includeƒ<iostream>
usingƒnamespaceƒstd;

doubleƒnumberƒ=ƒ42.5;ƒƒƒƒƒƒ//ƒaƒglobalƒvariableƒnamedƒnumber

intƒmain()
{
ƒƒdoubleƒnumberƒ=ƒ26.4;ƒƒƒƒ//ƒaƒlocalƒvariableƒnamedƒnumber

ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒnumberƒisƒ“ƒ<<ƒ::numberƒ<<ƒendl;

☞

G_C7785_06.1c 271G_C7785_06.1c 271 1/18/11 10:47 AM1/18/11 10:47 AM

272 Modularity Using Functions

ƒƒreturnƒ0;
}

This is the output produced by Program 6.12a:

Theƒvalueƒofƒnumberƒisƒ42.5

As this output indicates, the scope resolution operator causes the global, rather than the

local, variable to be accessed.

Misuse of Globals
Global variables allow programmers to “jump around” the normal safeguards provided by func-

tions. Instead of passing variables to a function, it’s possible to make all variables global. Do not
do this. By indiscriminately making all variables global, you destroy the safeguards C++ provides

to make functions independent and insulated from each other, including designating the type

of arguments a function needs, the variables used in the function, and the return value.

Using only global variables can be especially disastrous in large programs with many user-

created functions. Because all variables in a function must be declared, creating functions that

use global variables requires remembering to write the appropriate global declarations at the

top of each program using the function—they no longer come along with the function. More

devastating, however, is trying to track down an error in a large program with global variables.

Because a global variable can be accessed and changed by any function following the global

declaration, locating the origin of an erroneous value is a time-consuming and frustrating task.

Global definitions, however, are sometimes useful in creating symbolic constants that

must be shared between many functions. In this case, defining the symbolic constant once as

global variable is easier. Doing so also alerts anyone reading the program that many functions

use the constant. Most large programs almost always make use of a few global symbolic con-

stants. Smaller programs containing a few functions, however, should almost never use global

declarations.

The misuse of globals doesn’t apply to function prototypes, which are typically global. All

the function prototypes you have used have been of global scope, which declares the prototype

to all subsequent functions. Placing a function prototype in a function makes the prototype a

local declaration available only to the function it’s declared within.

 EXERCISES 6.4

1. (Practice) a. For the following section of code, determine the data type and scope of all

declared variables and symbolic constants on a separate sheet of paper, using the column head-

ings shown in the following chart. (The entries for the first variable have been filled in.)

Variable or Constant Name Data Type Scope
PRICE int global to main(), roi(), and step()

G_C7785_06.1c 272G_C7785_06.1c 272 1/18/11 10:47 AM1/18/11 10:47 AM

273Chapter 6
Variable Scope

#includeƒ<iostream>
usingƒnamespaceƒstd;

constƒintƒPRICE;
constƒlongƒYEARS;
constƒdoubleƒYIELD;
intƒmain()
{
ƒƒintƒbondtype;
ƒƒdoubleƒinterest,ƒcoupon;
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒreturnƒ0;
}
doubleƒroi(intƒmat1,ƒintƒmat2)
{
ƒƒintƒcount;
ƒƒdoubleƒeffectiveRate;
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
ƒƒreturnƒeffectiveRate;
}
intƒstep(doubleƒfirst,ƒdoubleƒlast)
{
ƒƒintƒnumofyrs;
ƒƒdoubleƒfracpart;
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
ƒƒƒƒƒƒ.
ƒƒreturn(10*numofyrs);
}

b. Draw a box around the appropriate section of the preceding code to enclose the scope of

each variable or constant.

c. Determine the data type of the arguments that the roi() and step() functions expect and

the data type of the value these functions return.

2. (Practice) a. For the following section of code, determine the data type and scope of all

declared variables on a separate sheet of paper, using the column headings shown in the fol-

lowing chart. (The entries for the first variable have been filled in.)

Variable Name Data Type Scope
key char global to main(), func1(), and func2()

G_C7785_06.1c 273G_C7785_06.1c 273 1/18/11 10:47 AM1/18/11 10:47 AM

274 Modularity Using Functions

#includeƒ<iostream>
usingƒnamespaceƒstd;

constƒcharƒKEY;
constƒlongƒNUMBER;

intƒmain()
{
ƒƒintƒa,b,c;
ƒƒdoubleƒx,y;
ƒƒƒƒƒ.
ƒƒƒƒƒ.
ƒƒreturnƒ0;
}

doubleƒsecnum;

intƒfunc1(intƒnum1,ƒintƒnum2)
{
ƒƒintƒo,p;
ƒƒfloatƒq;
ƒƒƒƒƒ.
ƒƒƒƒƒ.
ƒƒreturnƒp;
}

doubleƒfunc2(doubleƒfirst,ƒdoubleƒlast)
{
ƒƒintƒa,b,c,o,p;
ƒƒdoubleƒr;
ƒƒdoubleƒs,t,x;
ƒƒƒƒƒ.
ƒƒƒƒƒ.
ƒƒreturnƒsƒ*ƒt;
}

b. Draw a box around the appropriate section of the preceding code to enclose the scope of

each variable or constant.

c. Determine the data type of the arguments that the func1() and func2() functions expect

and the data type of the value these functions return.

3. (Practice) The term “scope” can also apply to a function’s parameters. What do you think is

the scope of all function parameters?

G_C7785_06.1c 274G_C7785_06.1c 274 1/18/11 10:47 AM1/18/11 10:47 AM

275Chapter 6
Variable Scope

4. (Practice) Define the scope of the parameter p2 and the variables a, b, c, d, e, f, m, n, p, d, q,

and r in the following program structure:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒa,ƒb;
doubleƒOne(float);
voidƒTwo(void);

intƒmain()
{
ƒƒintƒc,ƒd;
ƒƒdoubleƒe,ƒf;
ƒƒƒƒ.
ƒƒƒƒ.
ƒƒreturnƒ0;
}

doubleƒOne(doubleƒp2)
{
ƒƒcharƒm,ƒn;
ƒƒƒƒ.
ƒƒƒƒ.
}

voidƒTwo(void)
{
ƒƒintƒp,ƒd;
ƒƒdoubleƒq,ƒr;
ƒƒƒƒ.
ƒƒƒƒ.
}

5. (Desk check) Determine the values displayed by each cout statement in the following

program:

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒfirstnumƒ=ƒ10;ƒƒƒƒ//ƒdeclareƒandƒinitializeƒaƒglobalƒvariable
voidƒdisplay();ƒƒƒƒƒƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒintƒfirstnumƒ=ƒ20;ƒƒ//ƒdeclareƒandƒinitializeƒaƒlocalƒvariable

☞

G_C7785_06.1c 275G_C7785_06.1c 275 1/18/11 10:47 AM1/18/11 10:47 AM

276 Modularity Using Functions

ƒƒcoutƒ<<ƒ“\nTheƒvalueƒofƒfirstnumƒisƒ“ƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒdisplay();

ƒƒreturnƒ0;
}

voidƒdisplay(void)
{
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒfirstnumƒisƒnowƒ“ƒ<<ƒfirstnumƒ<<ƒendl;

ƒƒreturn;
}

6.5 Variable Storage Category

The scope of a variable defines the location in a program where that variable can be used. If

you draw a box around the section of program code where each variable is valid, the space

inside the box represents the variable’s scope. From this viewpoint, a variable’s scope can be

thought of as the space in the program where the variable is valid.

In addition to the space dimension represented by scope, variables have a time dimension

that refers to the length of time storage locations are reserved for a variable. This time dimen-

sion is referred to as the variable’s “lifetime.” For example, all variable storage locations are

released back to the operating system when a program is finished running. However, while a

program is still running, interim variable storage locations are reserved and subsequently

released back to the operating system. Where and how long a variable’s storage locations are

kept before they’re released can be determined by the variable’s storage category.

The four available storage categories are auto, static, extern, and register. If one of

these category names is used, it must be placed before the variable’s data type in a declaration

statement. The following are examples of declaration statements that include a storage cate-

gory designation:

autoƒintƒnum;ƒƒƒƒƒƒ//ƒautoƒstorageƒcategoryƒandƒintƒdataƒtype
staticƒintƒmiles;ƒƒ//ƒstaticƒstorageƒcategoryƒandƒintƒdataƒtype
registerƒintƒdist;ƒ//ƒregisterƒstorageƒcategoryƒandƒintƒdataƒtype
externƒintƒvolts;ƒƒ//ƒexternƒstorageƒcategoryƒandƒintƒdataƒtype
autoƒfloatƒcoupon;ƒ//ƒautoƒstorageƒcategoryƒandƒfloatƒdataƒtype
staticƒdoubleƒyrs;ƒ//ƒstaticƒstorageƒcategoryƒandƒdoubleƒdataƒtype
externƒfloatƒyld;ƒƒ//ƒexternƒstorageƒcategoryƒandƒfloatƒdataƒtype
autoƒcharƒinKey;ƒƒƒ//ƒautoƒstorageƒcategoryƒandƒcharƒvariable

To understand what a variable’s storage category means, next you examine local variables

(created inside a function) and global variables (created outside a function).

G_C7785_06.1c 276G_C7785_06.1c 276 1/18/11 10:47 AM1/18/11 10:47 AM

277Chapter 6
Variable Storage Category

Local Variable Storage Categories
Local variables can be members only of the auto, static, or register storage categories. If

no category description is included in the declaration statement, the variable is assigned to the

auto category automatically, so auto is the default category C++ uses. All the local variables you

have used have been auto variables because the storage category designation was omitted.

The term autoƒis short for “automatic.” Storage for auto local variables is reserved or

created automatically each time a function declaring auto variables is called. As long as the

function hasn’t returned control to its calling function, all auto variables local to the function

are “alive”—meaning storage for the variables is available. When the function returns control

to its calling function, its local auto variables “die”—meaning storage for the variables is

released back to the operating system. This process repeats each time a function is called. For

example, in Program 6.13, the testauto() function is called three times from main().

 Program 6.13

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒtestauto();ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒintƒcount;ƒƒƒƒƒƒ//ƒcountƒisƒaƒlocalƒautoƒvariable

ƒƒfor(countƒ=ƒ1;ƒcountƒ<=ƒ3;ƒcount++)
ƒƒƒƒtestauto();

ƒƒreturnƒ0;
}

voidƒtestauto()
{
ƒƒintƒnumƒ=ƒ0;ƒƒƒƒ//ƒnumƒisƒaƒlocalƒautoƒvariable
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒinitializedƒtoƒzero
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒtheƒautomaticƒvariableƒnumƒisƒ“
ƒƒƒƒƒƒƒ<<ƒnumƒ<<ƒendl;
ƒƒnum++;

ƒƒreturn;
}

G_C7785_06.1c 277G_C7785_06.1c 277 1/18/11 10:47 AM1/18/11 10:47 AM

278 Modularity Using Functions

This is the output produced by Program 6.13:

Theƒvalueƒofƒtheƒautomaticƒvariableƒnumƒisƒ0
Theƒvalueƒofƒtheƒautomaticƒvariableƒnumƒisƒ0
Theƒvalueƒofƒtheƒautomaticƒvariableƒnumƒisƒ0

Each time testauto() is called, the auto variable num is created and initialized to 0.

When the function returns control to main(), the variable num is destroyed along with any

value stored in num. Therefore, the effect of incrementing num in testauto(), before the

function’s return statement, is lost when control is returned to main().

For most applications, the use of auto variables works just fine and is the reason it’s the

default storage category. In some cases, however, you want a function to remember values

between function calls, which is the purpose of the static storage category. A local variable

declared as static causes the program to keep the variable and its latest value even when the

function that declared it has finished executing. The following are examples of static vari-

able declarations:

staticƒintƒrate;
staticƒdoubleƒamount;
staticƒcharƒinKey;

A local static variable isn’t created and destroyed each time the function declaring it is

called. After they’re created, local static variables remain in existence for the program’s life-

time. This means the last value stored in the variable when the function finishes executing is

available to the function the next time it’s called.

Because local static variables retain their values, they aren’t initialized in a declaration

statement in the same way as auto variables. To understand why, consider the auto declara-

tion intƒnumƒ=ƒ0;, which causes the auto variable num to be created and set to 0 each time

the declaration is encountered. This procedure is called a runtime initialization because initial-

ization occurs each time the declaration statement is encountered. This type of initialization

would be disastrous for a static variable because resetting the variable’s value to 0 each time

the function is called destroys the very value you’re trying to save.

Initialization of static variables (both local and global) is done only once, when the pro-

gram is first compiled. At compile time, the variable is created and any initialization value is

placed in it.16 Thereafter, the value in the variable is kept without further initialization. To see

how this process works, examine Program 6.14.

16Some compilers initialize local static variables the first time the definition statement is executed rather than when the program

is compiled.

G_C7785_06.1c 278G_C7785_06.1c 278 1/18/11 10:47 AM1/18/11 10:47 AM

279Chapter 6
Variable Storage Category

 Program 6.14

#includeƒ<iostream>
usingƒnamespaceƒstd;
voidƒteststat();ƒƒƒƒ//ƒfunctionƒprototype
intƒmain()
{
ƒƒintƒcount;ƒƒƒƒƒƒƒƒ//ƒcountƒisƒaƒlocalƒautoƒvariable
ƒƒfor(countƒ=ƒ1;ƒcountƒ<=ƒ3;ƒcount++)
ƒƒƒƒteststat();
ƒƒreturnƒ0;
}

voidƒteststat()
{
ƒƒstaticƒintƒnumƒ=ƒ0;ƒƒƒ//ƒnumƒisƒaƒlocalƒstaticƒvariable
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒtheƒstaticƒvariableƒnumƒisƒnowƒ“
ƒƒƒƒƒƒƒ<<ƒnumƒ<<ƒendl;
ƒƒnum++;
ƒƒreturn;
}

This is the output produced by Program 6.14:

Theƒvalueƒofƒtheƒstaticƒvariableƒnumƒisƒnowƒ0
Theƒvalueƒofƒtheƒstaticƒvariableƒnumƒisƒnowƒ1
Theƒvalueƒofƒtheƒstaticƒvariableƒnumƒisƒnowƒ2

As this output shows, the static variable num is set to 0 only once. The teststat()

function then increments this variable just before returning control to main(). The value that

num has when leaving the teststat() function is retained and displayed when the function

is next called.

Unlike auto variables that can be initialized by constants or expressions using both con-

stants and previously initialized variables, static variables can be initialized only by using

constants or constant expressions, such as 3.2ƒ+ƒ8.0. Also, unlike auto variables, all static

variables are set to 0 when no explicit initialization is given. Therefore, the initialization of num

to 0 in Program 6.14 isn’t required.

The remaining storage category available to local variables, register, isn’t used as

extensively as auto or static variables. The following are examples of register variable

declarations:

registerƒintƒtime;
registerƒdoubleƒdiffren;
registerƒfloatƒcoupon;

G_C7785_06.1c 279G_C7785_06.1c 279 1/18/11 10:47 AM1/18/11 10:47 AM

280 Modularity Using Functions

The register variables have the same time duration as autoƒvariables; that is, a local

register variable is created when the function declaring it is entered and is destroyed when

the function finishes execution. The only difference between register and autoƒvariables

is where storage for the variable is located.

Storage for all variables (local and global), except register variables, is reserved in the

computer’s memory. Most computers also have a few high-speed storage areas, called registers,

located in the CPU that can also be used for variable storage. Because registers are in the CPU,

they can be accessed faster than the normal storage areas in the computer’s memory. Also, com-

puter instructions referencing registers typically require less space than instructions referenc-

ing memory locations because there are fewer registers than memory locations that can be

accessed. When the compiler substitutes a register’s location for a variable during program

compilation, the instruction needs less space than address memory having millions of locations.

Besides decreasing a compiled C++ program’s size, using register variables can increase

the program’s execution speed if your computer supports this data type. Variables declared with

the register storage category are switched to auto automatically if your compiler doesn’t

support register variables or if the declared register variables exceed the computer’s reg-

ister capacity. Application programs intended to run on different types of computers shouldn’t

use register variables, however. The only restriction in using the register storage category

is that a register variable’s address can’t be taken by using the address operator, &. This con-

cept is easier to understand when you realize that registers don’t have standard memory

addresses.

Global Variable Storage Categories
Global variables are created by definition statements external to a function. By their nature,

these externally defined variables don’t come and go with the calling of a function. After a

global variable is created, it exists until the program in which it’s declared has finished running.

Therefore, global variables can’t be declared as autoƒor register variables that are created

and destroyed as the program is running. Global variables can be declared with the static or

extern storage category (but not both). The following are examples of declaration statements

including these two category descriptions:

externƒintƒsum;
externƒdoubleƒvolts;
staticƒdoubleƒcurrent;

The static and externƒstorage categories affect only the scope, not the lifetime, of

global variables. As with static local variables, all global variables are initialized to 0 at com-

pile time. The purpose of the extern storage category is to extend a global variable’s scope

beyond its normal boundaries. To understand this concept, first note that all the programs writ-

ten so far have been contained in one file. Therefore, when you have saved or retrieved pro-

grams, you have needed to give the computer only a single name for your program. C++

doesn’t require doing this, however.

Large programs typically consist of many functions stored in multiple files. For example,

Figure 6.13 shows the three functions main(), func1(), and func2() stored in one file and

the two functions func3() and func4() stored in a second file.

G_C7785_06.1c 280G_C7785_06.1c 280 1/18/11 10:47 AM1/18/11 10:47 AM

281Chapter 6
Variable Storage Category

int volts;
double current;
static double power;
 .
 .
 .
int main()
{
 func1();
 func2();
 func3();
 func4();
}
int func1()
{
 .
 .
 .
}
int func2()
{
 .
 .
 .
}

file1 file2

double factor;
int func3()
{
 .
 .
 .
}
int func4()
{
 .
 .
 .
}

Figure 6.13 A program can extend beyond one file

For the files shown in Figure 6.13, the global variables volts, current, and power

declared in file1 can be used only by the functions main(), func1(), and func2() in this

file. The single global variable, factor, declared in file2 can be used only by the functions

func3() and func4() in file2.

Although the variable volts has been created in file1, you might want to use it in

file2. To do this, you place the declaration statement externƒintƒvolts; in file2, as

shown in Figure 6.14. Putting this statement at the top of file2 extends the scope of volts

into file2 so that it can be used by both func3() and func4(). The extern designation

simply declares a global variable that’s defined in another file. So placing the statement

externƒdoubleƒcurrent; in func4() extends the scope of this global variable, created in

file1, into func4(). Additionally, the scope of the global variable factor, created in file2,

is extended into func1() and func2() by the declaration statement externƒdouble
factor; placed before func1(). Notice that factor is not available to main().

G_C7785_06.1c 281G_C7785_06.1c 281 1/18/11 10:47 AM1/18/11 10:47 AM

282 Modularity Using Functions

int volts;
double current;
static double power;
 .
 .
 .
int main()
{
 func1();
 func2();
 func3();
 func4();
}
extern double factor;
int func1()
{
 .
 .
 .
}
int func2()
{
 .
 .
 .
}

file1 file2

double factor;
extern int volts;
int func3()
{
 .
 .
 .
}
int func4()
{
 extern double current;
 .
 .
 .
}

Figure 6.14 Extending the scope of global variables

A declaration statement containing the keyword externƒis different from other declara-

tion statements, in that it doesn’t cause a new variable to be created by reserving new storage

for the variable. An extern declaration statement simply informs the computer that a global

variable already exists and can now be used. The actual storage for the variable must be cre-

ated somewhere else in the program by using one, and only one, global declaration statement

in which the keyword extern hasn’t been used. The global variable can, of course, be initial-

ized in its original declaration. Initialization in an externƒdeclaration statement is not allowed,

however, and causes a compilation error.

The existence of the extern storage category is the reason for carefully distinguishing

between creation and declaration of a variable. Declaration statements containing the keyword

externƒdon’t create new storage areas; they just extend the scope of existing global variables.

The last global storage category, static, is used to prevent extending a global variable

into a second file. Global static variables are declared in the same way as local static vari-

ables, except the declaration statement is placed outside any function.

The scope of a global static variable can’t be extended beyond the file in which it’s

declared. This rule provides a degree of privacy for global static variables. Because they are

“known” and can be used only in the file where they’re declared, other files can’t access or

G_C7785_06.1c 282G_C7785_06.1c 282 1/18/11 10:47 AM1/18/11 10:47 AM

283Chapter 6
Variable Storage Category

Point of Information
Storage Classes

Variables of type auto and register are always local variables. Only non-static
global variables can be declared by using the extern keyword. Doing so extends the
variable’s scope into another file or function.

Making a global variable static makes the variable private to the file in which it’s
declared. Therefore, static variables can’t use the extern keyword. Except for
static variables, all variables are initialized each time they come into scope; static
variables are initialized only once, when they’re defined.

change their values. Therefore, global static variables can’t subsequently be extended to a

second file by using an externƒdeclaration statement. Trying to do so results in a compila-

tion error.

 EXERCISES 6.5

1. (Practice) a. List the storage categories available to local variables.

b. List the storage categories available to global variables.

2. (Practice) Describe the difference between a local autoƒvariable and a local static variable.

3. (Practice) What’s the difference between the following functions?

voidƒinit1()
{
ƒƒstaticƒintƒyrsƒ=ƒ1;

ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒyrsƒisƒ“ƒ<<ƒyrsƒ<<ƒendl;
ƒƒyrsƒ=ƒyrsƒ+ƒ2;

ƒƒreturn;
}

voidƒinit2()
{
ƒƒstaticƒintƒyrs;

ƒƒyrsƒ=ƒ1;
ƒƒcoutƒ<<ƒ“Theƒvalueƒofƒyrsƒisƒ“ƒ<<ƒyrsƒ<<ƒendl;
ƒƒyrsƒ=ƒyrsƒ+ƒ2;

ƒƒreturn;
}

G_C7785_06.1c 283G_C7785_06.1c 283 1/18/11 10:47 AM1/18/11 10:47 AM

284 Modularity Using Functions

4. (Practice) a. Describe the difference between a global static variable and a global extern

variable.

b. If a variable is declared with an externƒstorage category, what other declaration statement

must be present somewhere in the program?

5. (Practice) The declaration statement staticƒdoubleƒyears; can be used to create a local

or global static variable. What determines the scope of the variable years?

6. (Practice) For the function and variable declarations shown in Figure 6.15, place an extern

declaration to accomplish each of the following:

a. Extend the scope of the global variable choice into file2.

b. Extend the scope of the global variable flag into the average() function only.

c. Extend the scope of the global variable date into average() and variance().

d. Extend the scope of the global variable date into roi() only.

e. Extend the scope of the global variable coupon into roi() only.

f. Extend the scope of the global variable bondtype into file1.

g. Extend the scope of the global variable maturity into both watts() and thrust().

char choice;
int flag;
long date, time;
int main()
{
 .
 .
 .
}
double factor;
double watts()
{
 .
 .
 .
}
double thrust()
{
 .
 .
 .
}

file1 file2

char bondtype;
double resistance;
double roi()
{
 .
 .
 .
}
double average()
{
 .
 .
 .
}
double variance()
{
 .
 .
 .
}

Figure 6.15 Files for Exercise 6

G_C7785_06.1c 284G_C7785_06.1c 284 1/18/11 10:47 AM1/18/11 10:47 AM

285Chapter 6
Chapter Summary

6.6 Common Programming Errors

The following programming errors are common when constructing and using functions:

1. An extremely common error related to functions is passing incorrect data types. The

values passed to a function must correspond to the data types of parameters declared

for the function. One way to verify that correct values have been received is to display

all passed values in the function body before any calculations are made. After this

verification has taken place, you can dispense with the display.17

2. Another common error can occur when the same variable is declared locally in both the

calling and called functions. Even though the variable name is the same, a change to

one local variable does not alter the value in the other local variable.

3. A related error is one that can occur when a local variable has the same name as a

global variable. Inside the function declaring it, the use of the variable’s name affects

only the local variable’s contents unless the scope resolution operator, ::, is used.

4. Another common error is omitting the called function’s prototype before or within the

calling function. The called function must be alerted to the type of value to be

returned, and the function prototype provides this information. The prototype can be

omitted if the called function is placed in a program before its calling function.

Although omitting the prototype and return type for functions returning an integer is

permitted, doing so is poor documenting practice. The actual value a function returns

can be verified by displaying it both before and after it’s returned.

5. The last two common errors are terminating a function header with a semicolon and

forgetting to include the data type of a function’s parameters in the function header.

6.7 Chapter Summary
1. A function is called by giving its name and passing any data to it in the parentheses follow-

ing the name. If a variable is one of the arguments in a function call, the called function

receives a copy of the variable’s value.

2. The common form of a user-written function is as follows:

returnDataTypeƒfunctionName(parameterƒlist)
{
ƒƒƒƒSymbolicƒconstants
ƒƒƒƒVariableƒdeclarations

ƒƒƒƒC++ƒstatements
ƒƒreturnƒexpression;
}

 The first line of the function is called the function header. The opening and closing braces

of the function and all statements between these braces constitute the function body. The

parameter list is a comma-separated list of parameter declarations.

17In practice, a good debugger program should be used.

G_C7785_06.1c 285G_C7785_06.1c 285 1/18/11 10:47 AM1/18/11 10:47 AM

286 Modularity Using Functions

3. A function’s return type is the data type of the value the function returns. If no type is

declared, the function is assumed to return an integer value. If the function doesn’t return

a value, it should be declared as a void type.

4. Functions can return at most a single data type value to their calling functions. This value

is the value of the expression in the return statement.

5. Arguments passed to a function, when it’s called, must conform to the parameters specified

by the function header in terms of order, number of arguments, and specified data type.

6. Using reference parameters, a variable’s address is passed to a function. If a called function

is passed an address, it has the capability to access the calling function’s variable. Using

passed addresses permits a called function to return multiple values.

7. Functions can be declared to all calling functions by means of a function prototype. The

prototype provides a declaration for a function that specifies the data type the function

returns, the function’s name, and the data types of arguments the function expects. As with

all declarations, a function prototype is terminated with a semicolon and can be included in

local variable declarations or as a global declaration. This is the most common form of a

function prototype:

dataTypeƒfunctionName(parameterƒdataƒtypeƒlist);

 If the called function is placed above the calling function in the program, no further decla-

ration is required because the function’s definition serves as a global declaration to all sub-

sequent functions.

8. Every variable in a program has a scope, which determines where in the program the vari-

able can be used. A variable’s scope is local or global and is determined by where the vari-

able’s definition statement is placed. A local variable is defined in a function and can be

used only in its defining function or block. A global variable is defined outside a function

and can be used in any function following the variable’s definition. All global variables that

aren’t specifically initialized by the user are initialized to 0 by the compiler, and global

variables not declared as static can be shared between files by using the keyword extern.

9. Every variable also has a storage category, which determines how long the value in the vari-

able is retained, also known as the variable’s lifetime. auto variables are local variables that

exist only while their defining function is executing; register variables are similar to auto

variables but are stored in a computer’s registers rather than in memory; and static vari-

ables can be global or local and retain their values while the program is running. All static

variables are set to 0 when they’re defined if the user doesn’t initialize them explicitly.

G_C7785_06.1c 286G_C7785_06.1c 286 1/18/11 10:47 AM1/18/11 10:47 AM

287Chapter 6
Chapter Supplement: Generating Random
Numbers

6.8 Chapter Supplement: Generating Random Numbers

There are many business and engineering problems in which probability must be considered

or statistical sampling techniques must be used. For example, to simulate automobile traffic

flow or telephone usage patterns, statistical models are required. In addition, applications

such as simple or complex computer games can only be described statistically. All these sta-

tistical models require generating random numbers—a series of numbers whose order can’t be

predicted.

In practice, finding truly random numbers is hard. Dice are never perfect, cards are never

shuffled completely randomly, and digital computers can handle numbers only in a finite

range and with limited precision. The best you can do in most cases is generate pseudorandom
numbers, which are random enough for the type of applications being programmed.

Some programming languages contain a library function that produces random numbers;

others do not. All C++ compilers provide two general-purpose functions for generating random

numbers: rand() and srand(). The rand() function produces a series of random numbers

in the range 0ƒ≤ƒrand()ƒ≤ƒRAND_MAX, with the constant RAND_MAX defined in the cstlib

header file. The srand() function supplies a starting “seed” value for rand(). If srand() or

another seeding technique isn’t used, rand() always produces the same series of random

numbers.18

The following code shows the general procedure for creating a series of N random num-

bers with C++’s library functions:

srand(time(NULL));ƒ//ƒgeneratesƒtheƒfirstƒ“seed”ƒvalue

forƒ(intƒiƒ=ƒ1;ƒiƒ<=ƒN;ƒi++)ƒ//ƒgeneratesƒNƒrandomƒnumbers
{
ƒƒrvalueƒ=ƒrand();
ƒƒcoutƒ<<ƒrvalueƒ<<ƒendl;
}

The argument to the srand() function is a call to the time() function with a NULL argu-

ment. With this argument, the time() function reads the computer’s internal clock time in

seconds. The srand() function then uses this time, converted to an unsigned int, to initialize

the rand() function, which generates random numbers. Program 6.15 uses this code to gener-

ate a series of 10 random numbers.

18Alternatively, many C++ compilers have a randomize() routine that’s defined by using the srand() function. If this routine is

available, the call randomize() can be used in place of the call srand(time(NULL)). In either case, the initializing “seed” routine

is called only once, after which rand() is used to generate a series of pseudorandom numbers.

G_C7785_06.1c 287G_C7785_06.1c 287 1/18/11 10:47 AM1/18/11 10:47 AM

288 Modularity Using Functions

 Program 6.15

#includeƒ<iostream>
#includeƒ<iomanip>
#includeƒ<cstdlib>
#includeƒ<ctime>
usingƒnamespaceƒstd;

//ƒthisƒprogramƒgeneratesƒ10ƒpseudorandomƒnumbers
//ƒbyƒusingƒC++'sƒrand()ƒfunction

intƒmain()
{
ƒƒconstƒintƒNUMBERSƒ=ƒ10;

ƒƒdoubleƒrandvalue;
ƒƒintƒi;

ƒƒsrand(time(NULL));
ƒƒforƒ(iƒ=ƒ1;ƒiƒ<=ƒNUMBERS;ƒ++i)
ƒƒ{
ƒƒƒƒrandvalueƒ=ƒrand();
ƒƒƒƒcoutƒ<<ƒsetw(20)ƒ<<ƒrandvalueƒ<<ƒendl;
ƒƒ}

ƒƒreturnƒ0;
}

The following is the output produced by one run of Program 6.15:

20203
21400
15265
26935
ƒ8369
10907
31299
15400
ƒ5074
20663

Because of the srand() function call in Program 6.15, the series of 10 random numbers dif-

fers each time the program runs. Without this function’s randomizing “seeding” effect, the same

series of random numbers is always produced. Notice, too, the cstdlib and ctime header files

included in this program. The cstdlib header file contains the function prototypes for srand()

and rand(), and the ctime header file contains the function prototype for the time() function.

G_C7785_06.1c 288G_C7785_06.1c 288 1/18/11 10:47 AM1/18/11 10:47 AM

289Chapter 6
Chapter Supplement: Generating Random
Numbers

Scaling
In practice, typically you need to make one modification to the random numbers produced by

the rand() function. The reason is that, in most applications, the random numbers must be

double-precision numbers in the range 0.0 to 1.0 or integers in a specified range, such as 1 to

100. The procedure for adjusting the random numbers produced by a random-number genera-

tor to fall in a specified range is called scaling.

Scaling random numbers to lie in the range 0.0 to 1.0 is easily done by dividing the

returned value of rand() by RAND_MAX. Therefore, the expression double(rand())/RAND_
MAX produces a double-precision random number between 0.0 and 1.0.

Scaling a random number as an integer value between 0 and N is done with the expression

rand()ƒ%ƒ(N+1) or int(double(rand())/RAND_MAXƒ*ƒN). For example, the expression

int(double(rand())/RAND_MAXƒ*ƒ100) produces a random integer between 0 and 100.

To produce a random integer between 1 and N, you can use the expression 1ƒ+ƒrand()ƒ%ƒN.

For example, in simulating the roll of a die, the expression 1ƒ+ƒrand()ƒ%ƒ6 produces a ran-

dom integer between 1 and 6. The more general scaling expression aƒ+ƒrand()ƒ%ƒ(bƒ+ƒ1ƒ-ƒa)

can be used to produce a random integer between the numbers a and b.

G_C7785_06.1c 289G_C7785_06.1c 289 1/18/11 10:47 AM1/18/11 10:47 AM

7 7.1 One-Dimensional Arrays

 7.2 Array Initialization

 7.3 Arrays as Arguments

 7.4 Two-Dimensional Arrays

 7.5 Common Programming Errors

 7.6 Chapter Summary

 7.7 Chapter Supplement: Searching
and Sorting Methods

All the variables you have used so far have a common characteristic: Each variable can be used to store
only a single value at a time. For example, although the variables key, count, and grade declared in
the statements

charƒkey;
intƒcount;
doubleƒgrade;

are of different data types, each variable can only store one value of the declared data type. These types
of variables are called atomic variables (also referred to as scalar variables), which means their values
can’t be further subdivided or separated into a legitimate data type.

Chapter

Arrays

H_C7785_07.1c 291H_C7785_07.1c 291 1/18/11 10:48 AM1/18/11 10:48 AM

292 Arrays

Often you have a set of values, all the same data type, that form a logical group. For example, the
following lists show three groups of items: 1) a list of five integer amounts, 2) a list of four character
codes, and 3) a list of six floating-point prices:

Amounts Codes Prices
 98 x 10.96
 87 a 6.43
 92 m 2.58
 79 n .86
 85 12.27
 6.39

A simple list containing items of the same data type is called a one-dimensional array. This chapter
describes how one-dimensional arrays are declared, initialized, stored in a computer, and used. You also
explore the use of one-dimensional arrays with sample programs and see the procedures for declaring and
using multidimensional arrays.

7.1 One-Dimensional Arrays

A one-dimensional array, also referred to as a single-dimensional array or a vector, is a list of

related values with the same data type that’s stored with a single group name.1 In C++, as in

other computer languages, the group name is referred to as the array name. For example, take

another look at the list of amounts shown in the introduction:

98
87
92
79
85

All the amounts in the list are integer numbers and must be declared as such. However,

each item in the list doesn’t have to be declared separately. The items in the list can be declared

as a single unit and stored under a common variable name called the array name. For example,

if amts is chosen as the name for this list, the declaration statement int amts[5]; specifies

that amts is to store five integer values. Notice that this declaration statement gives the data

type of items in the array, the array (or list) name, and the number of items in the array. It’s a

specific example of the general syntax of an array declaration statement, as follows:

dataType arrayName[numberOfItems]

1Lists can be implemented in a variety of ways. An array is simply one list implementation in which all list elements are of the same

type, and each element is stored consecutively in a set of contiguous memory locations.

H_C7785_07.1c 292H_C7785_07.1c 292 1/18/11 10:48 AM1/18/11 10:48 AM

293Chapter 7
One-Dimensional Arrays

Good programming practice requires defining the number of items in the array as a con-

stant before declaring the array. This constant is useful later for processing all items in the

array. So in practice, the previous array declaration for amts would be declared with two state-

ments, as in these examples:

constƒintƒNUMELSƒ=ƒ5;ƒ//ƒdefineƒaƒconstantƒforƒtheƒnumberƒofƒitems
intƒamts[NUMELS];ƒƒƒƒ//ƒdeclareƒtheƒarray

The following are other examples of array declarations using this two-line syntax:

constƒintƒARRAYSIZEƒ=ƒ6;
intƒvalues[ARRAYSIZE];

constƒintƒNUMELSƒ=ƒ4;
charƒcode[NUMELS];

constƒintƒSIZEƒ=ƒ100;
doubleƒamount[SIZE];

In these declaration statements, each array is allocated enough memory to hold the

number of data items specified in the declaration statement. For example, the array named

values has storage reserved for six integers, the array named code has storage reserved for

four characters, and the array named amount has storage reserved for 100 double-precision

numbers. The constant identifiers, ARRAYSIZE, NUMELS, and SIZE, are programmer-selected

names. Figure 7.1 illustrates the storage reserved for the values and code arrays, assuming an

integer is stored with 4 bytes and a character is stored with 1 byte.

Enough storage for
six integers (24 bytes)

an
integer

an
integer

an
integer

an
integer

an
integer

an
integer

values
array

a
character

a
character

a
character

a
character

code
array

Enough storage for
four characters (4 bytes)

Figure 7.1 The values and code arrays in memory

Each item in an array is called an element or component of the array. The elements in the

arrays shown in Figure 7.1 are stored sequentially, with the first element stored in the first

reserved location, the second element stored in the second reserved location, and so on until

H_C7785_07.1c 293H_C7785_07.1c 293 1/18/11 10:48 AM1/18/11 10:48 AM

294 Arrays

the last element is stored in the last reserved location. This contiguous storage allocation is a

key feature of arrays because it provides a simple mechanism for locating any element in the

list easily.

Because elements in the array are stored sequentially, any single element can be accessed

by giving the array’s name and the element’s position. This position is called the element’s

index or subscript value. (The two terms are synonymous.) For a one-dimensional array, the first

element has an index of 0, the second element has an index of 1, and so on. In C++, the array

name and element index are combined by listing the index in braces after the array name. For

example, the declaration doubleƒgrade[5]; creates five elements, with the following cor-

respondences:

grade[0] refers to the first grade stored in the grade array
grade[1] refers to the second grade stored in the grade array
grade[2] refers to the third grade stored in the grade array
grade[3] refers to the fourth grade stored in the grade array
grade[4] refers to the fifth grade stored in the grade array

Figure 7.2 shows the grade array in memory with the correct designation for each array

element. Each element is referred to as an indexed variable or a subscripted variable because

both a variable name (the array name, in this case) and an index or a subscript value must be

used to reference the element. Remember that the index or subscript value gives the ele-

ment’s position in the array.

grade[0] grade[1] grade[2] grade[3] grade[4]

grade
array

element 0 element 1 element 2 element 3 element 4

Figure 7.2 Identifying array elements

The subscripted variable, grade[0], is read as “grade sub zero” or “grade zero.” It’s a

shortened way of saying “the grade array subscripted by zero.” Similarly, grade[1] is read as

“grade sub one” or “grade one,” grade[2] as “grade sub two” or “grade two,” and so on.

Although referencing the first element with an index of 0 might seem unusual, doing so

increases the computer’s speed when it accesses array elements. Internally, unseen by the

programmer, the computer uses the index as an offset from the array’s starting position. As

shown in Figure 7.3, the index tells the computer how many elements to skip, starting from

the beginning of the array, to get to the correct element.

H_C7785_07.1c 294H_C7785_07.1c 294 1/18/11 10:48 AM1/18/11 10:48 AM

295Chapter 7
One-Dimensional Arrays

Start
here

The array name grade
identifies the starting
location of the array

Skip over three elements to
get to the starting location
of element 3

grade[0] grade[1] grade[2] grade[3] grade[4]

element 3

Figure 7.3 Accessing an array element—element 3

Subscripted variables can be used anywhere that scalar (atomic) variables are valid. Here

are examples of using the elements of the grade array:

grade[0]ƒ=ƒ95.75;
grade[1]ƒ=ƒgrade[0]ƒ-ƒ11.0;
grade[2]ƒ=ƒ5.0ƒ*ƒgrade[0];
grade[3]ƒ=ƒ79.0;
grade[4]ƒ=ƒ(grade[1]ƒ+ƒgrade[2]ƒ-ƒ3.1)ƒ/ƒ2.2;
sumƒ=ƒgrade[0]ƒ+ƒgrade[1]ƒ+ƒgrade[2]ƒ+ƒgrade[3]ƒ+ƒgrade[4];

The subscript in brackets need not be an integer constant; any expression that evaluates

to an integer can be used as a subscript.2 In each case, of course, the value of the expression

must be within the valid subscript range defined when the array is declared. For example,

assuming i and j are int variables, the following subscripted variables are valid:

grade[i]
grade[2*i]
grade[j-i]

An important advantage of using integer expressions as subscripts is that it allows

sequencing through an array by using a loop. This makes statements such as the following

unnecessary:

sumƒ=ƒgrade[0]ƒ+ƒgrade[1]ƒ+ƒgrade[2]ƒ+ƒgrade[3]ƒ+ƒgrade[4];

2Some compilers permit floating-point variables as subscripts; in these cases, the floating-point value is truncated to an integer value.

H_C7785_07.1c 295H_C7785_07.1c 295 1/18/11 10:48 AM1/18/11 10:48 AM

296 Arrays

The subscript values in this statement can be replaced by a for loop counter to access

each element in the array sequentially. For example, the code

sumƒ=ƒ0;ƒƒƒƒƒƒƒƒƒ//ƒinitializeƒsumƒtoƒ0
forƒ(iƒ=ƒ0;ƒiƒ<ƒNUMELS;ƒi++)
ƒƒsumƒ=ƒsumƒ+ƒgrade[i];ƒƒƒƒ//ƒaddƒinƒaƒvalue

retrieves each array element sequentially and adds the element to sum. The variable i is used

as both the counter in the for loop and a subscript. As i increases by one each time through

the loop, the next element in the array is referenced. The procedure for adding array elements

in the for loop is similar to the accumulation procedure you have used before.

The advantage of using a for loop to sequence through an array becomes apparent when

working with larger arrays. For example, if the grade array contains 100 values rather than just

5, simply setting the symbolic constant NUMELS to 100 is enough to create the larger array and

have the for statement sequence through the 100 elements and add each grade to the sum.

As another example of using a for loop to sequence through an array, say you want to

locate the maximum value in an array of 1000 elements named prices. The procedure to

locate the maximum value is to assume initially that the first element in the array is the largest

number. Then, as you sequence through the array, the maximum is compared with each ele-

ment. When an element with a higher value is located, it becomes the new maximum. The

following code does the job:

constƒintƒNUMELSƒ=ƒ1000;

maximumƒ=ƒprices[0];ƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒsetƒmaximumƒtoƒelementƒ0
forƒ(intƒiƒ=ƒ1;ƒiƒ<ƒNUMELS;ƒi++)ƒ//ƒcycleƒthroughƒtheƒrestƒofƒtheƒarray
ƒƒifƒ(prices[i]ƒ>ƒmaximum)ƒƒƒƒƒƒƒ//ƒcompareƒeachƒelementƒwithƒtheƒmaximum
ƒƒƒƒƒƒƒƒmaximumƒ=ƒprices[i];ƒƒƒƒƒ//ƒcaptureƒtheƒnewƒhighƒvalue

In this code, the for loop consists of one if statement. The search for a new maximum

value starts with element 1 of the array and continues through the last element (which is 999

in a 1000-element array). Each element is compared with the current maximum, and when a

higher value is encountered, it becomes the new maximum.

Input and Output of Array Values
An array element can be assigned a value interactively by using a cin statement, as shown in

these examples of data entry statements:

cinƒ>>ƒgrade[0];
cinƒ>>ƒgrade[1]ƒ>>ƒgrade[2]ƒ>>ƒgrade[3];
cinƒ>>ƒgrade[4]ƒ>>ƒprices[6];

In the first statement, a single value is read and stored in the variable grade[0]. The

second statement causes three values to be read and stored in the variables grade[1],

grade[2], and grade[3]. Finally, the last cin statement is used to read values into the vari-

ables grade[4] and prices[6].

H_C7785_07.1c 296H_C7785_07.1c 296 1/18/11 10:48 AM1/18/11 10:48 AM

297Chapter 7
One-Dimensional Arrays

Alternatively, a for loop can be used to cycle through the array for interactive data input.

For example, the following code prompts the user for five grades:

constƒintƒNUMELSƒ=ƒ5;

forƒ(intƒiƒ=ƒ0;ƒiƒ<ƒNUMELS;ƒi++)
{
ƒƒcoutƒƒ<<ƒ“Enterƒaƒgrade:ƒ“;
ƒƒcinƒƒƒ>>ƒgrade[i];
}

The first grade entered is stored in grade[0], the second grade entered is stored in

grade[1], and so on until five grades have been entered.

One caution about storing data in an array: Most implementations of C++ don’t check the

value of the index being used (called a bounds check). If an array has been declared as consist-

ing of 10 elements, for example, and you use an index of 12, which is outside the bounds of

the array, C++ doesn’t notify you of the error when the program is compiled. The program

attempts to access element 12 by skipping over the appropriate number of bytes from the start

of the array. Usually, this attempt results in a program crash, but not always. If the referenced

location contains a value, the program simply accesses the value in the referenced memory

location. This leads to more errors, which are troublesome to locate when the variable legiti-

mately assigned to the storage location is retrieved and processed. Using symbolic constants,

as done in these examples, helps eliminate this problem.

During output, an array element can be displayed by using a cout statement, or complete

sections of the array can be displayed by including a cout statement in a for loop. Examples

of both methods of using cout to display subscripted variables are shown:

coutƒ<<ƒprices[5];

and

coutƒ<<ƒ“Theƒvalueƒofƒelementƒ“ƒ<<ƒiƒ<<ƒ“ƒisƒ“ƒ<<ƒgrade[i];

Point of Information
Aggregate Data Types

In contrast to atomic types, such as integer and floating-point data, there are aggregate
types. An aggregate type, also referred to as a “structured type” and a “data struc-
ture,” is any type with values that can be separated into simpler data types related by
some defined structure. Additionally, operations must be available for retrieving and
updating values in the data structure.

 One-dimensional arrays are examples of a structured type. In a one-dimensional
array, such as an array of integers, the array is composed of integer values, with the inte-
gers related by their position in the list. Indexed variables provide the means of accessing
and modifying values in the array.

☞

H_C7785_07.1c 297H_C7785_07.1c 297 1/18/11 10:48 AM1/18/11 10:48 AM

298 Arrays

and

constƒintƒNUMELSƒ=ƒ20;

forƒ(intƒkƒ=ƒ5;ƒkƒ<ƒNUMELS;ƒk++)
ƒƒcoutƒ<<ƒkƒ<<ƒ“ƒ“ƒ<<ƒamount[k];

The first statement displays the value of the subscripted variable prices[5]. The second

statement displays the values of subscript i and grade[i]. Before this statement can be

executed, i must have an assigned value. Finally, the last example includes a cout statement

in a for loop that displays both the value of the index and the value of elements 5 to 19.

Program 7.1 shows these input and output techniques, using an array named grade that’s

defined to store five integer numbers. The program includes two for loops. The first for loop

is used to cycle through each array element and allows the user to input array values. After five

values have been entered, the second for loop is used to display the stored values.

 Program 7.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒNUMELSƒ=ƒ5;

ƒƒintƒi,ƒgrade[NUMELS];

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMELS;ƒi++)ƒƒƒƒ//ƒEnterƒtheƒgrades
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Enterƒaƒgrade:ƒ“;
ƒƒƒƒcinƒƒ>>ƒgrade[i];
ƒƒ}

ƒƒcoutƒ<<ƒendl;

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMELS;ƒi++)ƒƒƒƒ//ƒPrintƒtheƒgrades
ƒƒƒƒcoutƒ<<ƒ“gradeƒ[“ƒ<<ƒiƒ<<ƒ“]ƒisƒ“ƒ<<ƒgrade[i]ƒ<<ƒendl;

ƒƒreturnƒ0;
}

A sample run of Program 7.1 follows:

Enterƒaƒgrade:ƒ85
Enterƒaƒgrade:ƒ90
Enterƒaƒgrade:ƒ78 ☞

H_C7785_07.1c 298H_C7785_07.1c 298 1/18/11 10:48 AM1/18/11 10:48 AM

299Chapter 7
One-Dimensional Arrays

Enterƒaƒgrade:ƒ75
Enterƒaƒgrade:ƒ92

grade[0]ƒisƒ85
grade[1]ƒisƒ90
grade[2]ƒisƒ78
grade[3]ƒisƒ75
grade[4]ƒisƒ92

In reviewing the output of Program 7.1, pay attention to the difference between the sub-

script value displayed and the numerical value stored in the corresponding array element. The

subscript value refers to the element’s location in the array, and the subscripted variable refers

to the value stored in the designated location.

In addition to simply displaying the values stored in each array element, elements can also

be processed by referencing the desired element. For example, in Program 7.2, the value of

each element is accumulated in a total, which is displayed after all array elements have been

displayed.

 Program 7.2

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒconstƒintƒNUMELSƒ=ƒ5;
ƒƒintƒi,ƒgrade[NUMELS],ƒtotalƒ=ƒ0;

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMELS;ƒi++)ƒƒƒ//ƒEnterƒtheƒgrades
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Enterƒaƒgrade:ƒ“;
ƒƒƒƒcinƒƒ>>ƒgrade[i];
ƒƒ}

ƒƒcoutƒ<<ƒ“\nTheƒtotalƒofƒtheƒgrades”;

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMELS;ƒi++)ƒƒ//ƒDisplayƒandƒtotalƒtheƒgrades
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“ƒ“ƒ<<ƒgrade[i];
ƒƒƒƒtotalƒ=ƒtotalƒ+ƒgrade[i];
ƒƒ}

ƒƒcoutƒ<<ƒ“ƒisƒ“ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

H_C7785_07.1c 299H_C7785_07.1c 299 1/18/11 10:48 AM1/18/11 10:48 AM

300 Arrays

Following is a sample run of Program 7.2:

Enterƒaƒgrade:ƒ85
Enterƒaƒgrade:ƒ90
Enterƒaƒgrade:ƒ78
Enterƒaƒgrade:ƒ75
Enterƒaƒgrade:ƒ92

Theƒtotalƒofƒtheƒgradesƒ85ƒ90ƒ78ƒ75ƒ92ƒisƒ420

Note that in Program 7.2, unlike Program 7.1, only the values stored in each array element

are displayed. Although the second for loop is used to accumulate the total of each element,

the accumulation could also have been accomplished in the first for loop by placing the state-

ment totalƒ=ƒtotalƒ+ƒgrade[i]; after the cin statement used to enter a value. Also, the

cout statement used to display the total is placed outside the second for loop so that the total

is displayed only once, after all values have been added to the total. If this cout statement

were placed inside the for loop, five totals would be displayed, with only the last displayed

total containing the sum of all array values.

 EXERCISES 7.1

1. (Practice) Write array declarations for the following:

a. A list of 100 integer grades

b. A list of 50 double-precision temperatures

c. A list of 30 characters, each representing a code

d. A list of 100 integer years

e. A list of 32 double-precision velocities

f. A list of 1000 double-precision distances

g. A list of 6 integer code numbers

2. (Practice) Write correct notation for the first, third, and seventh elements of the following

arrays:

a. intƒgrades[20]

b. doubleƒprices[10]

c. doubleƒamounts[16]

d. intƒdist[15]

e. doubleƒvelocity[25]

f. doubleƒtime[100]

3. (Practice) a. Write input statements using cin that can be used to enter values in the first,

third, and seventh elements of each array declared in Exercise 2.

b. Write a for loop that can be used to enter values for each array declared in Exercise 2.

H_C7785_07.1c 300H_C7785_07.1c 300 1/18/11 10:48 AM1/18/11 10:48 AM

301Chapter 7
One-Dimensional Arrays

4. (Practice) a. Write output statements using cout that can be used to display values from the

first, third, and seventh elements of each array declared in Exercise 2.

b. Write a for loop that can be used to display values for each array declared in Exercise 2.

5. (Desk check) List the elements displayed by the following sections of code:

a. forƒ(mƒ=ƒ1;ƒmƒ<=ƒ5;ƒm++)

ƒƒƒƒcoutƒ<<ƒa[m]ƒ<<ƒ“ƒ“;

b. forƒ(kƒ=ƒ1;ƒkƒ<=ƒ5;ƒkƒ=ƒkƒ+ƒ2)

ƒƒƒƒcoutƒ<<ƒƒa[k]ƒ<<ƒ“ƒ“;

c. forƒ(jƒ=ƒ3;ƒjƒ<=ƒ10;ƒj++)

ƒƒƒƒcoutƒ<<ƒb[j]ƒ<<ƒ“ƒ“;

d. forƒ(kƒ=ƒ3;ƒkƒ<=ƒ12;ƒkƒ=ƒkƒ+ƒ3)

ƒƒƒƒcoutƒ<<ƒb[k]ƒ<<ƒ“ƒ“;

e. forƒ(iƒ=ƒ2;ƒiƒ<ƒ11;ƒiƒ=ƒiƒ+ƒ2)

ƒƒƒƒcoutƒ<<ƒc[i]ƒ<<ƒ“ƒ“;

6. (Program) a. Write, compile, and run a C++ program to input the following values into an

array named prices: 10.95, 16.32, 12.15, 8.22, 15.98, 26.22, 13.54, 6.45, and 17.59. After the

data has been entered, have your program display the values.

b. Repeat Exercise 6a, but after the data has been entered, have your program display it in the

following form:

10.95 16.32 12.15
ƒ8.22 15.98 26.22
13.54 ƒ6.45 17.59

7. (Program) Write, compile, and run a C++ program to input eight integer numbers into an

array named grade. As each number is input, add the numbers to a total. After all numbers are

input, display the numbers and their average.

8. (Program) a. Write, compile, and run a C++ program to input 10 integer numbers into an

array named fmax and determine the maximum value entered. Your program should contain

only one loop, and the maximum should be determined as array element values are being

input. (Hint: Set the maximum equal to the first array element, which should be input before

the loop used to input the remaining array values.)

b. Repeat Exercise 8a, keeping track of both the maximum element in the array and the index

number for the maximum. After displaying the numbers, display these two messages

(replacing the underlines with the correct values):

Theƒmaximumƒvalueƒis:ƒ____
Thisƒisƒelementƒnumberƒ___ƒinƒtheƒlistƒofƒnumbers

c. Repeat Exercise 8b, but have your program locate the minimum value of the data entered.

9. (Program) Write, compile, and run a C++ program that creates an array of five integer num-

bers and displays these numbers in reverse order.

H_C7785_07.1c 301H_C7785_07.1c 301 1/18/11 10:48 AM1/18/11 10:48 AM

302 Arrays

10. (Program) a. Write, compile, and run a C++ program to input the following integer numbers

into an array named grades: 89, 95, 72, 83, 99, 54, 86, 75, 92, 73, 79, 75, 82, and 73. As each

number is input, add the numbers to a total. After all numbers are input and the total is

obtained, calculate the average of the numbers, and use the average to determine the devia-

tion of each value from the average. Store each deviation in an array named deviation. Each

deviation is obtained as the element value less the average of all the data. Have your program

display each deviation with its corresponding element from the grades array.

b. Calculate the variance of the data used in Exercise 10a. The variance is obtained by squaring

each deviation and dividing the sum of the squared deviations by the number of deviations.

11. (Program) Write, compile, and run a C++ program that specifies three one-dimensional arrays

named price, amount, and total. Each array should be capable of holding 10 elements.

Using a for loop, input values for the price and amount arrays. The entries in the total

array should be the product of the corresponding values in the price and amount arrays (so

total[i]ƒ=ƒprice[i]ƒ*ƒamount[i]). After all the data has been entered, display the fol-

lowing output, with the corresponding value under each column heading:

totalƒƒƒƒƒpriceƒƒƒƒƒamount
-----ƒƒƒƒƒ-----ƒƒƒƒƒ------

12. (Program) Define an array named peopleTypes that can store a maximum of 50 integer

values entered at the keyboard. Enter a series of 1s, 2s, 3s, and 4s in the array to represent

people at a local school function; 1 represents an infant, 2 represents a child, 3 represents a

teenager, and 4 represents an adult. No other integer value should be accepted as valid input,

and data entry should stop when a negative value is entered. Your program should count the

number of each 1, 2, 3, and 4 in the array and display a list of how many infants, children,

teenagers, and adults were at the school function.

13. (Program) a. Write, compile, and run a C++ program that reads a list of double-precision

grades from the keyboard into an array named grade. The grades are to be counted as they’re

read, and entry is to be terminated when a negative value has been entered. After all grades

have been input, your program should find and display the sum and average of the grades. The

grades should then be listed with an asterisk (*) placed in front of each grade that’s below the

average.

b. Extend the program written for Exercise 13a to display each grade and its letter equivalent,

using the following scale:

Greater than or equal to 90 = A

Greater than or equal to 80 and less than 90 = B

Greater than or equal to 70 and less than 80 = C

Greater than or equal to 60 and less than 70 = D

Less than 60 = F

14. (Program) Using the srand() and rand() C++ library functions (discussed in Section 6.8),

fill an array of 1000 floating-point numbers with random numbers that have been scaled to the

range 1 to 100. Then determine and display the number of random numbers having values

between 1 and 50 and the number having values greater than 50. What do you expect the

output counts to be?

H_C7785_07.1c 302H_C7785_07.1c 302 1/18/11 10:48 AM1/18/11 10:48 AM

303Chapter 7
Array Initialization

15 (Program) a. Write, compile, and run a C++ program that inputs 10 double-precision numbers

in an array named raw. After these numbers are entered in the array, your program should cycle

through raw 10 times. During each pass through the array, your program should select the low-

est value in raw and place it in the next available slot in an array named sorted. When your

program is finished, the sorted array should contain the numbers in raw in sorted order from

lowest to highest. (Hint: Be sure to reset the lowest value selected during each pass to a very

high number so that it’s not selected again. You need a second for loop in the first for loop to

locate the minimum value for each pass.)

b. The method used in Exercise 15a to sort the values in the array is inefficient. Can you

determine why? What might be a better method of sorting the numbers in an array?

7.2 Array Initialization

Array elements can be initialized in their declaration statements in the same manner as scalar

variables, except the initializing elements must be included in braces, as shown in these

examples:

intƒgrade[5]ƒ=ƒ{98,ƒ87,ƒ92,ƒ79,ƒ85};
charƒcode[6]ƒ=ƒ{'s',ƒ'a',ƒ'm',ƒ'p',ƒ'l',ƒ'e'};
doubleƒwidth[7]ƒ=ƒ{10.96,ƒ6.43,ƒ2.58,ƒ0.86,ƒ5.89,ƒ7.56,ƒ8.22};

Initializers are applied in the order they’re written, with the first value used to initialize

element 0, the second value used to initialize element 1, and so on, until all values have been

used. For example, in the declaration

constƒNUMELSƒ=ƒ5;
intƒgrade[NUMELS]ƒ=ƒ{98,ƒ87,ƒ92,ƒ79,ƒ85};

grade[0] is initialized to 98, grade[1] is initialized to 87, grade[2] is initialized to 92,

grade[3] is initialized to 79, and grade[4] is initialized to 85.

Because white space is ignored in C++, initializations can be continued across multiple

lines. For example, the following declaration for gallons[] uses four lines to initialize all the

array elements:

constƒintƒNUMGALSƒ=ƒ20;
intƒgallons[NUMGALS]ƒ=ƒ{19,ƒ16,ƒ14,ƒ19,ƒ20,ƒ18,ƒƒƒ//ƒinitializingƒvalues
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ12,ƒ10,ƒ22,ƒ15,ƒ18,ƒ17,ƒƒƒ//ƒcanƒextendƒacross
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ16,ƒ14,ƒ23,ƒ19,ƒ15,ƒ18,ƒƒƒ//ƒmultipleƒlines
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ21,ƒ5};

If the number of initializers is less than the declared number of elements listed in square

brackets, the initializers are applied starting with array element 0. Therefore, in the declaration

constƒintƒARRAYSIZEƒ=ƒ7;
doubleƒlength[ARRAYSIZE]ƒ=ƒ{7.8,ƒ6.4,ƒ4.9,ƒ11.2};

only length[0], length[1], length[2], and length[3] are initialized with the listed val-

ues. The other array elements are initialized to 0.

H_C7785_07.1c 303H_C7785_07.1c 303 1/18/11 10:48 AM1/18/11 10:48 AM

304 Arrays

Unfortunately, there’s no method of indicating repetition of an initialization value or of

initializing later array elements without first specifying values for earlier elements.

A unique feature of initializers is that the array size can be omitted when initializing values

are included in the declaration statement. For example, the following declaration reserves

enough storage room for five elements:

intƒgallons[]ƒ=ƒ{16,ƒ12,ƒ10,ƒ14,ƒ11};

Similarly, the following declarations are equivalent:

constƒintƒNUMCODESƒ=ƒ6;
charƒcodes[6]ƒ=ƒ{'s',ƒ'a',ƒ'm',ƒ'p',ƒ'l',ƒ'e'};

and

charƒcodes[]ƒ=ƒ{'s',ƒ'a',ƒ'm',ƒ'p',ƒ'l',ƒ'e'};

Both these declarations set aside six character locations for an array named codes. An

interesting and useful simplification can also be used when initializing character arrays. For

example, the following declaration uses the string “sample” to initialize the codes array:

charƒcodes[]ƒ=ƒ“sample”;ƒƒƒ//ƒnoƒbracesƒorƒcommas

Recall that a string is any sequence of characters enclosed in double quotation marks.

The preceding declaration creates an array named codes with seven elements and fills the

array with the seven characters shown in Figure 7.4. The first six characters, as expected,

consist of the letters s, a, m, p, l, and e. The last character, the escape sequence \0, is called

the null character. The null character is appended automatically to all strings used to initialize

a character array. This character has an internal storage code numerically equal to zero. (The

storage code for the 0 character has a numerical value of decimal 48, so the computer can’t

confuse the two.) The null character is used as a sentinel to mark the end of a string. Strings

stored in this manner, as an array of characters terminated with the null character, are known as

C-strings. All the strings you’ve encountered so far have been C-strings. In Section 14.1, you see

that C++ has another method of storing strings with the string data type.

codes[0] codes[1] codes[2] codes[3] codes[4] codes[5] codes[6]

s a m p l e \0

Figure 7.4 Terminating a string with the \0 character

After values have been assigned to array elements, through initialization in the declara-

tion statement or with interactive input, array elements can be processed as described in the

previous section. For example, Program 7.3 shows the initialization of array elements in the

array declaration statement, and then uses a for loop to locate the maximum value stored in

the array.

H_C7785_07.1c 304H_C7785_07.1c 304 1/18/11 10:48 AM1/18/11 10:48 AM

305Chapter 7
Array Initialization

 Program 7.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXELSƒ=ƒ5;

ƒƒintƒi,ƒmax,ƒnums[MAXELS]ƒ=ƒ{2,ƒ18,ƒ1,ƒ27,ƒ16};

ƒƒmaxƒ=ƒnums[0];

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒMAXELS;ƒi++)
ƒƒƒƒifƒ(maxƒ<ƒnums[i])
ƒƒƒƒƒƒmaxƒ=ƒnums[i];

ƒƒcoutƒ<<ƒ“Theƒmaximumƒvalueƒisƒ“ƒ<<ƒmaxƒ<<ƒendl;

ƒƒreturnƒ0;
}

The following output is produced by Program 7.3:

Theƒmaximumƒvalueƒisƒ27

 EXERCISES 7.2

1. (Practice) Write array declarations, including initializers, for the following:

a. A list of 10 integer grades: 89, 75, 82, 93, 78, 95, 81, 88, 77, and 82

b. A list of five double-precision amounts: 10.62, 13.98, 18.45, 12.68, and 14.76

c. A list of 100 double-precision interest rates, with the first six rates being 6.29, 6.95, 7.25,

7.35, 7.40, and 7.42

d. A list of 64 double-precision temperatures, with the first 10 temperatures being 78.2, 69.6,

68.5, 83.9, 55.4, 67.0, 49.8, 58.3, 62.5, and 71.6

e. A list of 15 character codes, with the first seven codes being f, j, m, q, t, w, and z

2. (Practice) Write an array declaration statement that stores the following values in an array

named prices: 16.24, 18.98, 23.75, 16.29, 19.54, 14.22, 11.13, and 15.39. Include these state-

ments in a program that displays the values in the array.

H_C7785_07.1c 305H_C7785_07.1c 305 1/18/11 10:48 AM1/18/11 10:48 AM

306 Arrays

3. (Program) Write, compile, and run a C++ program that uses an array declaration statement to

initialize the following numbers in an array named slopes: 17.24, 25.63, 5.94, 33.92, 3.71,

32.84, 35.93, 18.24, and 6.92. Your program should locate and display the maximum and mini-

mum values in the array.

4. (Program) Write, compile, and run a C++ program that stores the following numbers in an

array named prices: 9.92, 6.32, 12.63, 5.95, and 10.29. Your program should also create two

arrays named units and amounts, each capable of storing five double-precision numbers.

Using a for loop and a cin statement, have your program accept five user-input numbers in

the units array when the program is run. Your program should store the product of the cor-

responding values in the prices and units array in the amounts array. For example, use

amounts[1]ƒ=ƒprices[1]ƒ*ƒunits[1]. Your program should then display the following

output (fill in the chart):

Price Units Amount
 9.92
 6.32
12.63
 5.95
10.29
Total:

5. (Program) Define an array with a maximum of 20 integer values and fill the array with

numbers of your own choosing as intializers. Then write, compile, and run a C++ program

that reads the numbers in the array and places all zero and positive numbers in an array

named positive and all negative numbers in an array named negative. Finally, have your

program display the values in both the positive and negative arrays.

6. (Practice) The string of characters “GoodƒMorning” is to be stored in a character array

named goodstr1. Write the declaration for this array in three different ways.

7. (Practice) a. Write declaration statements to store the string of characters “Input
theƒFollowingƒData” in a character array named message1, the string “------------” in

an array named message2, the string “EnterƒtheƒDate:” in an array named message3, and

the string “EnterƒtheƒAccountƒNumber:” in an array named message4.

b. Include the array declarations written in Exercise 7a in a program that uses a cout state-

ment to display the messages. For example, the statement coutƒ<<ƒmessage1; causes the

string stored in the message1 array to be displayed. Your program requires four of these

statements to display the four messages. Using a cout statement to display a string requires

placing the end-of-string marker \0 in the character array used to store the string.

H_C7785_07.1c 306H_C7785_07.1c 306 1/18/11 10:48 AM1/18/11 10:48 AM

307Chapter 7
Arrays as Arguments

8. (Program) a. Write a declaration to store the string “Thisƒisƒaƒtest” in an array named

strtest. Include the declaration in a program to display the message using the following loop:

forƒ(iƒ=ƒ0;ƒiƒ<ƒNUMDISPLAY;ƒi++)
ƒƒcoutƒ<<ƒstrtest[i];

NUMDISPLAY is a named constant for the number 14.

b. Modify the for statement in Exercise 8a to display only the array characters t, e, s, and t.

c. Include the array declaration written in Exercise 8a in a program that uses a cout statement

to display characters in the array. For example, the statement coutƒ<<ƒstrtest; causes

the string stored in the strtest array to be displayed. Using this statement requires having

the end-of-string marker, \0, as the last character in the array.

d. Repeat Exercise 8a, using a while loop. (Hint: Stop the loop when the \0 escape sequence

is detected. The expression whileƒ(strtest[i]ƒ!=ƒ'\0') can be used.)

7.3 Arrays as Arguments

Array elements are passed to a called function in the same manner as scalar variables: They’re

simply included as subscripted variables when the function call is made. For example, the fol-

lowing function call passes the values of the elements grades[2] and grades[6] to the func-

tion findMax():

findMax(grades[2],ƒgrades[6]);

Passing a complete array of values to a function is, in many respects, easier than passing

each element. The called function receives access to the actual array rather than a copy of

values in the array. For example, if grades is an array, the function call findMax(grades);

makes the complete grades array available to the findMax() function. This function call is

different from passing a single variable to a function.

Recall that when a single scalar argument is passed to a function (see Section 6.1), the

called function receives only a copy of the passed value, which is stored in one of the function’s

parameters. If arrays were passed in this manner, a copy of the complete array would have to

be created. For large arrays, making copies for each function call would waste computer storage

and frustrate the effort to return multiple-element changes made by the called program.

(Remember that a function returns, at most, one value.)

To avoid these problems, the called function is given direct access to the original array.3 In

this way, any changes the called function makes are made directly to the array. For the following

examples of function calls, the arrays nums, keys, units, and grades are declared as shown:

intƒnums[5];ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒanƒarrayƒofƒ5ƒintegers
charƒkeys[256];ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒanƒarrayƒofƒ256ƒcharacters
doubleƒunits[500],ƒgrades[500];ƒƒ//ƒtwoƒarraysƒofƒ500ƒdoubles

3The called function has access to the original array because the array’s starting address is actually passed as an argument. The formal

parameter receiving this address argument is a pointer. Section 8.2 explains the close relationship between array names and pointers.

H_C7785_07.1c 307H_C7785_07.1c 307 1/18/11 10:48 AM1/18/11 10:48 AM

308 Arrays

For these arrays, the following function calls can be made; note that in each case, the

called function receives direct access to the named array:

findMax(nums);
findCharacter(keys);
calcTotal(nums,ƒunits,ƒgrades);

On the receiving side, the called function must be alerted that an array is being made

available. For example, the following are suitable function headers for the previous functions:

intƒfindMax(intƒvals[5])
charƒfindCharacter(charƒinKeys[256])
voidƒcalcTotal(intƒarr1[5],ƒdoubleƒarr2[500],ƒdoubleƒarr3[500])

In each function header, the programmer chooses the names in the parameter list.

However, the parameter names used by the functions still refer to the original array created

outside the function, as Program 7.4 makes clear.

 Program 7.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

constƒintƒMAXELSƒ=ƒ5;
intƒfindMax(intƒ[MAXELS]);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒintƒnums[MAXELS]ƒ=ƒ{2,ƒ18,ƒ1,ƒ27,ƒ16};

ƒƒcoutƒ<<ƒ“Theƒmaximumƒvalueƒisƒ“ƒ<<ƒfindMax(nums)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

//ƒfindƒtheƒmaximumƒvalue
intƒfindMax(intƒvals[MAXELS])
{
ƒƒintƒi,ƒmaxƒ=ƒvals[0];

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒMAXELS;ƒi++)
ƒƒƒƒifƒ(maxƒ<ƒvals[i])
ƒƒƒƒƒƒmaxƒ=ƒvals[i];

ƒƒreturnƒmax;
}

H_C7785_07.1c 308H_C7785_07.1c 308 1/18/11 10:48 AM1/18/11 10:48 AM

309Chapter 7
Arrays as Arguments

First, note that the symbolic constant MAXELS has been declared globally, not in the

main() function. The placement of this declaration means that this symbolic constant can be

used in any subsequent declaration or function. Next, notice that the function prototype for

findMax() uses this symbolic constant and declares that findMax returns an integer and

expects an array of five integers as an argument. It’s also important to know that only one array

is created in Program 7.4. In main(), this array is known as nums, and in findMax(), the array

is known as vals. As illustrated in Figure 7.5, both names refer to the same array, so vals[3]

is the same element as nums[3].

int main()
{
 int nums[5];
 .
 .
 .
 findMax(nums) ;
 returns 0;
}
int findMax(int vals[5])
 .
 .
 .
}

In main(): nums[1] nums[2] nums[3] nums[4]
In findMax(): vals[1] vals[2] vals[3] vals[4]

This creates the array

These reference
the same array

nums[0]
vals[0]

Figure 7.5 Only one array is created

The parameter declaration in the findMax() prototype and function header actually con-

tains extra information not required by the function. All that findMax() must know is that the

parameter vals references an array of integers. Because the array has been created in main()

and no additional storage space is needed in findMax(), the declaration forƒvalsƒcan omit

the array size. Therefore, the following is an alternative function header:

intƒfindMax(intƒvals[])

This form of the function header makes more sense when you realize that only one item

is actually passed to findMax() when the function is called: the starting address of the nums

array, as shown in Figure 7.6.

H_C7785_07.1c 309H_C7785_07.1c 309 1/18/11 10:48 AM1/18/11 10:48 AM

310 Arrays

Starting address
of nums array is &nums[0].
This is passed to
the function

nums[0] nums[1] nums[2] nums[3] nums[4]

findMax(nums);

Figure 7.6 The array’s starting address is passed

Because only the starting address ofƒvalsƒis passed to findMax(), the number of ele-

ments in the array need not be included in the declaration for vals.4 In fact, generally it’s

advisable to omit the array size from the function header. For example, this more general form

of findMax() can be used to find the maximum value of an integer array of arbitrary size:

intƒfindMax(intƒvals[],ƒintƒNUMELS)ƒƒ//ƒfindƒtheƒmaximumƒvalue
{
ƒƒintƒi,ƒmaxƒ=ƒvals[0];

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒNUMELS;ƒi++)
ƒƒƒƒifƒ(maxƒ<ƒvals[i])
ƒƒƒƒƒƒmaxƒ=ƒvals[i];

ƒƒreturnƒmax;
}

The more general form of findMax() declares that the function returns an integer value.

The function expects the starting address of an integer array and the number of elements in

the array as arguments. Then, using the number of elements as the boundary for its search, the

function’s for loop causes each array element to be examined in sequential order to locate the

maximum value. Program 7.5 shows using the more general form of findMax() in a complete

program.

4An important consequence of passing the starting address is that findMax() has direct access to the passed array. This access means

any change to an element of the vals array is a change to the nums array. This result is much different from the situation with scalar

variables, in which the called function doesn’t receive direct access to the passed variable.

H_C7785_07.1c 310H_C7785_07.1c 310 1/18/11 10:48 AM1/18/11 10:48 AM

311Chapter 7
Arrays as Arguments

 Program 7.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒfindMax(intƒ[],ƒint);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒconstƒintƒMAXELSƒ=ƒ5;
ƒƒintƒnums[MAXELS]ƒ=ƒ{2,ƒ18,ƒ1,ƒ27,ƒ16};

ƒƒcoutƒ<<ƒ“Theƒmaximumƒvalueƒisƒ“ƒ<<ƒfindMax(nums,ƒMAXELS)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

//ƒfindƒtheƒmaximumƒvalue
intƒfindMax(intƒvals[],ƒintƒnumels)
{
ƒƒintƒi,ƒmaxƒ=ƒvals[0];

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒnumels;ƒi++)
ƒƒƒƒifƒ(maxƒ<ƒvals[i])ƒmaxƒ=ƒvals[i];

ƒƒreturnƒmax;
}

The output displayed by Programs 7.4 and 7.5 is as follows:

Theƒmaximumƒvalueƒisƒ27

 EXERCISES 7.3

1. (Practice) The following declarations were used to create the grades array:

constƒintƒNUMGRADESƒ=ƒ500;
doubleƒgrades[NUMGRADES];

 Write two different function headers for a function named sortArray() that accepts the

grades array as a parameter named inArray and returns no value.

2. (Practice) The following declarations were used to create the keys array:

constƒintƒNUMKEYSƒ=ƒ256;ƒ
charƒkeys[NUMKEYS];

H_C7785_07.1c 311H_C7785_07.1c 311 1/18/11 10:48 AM1/18/11 10:48 AM

312 Arrays

 Write two different function headers for a function named findKey() that accepts the keys

array as a parameter named select and returns a character.

3. (Practice) The following declarations were used to create the rates array:

constƒintƒNUMRATESƒ=ƒ256;
doubleƒrates[NUMRATES];

 Write two different function headers for a function named prime() that accepts the rates

array as an argument named rates and returns a double-precision number.

4. (Modify) a. Modify the findMax() function in Program 7.4 to locate the minimum value of

the passed array.

b. Include the function written in Exercise 4a in a complete program and run the program.

5. (Program) Write, compile, and run a C++ program that has a declaration in main() to store

the following numbers in an array named rates: 6.5, 7.2, 7.5, 8.3, 8.6, 9.4, 9.6, 9.8, and 10.0.

There should be a function call to show() that accepts the rates array as a parameter named

rates and then displays the numbers in the array.

6. (Program) a. Write, compile, and run a C++ program that has a declaration in main() to store

the string “Vacationƒisƒnear” in an array named message. There should be a function call to

display() that accepts message in a parameter named strng and then displays the message.

b. Modify the display() function written in Exercise 6a to display the first eight elements

of the message array.

7. (Program) Write, compile, and run a C++ program that declares three one-dimensional arrays

named price, quantity, and amount. Each array should be declared in main() and be

capable of holding 10 double-precision numbers. The numbers to store in price are 10.62,

14.89, 13.21, 16.55, 18.62, 9.47, 6.58, 18.32, 12.15, and 3.98. The numbers to store in quantity

are 4, 8.5, 6, 7.35, 9, 15.3, 3, 5.4, 2.9, and 4.8. Your program should pass these three arrays to

a function named extend(), which should calculate elements in the amount array as the

product of the corresponding elements in the price and quantity arrays (for example,

amount[1]ƒ= price[1]ƒ*ƒquantity[1]). After extend() has passed values to the amount

array, the values in the array should be displayed from within main().

8. (Program) Write, compile, and run a C++ program that includes two functions named

calcavg() and variance(). The calcavg() function should calculate and return the aver-

age of values stored in an array named testvals. The array should be declared in main() and

include the values 89, 95, 72, 83, 99, 54, 86, 75, 92, 73, 79, 75, 82, and 73. The variance()

function should calculate and return the variance of the data. The variance is obtained by

subtracting the average from each value in testvals, squaring the values obtained, adding

them, and dividing by the number of elements in testvals. The values returned from

calcavg() and variance() should be displayed by using cout statements in main().

H_C7785_07.1c 312H_C7785_07.1c 312 1/18/11 10:48 AM1/18/11 10:48 AM

313Chapter 7
Two-Dimensional Arrays

7.4 Two-Dimensional Arrays

A two-dimensional array, sometimes referred to as a table, consists of both rows and columns of

elements. For example, the following array of numbers is called a two-dimensional array of

integers:

 8 16 9 52
 3 15 27 6
14 25 2 10

This array consists of three rows and four columns and is called a 3-by-4 array. To reserve

storage for this array, both the number of rows and the number of columns must be included

in the array’s declaration. Calling the array val, the following is the correct specification for

this two-dimensional array:

intƒval[3][4];

Similarly, the declarations

doubleƒprices[10][5];ƒ
charƒcode[6][26];

specify that the prices array consists of 10 rows and 5 columns of double-precision numbers,

and the code array consists of 6 rows and 26 columns, with each element capable of holding

one character.

To locate each element in a two-dimensional array, you use its position in the array. As

shown in Figure 7.7, the term val[1][3] uniquely identifies the element in row 1, column 3.

As with one-dimensional array variables, two-dimensional array variables can be used anywhere

that scalar variables are valid, as shown in these examples using elements of the val array:

priceƒ=ƒval[2][3];
val[0][0]ƒ=ƒ62;
newnumƒ=ƒ4ƒ*ƒ(val[1][0]ƒ-ƒ5);
sumRowƒ=ƒval[0][0]ƒ+ƒval[0][1]ƒ+ƒval[0][2]ƒ+ƒval[0][3];

The last statement causes the values of the four elements in row 0 to be added and the

sum to be stored in the scalar variable sumRow.

Row 0

Row 1

Row 2

8

3

14

Col. 0

16

15

25

Col. 1

9

27

2

Col. 2

52

6

10

Col. 3

val[1][3]

Row
position

Column
position

Figure 7.7 Each array element is identified by its row and column position

H_C7785_07.1c 313H_C7785_07.1c 313 1/18/11 10:48 AM1/18/11 10:48 AM

314 Arrays

As with one-dimensional arrays, two-dimensional arrays can be initialized in their declara-

tion statements by listing the initial values inside braces and separating them with commas.

Additionally, braces can be used to separate rows. For example, the declaration

intƒval[3][4]ƒ=ƒ{ƒ{8,16,9,52},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{3,15,27,6},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{14,25,2,10}ƒ};

declares val as an array of integers with three rows and four columns, with the initial values

given in the declaration. The first set of braces contains values for row 0 of the array, the second

set of braces contains values for row 1, and the third set of braces contains values for row 2.

Although the commas in initialization braces are always required, the inner braces can be

omitted. Without them, the initialization for val can be written as follows:

intƒval[3][4]ƒ=ƒ{8,16,9,52,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ3,15,27,6,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ14,25,2,10};

Separating initial values into rows in the declaration statement isn’t necessary because the

compiler assigns values beginning with the [0][0] element and proceeds row by row to fill in

the remaining values. Therefore, the following initialization is equally valid but doesn’t clearly

indicate to another programmer where one row ends and another begins.

intƒval[3][4]ƒ=ƒ{8,16,9,52,3,15,27,6,14,25,2,10};

As shown in Figure 7.8, a two-dimensional array is initialized in row order. First, the ele-

ments of row 0 are initialized, then the elements of row 1 are initialized, and so on, until the

initializations are completed. This row ordering is also the same ordering used to store two-

dimensional arrays. That is, array element [0][0] is stored first, followed by element [0][1],

followed by element [0][2], and so on. Following the first row’s elements are the second

row’s elements, and so on for all rows in the array.

Initialization
starts with this

element

val[0][0]=8 val[0][1]=16 val[0][2]=9 val[0][3]=52

val[1][0]=3 val[1][1]=15 val[1][3]=6val[1][2]=27

val[2][0]=14 val[2][1]=25 val[2][2]=2 val[2][3]=10

Figure 7.8 Storage and initialization of the val array

H_C7785_07.1c 314H_C7785_07.1c 314 1/18/11 10:48 AM1/18/11 10:48 AM

315Chapter 7
Two-Dimensional Arrays

As with one-dimensional arrays, two-dimensional arrays can be displayed by element nota-

tion or by using loops (while or for). Program 7.6, which displays all elements of a 3-by-4

two-dimensional array, shows using these two techniques. Notice that symbolic constants are

used to define the array’s rows and columns.

 Program 7.6

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒNUMROWSƒ=ƒ3;
ƒƒconstƒintƒNUMCOLSƒ=ƒ4;

ƒƒintƒi,ƒj;
ƒƒintƒval[NUMROWS][NUMCOLS]ƒ=ƒ{8,16,9,52,3,15,27,6,14,25,2,10};

ƒƒcoutƒ<<ƒ“\nDisplayƒofƒvalƒarrayƒbyƒexplicitƒelement”
ƒƒƒƒƒƒƒ<<ƒendlƒ<<ƒsetw(4)ƒ<<ƒval[0][0]ƒ<<ƒsetw(4)ƒ<<ƒval[0][1]
ƒƒƒƒƒƒƒ<<ƒsetw(4)ƒ<<ƒval[0][2]ƒ<<ƒsetw(4)ƒ<<ƒval[0][3]
ƒƒƒƒƒƒƒ<<ƒendlƒ<<ƒsetw(4)ƒ<<ƒval[1][0]ƒ<<ƒsetw(4)ƒ<<ƒval[1][1]
ƒƒƒƒƒƒƒ<<ƒsetw(4)ƒ<<ƒval[1][2]ƒ<<ƒsetw(4)ƒ<<ƒval[1][3]
ƒƒƒƒƒƒƒ<<ƒendlƒ<<ƒsetw(4)ƒ<<ƒval[2][0]ƒ<<ƒsetw(4)ƒ<<ƒval[2][1]
ƒƒƒƒƒƒƒ<<ƒsetw(4)ƒ<<ƒval[2][2]ƒ<<ƒsetw(4)ƒ<<ƒval[2][3];

ƒƒcoutƒ<<ƒ“\n\nDisplayƒofƒvalƒarrayƒusingƒaƒnestedƒforƒloop”;

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMROWS;ƒi++)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒendl;ƒƒƒƒ//ƒprintƒaƒnewƒlineƒforƒeachƒrow
ƒƒƒƒforƒ(jƒ=ƒ0;ƒjƒ<ƒNUMCOLS;ƒj++)
ƒƒƒƒƒƒcoutƒ<<ƒsetw(4)ƒ<<ƒval[i][j];
ƒƒ}

ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

H_C7785_07.1c 315H_C7785_07.1c 315 1/18/11 10:48 AM1/18/11 10:48 AM

316 Arrays

This is the display produced by Program 7.6:

Displayƒofƒvalƒarrayƒbyƒexplicitƒelement
ƒƒƒ8ƒƒ16ƒƒƒ9ƒƒ52
ƒƒƒ3ƒƒ15ƒƒ27ƒƒƒ6
ƒƒ14ƒƒ25ƒƒƒ2ƒƒ10

Displayƒofƒvalƒarrayƒusingƒaƒnestedƒforƒloop
ƒƒƒ8ƒƒ16ƒƒƒ9ƒƒ52
ƒƒƒ3ƒƒ15ƒƒ27ƒƒƒ6
ƒƒ14ƒƒ25ƒƒƒ2ƒƒ10

The first display of the val array is constructed by designating each array element. The

second display of array element values, which is identical to the first, is produced by using a

nested for loop. Nested loops are especially useful when dealing with two-dimensional arrays

because they allow the programmer to designate and cycle through each element easily. In

Program 7.6, the variable i controls the outer loop, and the variable j controls the inner loop.

Each pass through the outer loop corresponds to a single row, with the inner loop supplying

the column elements. After a complete row is printed, a new line is started for the next row.

The result is a display of the array in a row-by-row fashion.

After two-dimensional array elements have been assigned, array processing can begin.

Typically, for loops are used to process two-dimensional arrays because, as noted, they allow

the programmer to designate and cycle through each array element easily. For example, the

nested for loop in Program 7.7 is used to multiply each element in the val array by the scalar

number 10 and display the resulting value.

 Program 7.7

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒNUMROWSƒ=ƒ3;
ƒƒconstƒintƒNUMCOLSƒ=ƒ4;

ƒƒintƒi,ƒj;
ƒƒintƒval[NUMROWS][NUMCOLS]ƒ=ƒ{8,16,9,52,
ƒƒ3,15,27,6,
ƒ14,25,2,10};

ƒƒ//ƒmultiplyƒeachƒelementƒbyƒ10ƒandƒdisplayƒit
ƒƒcoutƒ<<ƒ“\nDisplayƒofƒmultipliedƒelements”;
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMROWS;ƒi++) ☞

H_C7785_07.1c 316H_C7785_07.1c 316 1/18/11 10:48 AM1/18/11 10:48 AM

317Chapter 7
Two-Dimensional Arrays

ƒƒ{
ƒƒƒƒcoutƒ<<ƒendl;ƒƒƒ//ƒstartƒeachƒrowƒonƒaƒnewƒline
ƒƒƒƒforƒ(jƒ=ƒ0;ƒjƒ<ƒNUMCOLS;ƒj++)
ƒƒƒƒ{
ƒƒƒƒƒƒval[i][j]ƒ=ƒval[i][j]ƒ*ƒ10;
ƒƒƒƒƒƒcoutƒ<<ƒsetw(5)ƒ<<ƒval[i][j];
ƒƒƒƒ}ƒƒ//ƒendƒofƒinnerƒloop
ƒƒ}ƒƒƒƒ//ƒendƒofƒouterƒloop
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

Following is the output produced by Program 7.7:

Displayƒofƒmultipliedƒelements
ƒ80ƒƒƒ160ƒƒƒ90ƒƒƒ520
ƒ30ƒƒƒ150ƒƒ270ƒƒƒƒ60
140ƒƒƒ250ƒƒƒ20ƒƒƒ100

Passing two-dimensional arrays to a function is identical to passing one-dimensional

arrays. The called function receives access to the entire array. For example, if val is a two-

dimensional array, the function call display(val); makes the complete val array available

to the function named display(). Consequently, any changes display() makes are made

directly to the val array. As further examples, the following two-dimensional arrays named

test, code, and stocks are declared as follows:

intƒtest[7][9];
charƒcode[26][10];
doubleƒstocks[256][52];

Then the following function calls are valid:

findMax(test);
obtain(code);
price(stocks);

On the receiving side, the called function must be alerted that a two-dimensional array is

being made available. For example, assuming each of the previous functions returns an integer,

the following are suitable function headers:

intƒfindMax(intƒnums[7][9])
intƒobtain(charƒkey[26][10])
intƒprice(doubleƒnames[256][52])

In these function headers, the parameter names chosen are local to the function (used

inside the function body). However, the parameter names still refer to the original array cre-

ated outside the function. Program 7.8 shows passing a two-dimensional array to a function

that displays the array’s values.

H_C7785_07.1c 317H_C7785_07.1c 317 1/18/11 10:48 AM1/18/11 10:48 AM

318 Arrays

 Program 7.8

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

constƒintƒROWSƒ=ƒ3;
constƒintƒCOLSƒ=ƒ4;

voidƒdisplay(intƒ[ROWS][COLS]);ƒƒ//ƒfunctionƒprototype
intƒmain()
{
ƒƒintƒval[ROWS][COLS]ƒ=ƒ{8,16,9,52,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ3,15,27,6,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ14,25,2,10};

ƒƒdisplay(val);

ƒƒreturnƒ0;
}

voidƒdisplay(intƒnums[ROWS][COLS])
{
ƒƒintƒrowNum,ƒcolNum;
ƒƒforƒ(rowNumƒ=ƒ0;ƒrowNumƒ<ƒROWS;ƒrowNum++)
ƒƒ{
ƒƒƒƒfor(colNumƒ=ƒ0;ƒcolNumƒ<ƒCOLS;ƒcolNum++)
ƒƒƒƒƒƒcoutƒ<<ƒsetw(4)ƒ<<ƒnums[rowNum][colNum];
ƒƒƒƒcoutƒ<<ƒendl;
ƒƒ}

ƒƒreturn;
}

Only one array is created in Program 7.8. This array is known as val in main() and as

nums in display(). Therefore, val[0][2] refers to the same element as nums[0][2].

Notice the use of the nested for loop in Program 7.8 for cycling through each array ele-

ment. The variable rowNum controls the outer loop, and the variable colNum controls the inner

loop. For each pass through the outer loop, which corresponds to a single row, the inner loop

makes one pass through the column elements. After a complete row is printed, a new line is

started for the next row. The result is a display of the array in a row-by-row fashion:

ƒ8ƒƒ16ƒƒƒ9ƒƒ52
ƒ3ƒƒ15ƒƒ27ƒƒƒ6
14ƒƒ25ƒƒƒ2ƒƒ10

H_C7785_07.1c 318H_C7785_07.1c 318 1/18/11 10:48 AM1/18/11 10:48 AM

319Chapter 7
Two-Dimensional Arrays

The parameter declaration for nums in display() contains extra information not required

by the function. The declaration for nums can omit the row size of the array, so the following

is an alternative function prototype:

display(intƒnums[][4]);

The reason the column size must be included but the row size is optional becomes obvi-

ous when you see how array elements are stored in memory. Starting with element val[0][0],

each succeeding element is stored consecutively, row by row, as val[0][0], val[0][1],

val[0][2], val[0][3], val[1][0], val[1][1], and so on (see Figure 7.9).

val[1][3]

Column 0 Column 1 Column 2 Column 3

Row 0

Row 1

Row 2

Figure 7.9 Storage of the val array

As with all array accesses, a single element of the val array is obtained by adding an offset

to the array’s starting location. For example, element val[1][3] of the val array in Figure 7.9

is located at an offset of 28 bytes from the start of the array. Internally, the compiler uses the

row index, column index, and column size to determine this offset, using the following calcula-

tion (assuming 4 bytes for an int):

 No. of bytes in a complete row

Offset = [(3 4)+ [1 (4 4)] = 28 bytes

 Bytes per integer
 Column size
 Row index
 Column index

× × ×

The column size is necessary in the offset calculation so that the compiler can determine

the number of positions to skip over to get to the correct row.

Larger Dimensional Arrays
Although arrays with more than two dimensions aren’t commonly used, C++ does allow declar-

ing any number of dimensions by listing the maximum size of all dimensions for the array. For

example, the declaration intƒresponseƒ[4][10][6]; declares a three-dimensional array.

The first element in the array is designated as response[0][0][0] and the last element as

response[3][9][5].

As shown in Figure 7.10, you can think of a three-dimensional array as a book of data

tables. Using this analogy, think of the third subscript value, often called the “rank,” as the

page number of the selected table, the first subscript value as the row, and the second subscript

value as the column.

H_C7785_07.1c 319H_C7785_07.1c 319 1/18/11 10:48 AM1/18/11 10:48 AM

320 Arrays

Row
index

Column
index

Page number
index (rank)

Figure 7.10 Representation of a three-dimensional array

Similarly, arrays of any dimension can be declared. Conceptually, a four-dimensional array

can be represented as a shelf of books, with the fourth dimension used to declare a selected

book on the shelf, and a five-dimensional array can be viewed as a bookcase filled with books,

with the fifth dimension referring to a selected shelf in the bookcase. Using the same analogy,

a six-dimensional array can be thought of as a single row of bookcases, with the sixth dimen-

sion referring to the selected bookcase in the row; a seven-dimensional array can be thought

of as multiple rows of bookcases, with the seventh dimension referring to the selected row, and

so on. Alternatively, arrays of three, four, five, six, and so on dimensional arrays can be viewed

as mathematical n-tuples of order three, four, five, six, and so forth.

 EXERCISES 7.4

1. (Practice) Write specification statements for the following:

a. An array of integers with 6 rows and 10 columns

b. An array of integers with 2 rows and 5 columns

c. An array of characters with 7 rows and 12 columns

d. An array of characters with 15 rows and 7 columns

e. An array of double-precision numbers with 10 rows and 25 columns

f. An array of double-precision numbers with 16 rows and 8 columns

2. (Desk check) Determine the output produced by the following program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒi,ƒj,ƒval[3][4]ƒ=ƒ{8,16,9,52,3,15,27,6,14,25,2,10};

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒ3;ƒi++)
ƒƒƒƒforƒ(jƒ=ƒ0;ƒjƒ<ƒ4;ƒj++)
ƒƒƒƒƒƒcoutƒ<<ƒval[i][j]ƒ<<ƒ“ƒ“;

ƒƒreturnƒ0;
}

H_C7785_07.1c 320H_C7785_07.1c 320 1/18/11 10:48 AM1/18/11 10:48 AM

321Chapter 7
Two-Dimensional Arrays

3. (Program) a. Write, compile, and run a C++ program that adds the values of all elements in

the val array used in Exercise 2 and displays the total.

b. Modify the program written for Exercise 3a to display the total of each row separately.

4. (Program) Write, compile, and run a C++ program that adds equivalent elements of the two-

dimensional arrays named first and second. Both arrays should have two rows and three col-

umns. For example, element [1][2] of the resulting array should be the sum of first[1][2]

and second[1][2]. The first and second arrays should be initialized as follows:

ƒƒƒƒfirstƒƒƒƒƒƒƒƒƒƒƒƒƒsecond
16ƒƒƒ18ƒƒƒ23ƒƒƒƒƒƒƒƒ24ƒƒƒ52ƒƒƒ77
54ƒƒƒ91ƒƒƒ11ƒƒƒƒƒƒƒƒ16ƒƒƒ19ƒƒƒ59

5. (Program) a. Write, compile, and run a C++ program that finds and displays the maximum value

in a two-dimensional array of integers. The array should be declared as a 4-by-5 array of integers

and initialized with the data 16, 22, 99, 4, 18, -258, 4, 101, 5, 98, 105, 6, 15, 2, 45, 33, 88, 72, 16, and 3.

b. Modify the program written in Exercise 5a so that it also displays the maximum value’s row

and column subscript values.

6. (Program) Write, compile, and run a C++ program that selects the values in a 4-by-5 array of

positive integers in increasing order and stores the selected values in a one-dimensional array

named sort. Use the data given in Exercise 5a to initialize the two-dimensional array.

7. (Program) a. A professor has constructed a 3-by-5 two-dimensional array of grades. This array

contains the test grades of students in the professor’s advanced compiler design class. Write,

compile, and run a C++ program that reads 15 array values and then determines the total num-

ber of grades in these ranges: less than 60, greater than or equal to 60 and less than 70, greater

than or equal to 70 and less than 80, greater than or equal to 80 and less than 90, and greater

than or equal to 90.

b. Entering 15 grades each time you run the program written for Exercise 7a is cumbersome.

What method can be used for initializing the array during the testing phase?

c. How might the program you wrote for Exercise 7a be modified to include the case of no

grade being input? That is, what grade could be used to indicate an invalid grade, and how

would your program have to be modified to exclude counting an invalid grade?

8. (Program) a. Create a two-dimensional list of integer part numbers and quantities of each

part in stock, and write a function that displays data in the array in decreasing quantity order.

No more than 100 different parts are being tracked. Test your program with the following data:

Part No. Quantity
1001 62
949 85
1050 33
867 125
346 59
1025 105

b. Modify the function written in Exercise 8a to display the data in part number order.

H_C7785_07.1c 321H_C7785_07.1c 321 1/18/11 10:48 AM1/18/11 10:48 AM

322 Arrays

9. (Program) a. Your professor has asked you to write a C++ program that determines grades for

five students at the end of the semester. For each student, identified by an integer number, four

exam grades must be kept, and two final grade averages must be computed. The first grade

average is simply the average of all four grades. The second grade average is computed by

weighting the four grades as follows: The first grade gets a weight of 0.2, the second grade gets

a weight of 0.3, the third grade gets a weight of 0.3, and the fourth grade gets a weight of 0.2.

That is, the final grade is computed as follows:

0.2ƒ*ƒgrade1ƒ0.3ƒ*ƒgrade2ƒ0.3ƒ*ƒgrade3ƒ0.2ƒ*ƒgrade4

 Using this information, construct a 5-by-6 two-dimensional array, in which the first column is

used for the student number, the next four columns for the grades, and the last two columns

for the computed final grades. The program’s output should be a display of the data in the

completed array. For testing purposes, the professor has provided the following data:

Student Grade 1 Grade2 Grade 3 Grade 4
1 100 100 100 100
2 100 0 100 0
3 82 94 73 86
4 64 74 84 94
5 94 84 74 64

b. What modifications would you need to make to your program so that it can handle 60 stu-

dents rather than 5?

c. Modify the program written for Exercise 9a by adding an eighth column to the array. The

grade in the eighth column should be calculated by computing the average of the top three

grades only.

10. (Program) The answers to a true-false test are as follows: T T F F T. Given a two-dimensional

answer array, in which each row corresponds to the answers provided on one test, write a func-

tion that accepts the two-dimensional array and number of tests as parameters and returns a

one-dimensional array containing the grades for each test. (Each question is worth 5 points so

that the maximum possible grade is 25.) Test your function with the following data:

Test 1: T F T T T
Test 2: T T T T T
Test 3: T T F F T
Test 4: F T F F F
Test 5: F F F F F
Test 6: T T F T F

H_C7785_07.1c 322H_C7785_07.1c 322 1/18/11 10:48 AM1/18/11 10:48 AM

323Chapter 7
Common Programming Errors

11. (Modify) Modify the function you wrote for Exercise 10 so that each test is stored in column

order rather than row order.

12. (Program) A three-dimensional weather array for the months July and August 2011 has col-

umns labeled by the month numbers 7 and 8. In each column, there are rows numbered 1

through 31, representing the days, and for each day, there are two ranks labeled H and L,

representing the day’s high and low temperatures. Use this information to write a C++ pro-

gram that assigns the high and low temperatures for each element of the arrays. Then allow

the user to request the following:

• Any day’s high and low temperatures

• Average high and low temperatures for a given month

• Month and day with the highest temperature

• Month and day with the lowest temperature

7.5 Common Programming Errors

Four common errors are associated with using arrays:

1. Forgetting to declare the array. This error results in a compiler error message such as

“invalid indirection” each time a subscripted variable is encountered in a program.

2. Using a subscript that references a nonexistent array element, such as declaring the

array as size 20 and using a subscript value of 25. Most C++ compilers don’t detect this

error. However, it usually results in a runtime error that causes a program crash or

results in a value with no relation to the intended element being accessed from mem-

ory. In either case, this error is usually troublesome to locate. The only solution is to

make sure, by specific programming statements or by careful coding, that each sub-

script references a valid array element. Using symbolic constants for an array’s size and

the maximum subscript value helps eliminate this problem.

3. Not using a large enough counter value in a for loop to cycle through all the array

elements. This error usually occurs when an array is initially specified as size n and

there’s a for loop in the program of the form for(iƒ=ƒ0;ƒiƒ<ƒn;ƒi++). The array

size is then expanded, but the programmer forgets to change the interior for loop

parameters. In practice, this error is eliminated by using the same symbolic constant

for the array size declaration and loop parameter.

4. Forgetting to initialize the array. Although many compilers set all elements of integer

and real value arrays to 0 automatically and all elements of character arrays to blanks,

it’s up to the programmer to make sure each array is initialized correctly before pro-

cessing of array elements begins.

H_C7785_07.1c 323H_C7785_07.1c 323 1/18/11 10:48 AM1/18/11 10:48 AM

324 Arrays

7.6 Chapter Summary
1. A one-dimensional array is a data structure that can be used to store a list of values of the

same data type. These arrays must be declared by giving the data type of values stored in

the array and the array size. For example, the declaration

intƒnum[100];

 creates an array of 100 integers. A preferable approach is first using a symbolic constant to

set the array size, and then using this constant in the array definition, as shown in these

examples:

constƒintƒMAXSIZEƒ=ƒ100;

 and

intƒnum[MAXSIZE];

2. Array elements are stored in contiguous locations in memory and referenced by using the

array name and a subscript (or index), such as num[22]. Any non-negative integer value

expression can be used as a subscript, and the subscript 0 always refers to the first element

in an array.

3. A two-dimensional array is declared by listing a row and a column size with the data type

and array name. For example, the following declarations create a two-dimensional array

consisting of five rows and seven columns of integer values:

constƒintƒROWSƒ=ƒ5;
constƒintƒCOLSƒ=ƒ7;
intƒmat[ROWS][COLS];

4. Arrays can be initialized when they’re declared. For two-dimensional arrays, you can list the

initial values, row by row, inside braces and separate them with commas. For example, the

declaration

intƒvals[3][2]ƒ=ƒ{ƒ{1,ƒ2},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{3,ƒ4},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{5,ƒ6}ƒ};

 produces the following three-row-by-two-column array:

1ƒƒ2
3ƒƒ4
5ƒƒ6

 As C++ uses the convention that initialization proceeds in row order, the inner braces can

be omitted. Therefore, the following statement is an equivalent initialization:

intƒvals[3][2]ƒ=ƒ{1,ƒ2,ƒ3,ƒ4,ƒƒ5,ƒ6};

5. Arrays are passed to a function by passing the array name as an argument. The value actu-

ally passed is the address of the first array storage location. Therefore, the called function

H_C7785_07.1c 324H_C7785_07.1c 324 1/18/11 10:48 AM1/18/11 10:48 AM

325Chapter 7
Chapter Supplement: Searching and Sorting
Methods

receives direct access to the original array, not a copy of the array elements. A parameter

must be declared in the called function to receive the passed array name. The declaration

of the parameter can omit the array’s row size for both one- and two-dimensional arrays.

7.7 Chapter Supplement: Searching and Sorting Methods

Most programmers encounter the need to both sort and search a list of data items at some time

in their programming careers. For example, you might have to arrange experiment results in

increasing (ascending) or decreasing (descending) order for statistical analysis or sort a list of

names in alphabetical order and search this list to find a particular name. Similarly, you might

have to arrange a list of dates in ascending or descending order and search this list to locate a

certain date. This section introduces the fundamentals of sorting and searching lists. Note that

sorting a list before searching it isn’t necessary, although much faster searches are possible if

the list is in sorted order, as you’ll see.

Search Algorithms
A common requirement of many programs is searching a list for a given element. For example,

in a list of names and phone numbers, you might search for a specific name so that the corre-

sponding phone number can be printed, or you might need to search the list simply to deter-

mine whether a name is there. The two most common methods of performing these searches

are the linear and binary search algorithms.

Linear Search In a linear search, also known as a sequential search, each item in the list is

examined in the order in which it occurs until the desired item is found or the end of the list

is reached. This search method is analogous to looking at every name in the phone directory,

beginning with Aardvark, Aaron, until you find the one you want or until you reach Zzxgy,

Zora. Obviously, it’s not the most efficient way to search a long alphabetized list. However, a

linear search has these advantages:

• The algorithm is simple.

• The list need not be in any particular order.

In a linear search, the search begins at the first item in the list and continues sequentially,

item by item, through the list. The pseudocode for a function performing a linear search is as

follows:

For all items in the list
 Compare the item with the desired item
 If the item is found
 Return the index value of the current item
 EndIf
EndFor
Return -1 if the item is not found

H_C7785_07.1c 325H_C7785_07.1c 325 1/18/11 10:48 AM1/18/11 10:48 AM

326 Arrays

Notice that the function’s return value indicates whether the item was found. If the return

value is -1, the item isn’t in the list; otherwise, the return value in the for loop provides the

index of where the item is located in the list. The linearSearch() function illustrates this

procedure as a C++ function:

//ƒthisƒfunctionƒreturnsƒtheƒlocationƒofƒkeyƒinƒtheƒlist
//ƒaƒ-1ƒisƒreturnedƒifƒtheƒvalueƒisƒnotƒfound
intƒlinearSearch(intƒlist[],ƒintƒsize,ƒintƒkey)
{
ƒƒintƒi;

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒsize;ƒi++)
ƒƒ{
ƒƒƒƒifƒ(list[i]ƒ==ƒkey)
ƒƒƒƒƒƒreturnƒi;
ƒƒ}

ƒƒreturnƒ-1;
}

In reviewing linearSearch(), notice that the for loop is simply used to access each

element in the list, from first to last, until a match with the desired item is found. If the item

is located, the index value of the current item is returned, which causes the loop to terminate;

otherwise, the search continues until the end of the list is encountered.

To test this function, a main() driver function has been written to call linearSearch()

and display the results it returns. Program 7.9 shows the complete test program.

 Program 7.9

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒlinearSearch(intƒ[],ƒint,ƒint);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒconstƒintƒNUMELƒ=ƒ10;
ƒƒintƒnums[NUMEL]ƒ=ƒ{5,10,22,32,45,67,73,98,99,101};
ƒƒintƒitem,ƒlocation;

ƒƒcoutƒ<<ƒ“Enterƒtheƒitemƒyouƒareƒsearchingƒfor:ƒ“;
ƒƒcinƒƒ>>ƒitem;

ƒƒlocationƒ=ƒlinearSearch(nums,ƒNUMEL,ƒitem);

☞

H_C7785_07.1c 326H_C7785_07.1c 326 1/18/11 10:48 AM1/18/11 10:48 AM

327Chapter 7
Chapter Supplement: Searching and Sorting
Methods

ƒƒifƒ(locationƒ>ƒ-1)
ƒƒƒcoutƒ<<ƒ“Theƒitemƒwasƒfoundƒatƒindexƒlocationƒ“ƒ
ƒƒƒƒƒƒƒƒ<<ƒlocationƒ<<ƒendl;
ƒƒelseƒ
ƒƒƒcoutƒ<<ƒ“Theƒitemƒwasƒnotƒfoundƒinƒtheƒlist\n”;

ƒƒreturnƒ0;
}

//ƒthisƒfunctionƒreturnsƒtheƒlocationƒofƒkeyƒinƒtheƒlist
//ƒaƒ-1ƒisƒreturnedƒifƒtheƒvalueƒisƒnotƒfound
intƒlinearSearch(intƒlist[],ƒintƒsize,ƒintƒkey)
{
ƒƒintƒi;

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒsize;ƒi++)
ƒƒ{
ƒƒƒƒifƒ(list[i]ƒ==ƒkey)
ƒƒƒƒƒƒreturnƒi;
ƒƒ}
ƒƒreturnƒ-1;

}

The following are sample runs of Program 7.9:

Enterƒtheƒitemƒyouƒareƒsearchingƒfor:ƒ101
Theƒitemƒwasƒfoundƒatƒindexƒlocationƒ9

and

Enterƒtheƒitemƒyouƒareƒsearchingƒfor:ƒ65
Theƒitemƒwasƒnotƒfoundƒinƒtheƒlist

As noted previously, an advantage of linear searches is that the list doesn’t have to be in

sorted order to perform the search. Another advantage is that if the search item is toward the

front of the list, only a small number of comparisons are made. The worst case, of course, occurs

when the search item is at the end of the list. On average, however, and assuming the item is

equally likely to be anywhere in the list, the number of required comparisons is n/2, where n

is the list’s size. Therefore, for a 10-element list, the average number of comparisons needed

for a linear search is 5, and for a 10,000-element list, the average number of comparisons

needed is 5000. As you see next, this number can be reduced substantially by using a binary

search algorithm.

H_C7785_07.1c 327H_C7785_07.1c 327 1/18/11 10:48 AM1/18/11 10:48 AM

328 Arrays

Binary Search In a binary search, the list must be in sorted order. Starting with an ordered

list, the desired item is first compared with the element in the middle of the list. (For lists

with an even number of elements, either of the two middle elements can be used.) There are

three possibilities after the comparison is made: The desired item might be equal to the

middle element, it might be greater than the middle element, or it might be less than the

middle element.

In the first case, the search has been successful, and no further searches are required. In

the second case, because the desired item is greater than the middle element, it must be in

the second half of the list, if it’s found at all. This means the first part of the list, consisting of

all elements from the first to the midpoint, can be discarded from any further search. In the

third case, because the desired item is less than the middle element, it must be in the first part

of the list, if it’s found at all. For this case, the second half of the list, containing all elements

from the midpoint to the last element, can be discarded from any further search.

The algorithm for this search strategy is shown in Figure 7.11 and defined by the follow-

ing pseudocode:

Set the left index to 0
Set the right index to 1 less than the size of the list
Begin with the first item in the list

While the left index is less than or equal to the right index
 Set the midpoint index to the integer average of the left and right index values
 Compare the desired item with the midpoint element
 If the desired element equals the midpoint element
 Return the index value of the current item
 Else If the desired element is greater than the midpoint element
 Set the left index value to the midpoint value plus 1
 Else If the desired element is less than the midpoint element
 Set the right index value to the midpoint value less 1
 EndIf
EndWhile
Return -1 if the item is not found

H_C7785_07.1c 328H_C7785_07.1c 328 1/18/11 10:48 AM1/18/11 10:48 AM

329Chapter 7
Chapter Supplement: Searching and Sorting
Methods

Set left
index to

midpoint +1

Item
> midpoint
element?

Item
= midpoint
element?

Calculate
midpoint

index value

While
left index <=
right index

Set right
index to list

size -1

Set left
index to 0

No

Return -1

Return index
value

Set right
index to

midpoint -1

No

No

Yes

Yes

Start

Input
item

Yes

Figure 7.11 The binary search algorithm

In both the pseudocode and Figure 7.11’s flowchart, a while loop is used to control the

search. The initial list is defined by setting the left index value to 0 and the right index value

to 1 less than the number of elements in the list. The midpoint element is then taken as the

integerized average of the left and right values.

H_C7785_07.1c 329H_C7785_07.1c 329 1/18/11 10:48 AM1/18/11 10:48 AM

330 Arrays

After the comparison with the midpoint element is made, the search is subsequently

restricted by moving the left index to one integer value above the midpoint or by moving the

right index one integer value below the midpoint. This process continues until the element is

found or the left and right index values become equal. The binarySearch() function pres-

ents the C++ version of this algorithm:

//ƒthisƒfunctionƒreturnsƒtheƒlocationƒofƒkeyƒinƒtheƒlist
//ƒaƒ-1ƒisƒreturnedƒifƒtheƒvalueƒisƒnotƒfound
intƒbinarySearch(intƒlist[],ƒintƒsize,ƒintƒkey)
{
ƒƒintƒleft,ƒright,ƒmidpt;
ƒƒleftƒ=ƒ0;
ƒƒrightƒ=ƒsizeƒ-ƒ1;

ƒƒwhileƒ(leftƒ<=ƒright)
ƒƒ{
ƒƒƒƒmidptƒ=ƒ(int)ƒ((leftƒ+ƒright)ƒ/ƒ2);
ƒƒƒƒifƒ(keyƒ==ƒlist[midpt])
ƒƒƒƒ{
ƒƒƒƒƒƒreturnƒmidpt;
ƒƒƒƒ}
ƒƒƒƒelseƒifƒ(keyƒ>ƒlist[midpt])
ƒƒƒƒƒƒleftƒ=ƒmidptƒ+ƒ1;
ƒƒƒƒelse
ƒƒƒƒƒƒrightƒ=ƒmidptƒ-ƒ1;
ƒƒƒƒ}

ƒƒƒƒreturnƒ-1;
}

For purposes of testing this function, Program 7.10 is used. A sample run of Program 7.10

yielded the following:

Enterƒtheƒitemƒyouƒareƒsearchingƒfor:ƒ101
Theƒitemƒwasƒfoundƒatƒindexƒlocationƒ9

H_C7785_07.1c 330H_C7785_07.1c 330 1/18/11 10:48 AM1/18/11 10:48 AM

331Chapter 7
Chapter Supplement: Searching and Sorting
Methods

 Program 7.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒbinarySearch(intƒ[],ƒint,ƒint);ƒƒ//ƒfunctionƒprototype
intƒmain()
{
ƒƒconstƒintƒNUMELƒ=ƒ10;
ƒƒintƒnums[NUMEL]ƒ=ƒ{5,10,22,32,45,67,73,98,99,101};
ƒƒintƒitem,ƒlocation;

ƒƒcoutƒ<<ƒ“Enterƒtheƒitemƒyouƒareƒsearchingƒfor:ƒ“;
ƒƒcinƒ>>ƒitem;
ƒƒlocationƒ=ƒbinarySearch(nums,ƒNUMEL,ƒitem);
ƒƒifƒ(locationƒ>ƒ-1)
ƒƒƒƒcoutƒ<<ƒ“Theƒitemƒwasƒfoundƒatƒindexƒlocationƒ“
ƒƒƒƒƒƒƒƒƒ<<ƒlocationƒ<<ƒendl;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“Theƒitemƒwasƒnotƒfoundƒinƒtheƒlist\n”;
ƒƒreturnƒ0;
}

//ƒthisƒfunctionƒreturnsƒtheƒlocationƒofƒkeyƒinƒtheƒlist
//ƒaƒ-1ƒisƒreturnedƒifƒtheƒvalueƒisƒnotƒfound
intƒbinarySearch(intƒlist[],ƒintƒsize,ƒintƒkey)
{
ƒƒintƒleft,ƒright,ƒmidpt;
ƒƒleftƒ=ƒ0;
ƒƒrightƒ=ƒsizeƒ-ƒ1;
ƒƒwhileƒ(leftƒ<=ƒright)
ƒƒ{
ƒƒƒƒmidptƒ=ƒ(int)ƒ((leftƒ+ƒright)ƒ/ƒ2);
ƒƒƒƒifƒ(keyƒ==ƒlist[midpt])
ƒƒƒƒ{
ƒƒƒƒƒƒreturnƒmidpt;
ƒƒƒƒ}
ƒƒƒƒelseƒifƒ(keyƒ>ƒlist[midpt])
ƒƒƒƒƒƒleftƒ=ƒmidptƒ+ƒ1;
ƒƒƒƒelse
ƒƒƒƒƒƒrightƒ=ƒmidptƒ-ƒ1;
ƒƒ}

ƒƒreturnƒ-1;
}

H_C7785_07.1c 331H_C7785_07.1c 331 1/18/11 10:48 AM1/18/11 10:48 AM

332 Arrays

The value of using a binary search algorithm is that the number of elements that must be

searched is cut in half each time through the while loop. So the first time through the loop, n

elements must be searched; the second time through the loop, n / 2 of the elements has been

eliminated and only n / 2 remain. The third time through the loop, another half of the remain-

ing elements has been eliminated, and so on.

In general, after p passes through the loop, the number of values remaining to be searched

is n / (2p). In the worst case, the search can continue until less than or equal to one element

remains to be searched. Mathematically, this procedure can be expressed as n / (2p) ≤ 1.

Alternatively, it can be rephrased as p is the smallest integer so that 2p > n. For example, for a

1000-element array, n is 1000 and the maximum number of passes, p, required for a binary

search is 10. Table 7.1 compares the number of loop passes needed for a linear and binary

search for different list sizes.

Table 7.1 A Comparison of while Loop Passes for Linear and Binary Searches

Array size 10 50 500 5000 50,000 500,000 5,000,000 50,000,000
Average
linear
search
passes

5 25 250 2500 25,000 250,000 2,500,000 25,000,000

Maximum
linear
search
passes

10 50 500 5000 50,000 500,000 5,000,000 50,000,000

Maximum
binary
search
passes

4 6 9 13 16 19 23 26

As shown, the maximum number of loop passes for a 50-item list is almost 10 times more

for a linear search than for a binary search, and the difference is even more pronounced for

larger lists. As a rule of thumb, 50 elements are usually taken as the switch-over point: For lists

smaller than 50 elements, linear searches are acceptable; for larger lists, a binary search algo-

rithm should be used.

Big O Notation On average, over a large number of linear searches with n items in a list,

you would expect to examine half (n / 2) the items before locating the desired item. In a

binary search, the maximum number of passes, p, occurs when n / (2)p = 1. This relationship

can be manipulated algebraically to 2p = n, which yields p = log2n, which approximately

equals 3.33 × log10n.

For example, finding a particular name in an alphabetical directory with n = 1000 names

requires an average of 500 (= n / 2) comparisons with a linear search. With a binary search, only

about 10 (≈ 3.33 × log101000) comparisons are required.

A common way to express the number of comparisons required in any search algorithm

using a list of n items is to give the order of magnitude of the number of comparisons required,

on average, to locate a desired item. Therefore, the linear search is said to be of order n and

H_C7785_07.1c 332H_C7785_07.1c 332 1/18/11 10:48 AM1/18/11 10:48 AM

333Chapter 7
Chapter Supplement: Searching and Sorting
Methods

the binary search of order log2n. Notationally, they’re expressed as O(n) and O(log2n); the O is

read as “the order of.”

Sort Algorithms
Two major categories of sorting techniques, called internal and external sorts, are available for

sorting data. Internal sorts are used when the data list isn’t too large and the complete list can

be stored in the computer’s memory, usually in an array. External sorts are used for much larger

data sets stored on external storage media and can’t be accommodated in the computer’s

memory as a complete unit. Next, you learn about two internal sort algorithms that can be used

when sorting lists with fewer than approximately 50 elements. For larger lists, more sophisti-

cated sorting algorithms are typically used.

Selection Sort One of the simplest sorting techniques is the selection sort, in which the

smallest value is selected from the complete list of data and exchanged with the first element

in the list. After this first selection and exchange, the next smallest element in the revised list

is selected and exchanged with the second element in the list. Because the smallest element

is already in the first position in the list, this second pass needs to consider only the second

through last elements. For a list consisting of n elements, this process is repeated n - 1 times,

with each pass through the list requiring one less comparison than the previous pass.

For example, take a look at the list of numbers shown in Figure 7.12. The first pass

through the initial list results in the number 32 being selected and exchanged with the first

element in the list. The second pass, made on the reordered list, results in the number 155

being selected from the second through fifth elements. This value is then exchanged with the

second element in the list. The third pass selects the number 307 from the third through fifth

elements in the list and exchanges this value with the third element. Finally, the fourth and

last pass through the list selects the remaining minimum value and exchanges it with the

fourth list element. Although each pass in this example resulted in an exchange, no exchange

would have been made in a pass if the smallest value were already in the correct location.

Initial list Pass 1 Pass 2 Pass 3 Pass 4

690 32 32 32 32

307 307 155 144 144

32 690 690 307 307

155 155 307 690 426

426 426 426 426 690

Figure 7.12 A sample selection sort

In pseudocode, the selection sort is described as follows:

Set exchange count to 0 (not required, but done to keep track of the exchanges)
For each element in the list from first to next to last

H_C7785_07.1c 333H_C7785_07.1c 333 1/18/11 10:48 AM1/18/11 10:48 AM

334 Arrays

 Find the smallest element from the current element being referenced to the last
element by:

 Setting the minimum value equal to the current element
 Saving (storing) the index of the current element
 For each element in the list, from the current element + 1 to the last element in the list
 If element[inner loop index] < minimum value
 Set the minimum value = element[inner loop index]
 Save the index of the newfound minimum value
 EndIf
 EndFor
 Swap the current value with the new minimum value
 Increment the exchange count
EndFor
Return the exchange count

The selectionSort() function incorporates this procedure into a C++ function:

intƒselectionSort(intƒnum[],ƒintƒnumel)
{
ƒƒintƒi,ƒj,ƒmin,ƒminidx,ƒtemp,ƒmovesƒ=ƒ0;

ƒƒforƒ(ƒiƒ=ƒ0;ƒiƒ<ƒ(numelƒ-ƒ1);ƒi++)
ƒƒ{
ƒƒƒƒminƒ=ƒnum[i];ƒƒƒƒ//ƒassumeƒminimumƒisƒtheƒfirstƒarrayƒelement
ƒƒƒƒminidxƒ=ƒi;ƒƒƒƒƒƒ//ƒindexƒofƒminimumƒelement
ƒƒƒƒfor(jƒ=ƒiƒ+ƒ1;ƒjƒ<ƒnumel;ƒj++)
ƒƒƒƒ{
ƒƒƒƒƒƒifƒ(num[j]ƒ<ƒmin)ƒƒƒƒƒƒ//ƒifƒyou'veƒlocatedƒaƒlowerƒvalue
ƒƒƒƒƒƒ{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒcaptureƒit
ƒƒƒƒƒƒƒƒminƒ=ƒnum[j];
ƒƒƒƒƒƒƒƒminidxƒ=ƒj;
ƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒƒƒifƒ(minƒ<ƒnum[i])ƒƒƒƒ//ƒcheckƒwhetherƒyouƒhaveƒaƒnewƒminimum
ƒƒƒƒ{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒandƒifƒyouƒdo,ƒswapƒvalues
ƒƒƒƒƒƒtempƒ=ƒnum[i];
ƒƒƒƒƒƒnum[i]ƒ=ƒmin;
ƒƒƒƒƒƒnum[minidx]ƒ=ƒtemp;
ƒƒƒƒƒƒmoves++;
ƒƒƒƒ}
ƒƒ}

ƒƒreturnƒmoves;
}

H_C7785_07.1c 334H_C7785_07.1c 334 1/18/11 10:48 AM1/18/11 10:48 AM

335Chapter 7
Chapter Supplement: Searching and Sorting
Methods

The selectionSort() function expects two arguments: the list to be sorted and the

number of elements in the list. As the pseudocode specifies, a nested set of for loops performs

the sort. The outer for loop causes one less pass through the list than the total number of

items in the list. For each pass, the variable min is initially assigned the value num[i], whereƒi

is the outer for loop’s counter variable. Because i begins at 0 and ends at 1 less than numel,

each element in the list, except the last, is successively designated as the current element.

The inner loop cycles through the elements below the current element and is used to

select the next smallest value. Therefore, this loop begins at the index value iƒ+ƒ1 and con-

tinues through the end of the list. When a new minimum is found, its value and position in the

list are stored in the variables min and minidx. At completion of the inner loop, an exchange

is made only if a value less than that in the current position is found.

Program 7.11 was constructed to test selectionSort(). This program implements a

selection sort for the same list of 10 numbers used previously to test search algorithms. For

later comparison to other sorting algorithms, the number of actual moves the program makes

to get data into sorted order is counted and displayed.

 Program 7.11

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒselectionSort(intƒ[],ƒint);
intƒmain()
{
ƒƒconstƒintƒNUMELƒ=ƒ10;
ƒƒintƒnums[NUMEL]ƒ=ƒ{22,5,67,98,45,32,101,99,73,10};
ƒƒintƒi,ƒmoves;

ƒƒmovesƒ=ƒselectionSort(nums,ƒNUMEL);

ƒƒcoutƒ<<ƒ“Theƒsortedƒlist,ƒinƒascendingƒorder,ƒis:\n”;
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMEL;ƒi++)
ƒƒƒƒcoutƒ<<ƒ“ƒ“ƒ<<ƒnums[i];

ƒƒcoutƒ<<ƒ'\n'ƒ<<ƒmovesƒ<<ƒ“ƒmovesƒwereƒmadeƒtoƒsortƒthisƒlist\n”;

ƒƒreturnƒ0;
}
intƒselectionSort(intƒnum[],ƒintƒnumel)
{
ƒƒintƒi,ƒj,ƒmin,ƒminidx,ƒtemp,ƒmovesƒ=ƒ0;

ƒƒforƒ(ƒiƒ=ƒ0;ƒiƒ<ƒ(numelƒ-ƒ1);ƒi++)

☞

H_C7785_07.1c 335H_C7785_07.1c 335 1/18/11 10:48 AM1/18/11 10:48 AM

336 Arrays

ƒƒ{
ƒƒƒƒminƒ=ƒnum[i];ƒ//ƒassumeƒminimumƒisƒtheƒfirstƒarrayƒelement
ƒƒƒƒminidxƒ=ƒi;ƒƒƒ//ƒindexƒofƒminimumƒelement
ƒƒƒƒfor(jƒ=ƒiƒ+ƒ1;ƒjƒ<ƒnumel;ƒj++)
ƒƒƒƒ{
ƒƒƒƒƒƒifƒ(num[j]ƒ<ƒmin)ƒ//ƒifƒyou'veƒlocatedƒaƒlowerƒvalue
ƒƒƒƒƒƒ{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒcaptureƒit
ƒƒƒƒƒƒƒƒminƒ=ƒnum[j];
ƒƒƒƒƒƒƒƒminidxƒ=ƒj;
ƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒƒƒifƒ(minƒ<ƒnum[i])ƒƒƒƒƒ//ƒcheckƒwhetherƒyouƒhaveƒaƒnewƒminimum
ƒƒƒƒ{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒandƒifƒyouƒdo,ƒswapƒvalues
ƒƒƒƒƒƒtempƒ=ƒnum[i];
ƒƒƒƒƒƒnum[i]ƒ=ƒmin;
ƒƒƒƒƒƒnum[minidx]ƒ=ƒtemp;
ƒƒƒƒƒƒmoves++;
ƒƒƒƒ}
ƒƒ}

ƒƒreturnƒmoves;
}

The output Program 7.11 produces is as follows:

Theƒsortedƒlist,ƒinƒascendingƒorder,ƒis:
ƒƒ5ƒƒ10ƒƒ22ƒƒ32ƒƒ45ƒƒ67ƒƒ73ƒƒ98ƒƒ99ƒƒ101
8ƒmovesƒwereƒmadeƒtoƒsortƒthisƒlist

Clearly, the number of moves displayed depends on the initial order of values in the list.

An advantage of the selection sort is that the maximum number of moves that must be made

is n - 1, where n is the number of items in the list. Further, each move is a final move that

results in an element residing in its final location in the sorted list.

A disadvantage of the selection sort is that n(n - 1) / 2 comparisons are always required,

regardless of the initial arrangement of data. This number of comparisons is obtained as fol-

lows: The last pass always requires one comparison, the next-to-last pass requires two com-

parisons, and so on up to the first pass, which requires n - 1 comparisons. Therefore, the total

number of comparisons is the following:

1 + 2 + 3 + . . . + n - 1 = n(n - 1) / 2 = n2 / 2 - n / 2

For large values of n, the n2 dominates, and the order of the selection sort is O(n2).

Exchange (Bubble) Sort In an exchange sort, adjacent elements of the list are exchanged

with one another so that the list becomes sorted. One example of this sequence of exchanges

is the bubble sort, in which successive values in the list are compared, beginning with the first

two elements. If the list is to be sorted in ascending (from smallest to largest) order, the

H_C7785_07.1c 336H_C7785_07.1c 336 1/18/11 10:48 AM1/18/11 10:48 AM

337Chapter 7
Chapter Supplement: Searching and Sorting
Methods

smaller value of the two being compared is always placed before the larger value. For lists

sorted in descending (from largest to smallest) order, the smaller of the two values being com-

pared is always placed after the larger value.

For example, a list of values is to be sorted in ascending order. If the first element in the

list is larger than the second, the two elements are exchanged. Then the second and third ele-

ments are compared. Again, if the second element is larger than the third, these two elements

are exchanged. This process continues until the last two elements have been compared and

exchanged, if necessary. If no exchanges were made during this initial pass through the data,

the data is in the correct order and the process is finished; otherwise, a second pass is made

through the data, starting from the first element and stopping at the next-to-last element. The

reason for stopping at the next-to-last element on the second pass is that the first pass always

results in the most positive value “sinking” to the bottom of the list.

To see a specific example, examine the list of numbers in Figure 7.13. The first compari-

son results in exchanging the first two element values, 690 and 307. The next comparison,

between elements two and three in the revised list, results in exchanging values between the

second and third elements, 690 and 32. This comparison and possible switching of adjacent

values continues until the last two elements have been compared and possibly exchanged.

This process completes the first pass through the data and results in the largest number mov-

ing to the bottom of the list. As the largest value sinks to the bottom of the list, the smaller

elements slowly rise, or “bubble,” to the top of the list. This bubbling effect of the smaller

elements is what gave rise to the name “bubble sort” for this sorting algorithm.

690 307 307 307 307

307 690 32 32 32

32 32 690 155 155

155 155 155 690 426

426 426 426 426 690

Figure 7.13 The first pass of an exchange sort

Because the first pass through the list ensures that the largest value always moves to the

bottom of the list, the second pass stops at the next-to-last element. This process continues

with each pass stopping at one higher element than the previous pass, until n - 1 passes

through the list have been completed or no exchanges are necessary in any single pass. In both

cases, the resulting list is in sorted order. The pseudocode describing this sort is as follows:

Set exchange count to 0 (not required, but done to keep track of the exchanges)
For the first element in the list to 1 less than the last element (i index)
 For the second element in the list to the last element (j index)
 If num[j] < num[j - 1]
 {
 Swap num[j] with num[j - 1]
 increment exchange count
 }

H_C7785_07.1c 337H_C7785_07.1c 337 1/18/11 10:48 AM1/18/11 10:48 AM

338 Arrays

 EndFor
EndFor
Return exchange count

This sort algorithm is coded in C++ as the bubbleSort() function, which is included in

Program 7.12 for testing purposes. This program tests bubbleSort() with the same list of

10 numbers used in Program 7.11 to test selectionSort(). For comparison with the earlier

selection sort, the number of adjacent moves (exchanges) bubbleSort() makes is also counted

and displayed.

 Program 7.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒbubbleSort(intƒ[],ƒint);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒconstƒintƒNUMELƒ=ƒ10;
ƒƒintƒnums[NUMEL]ƒ=ƒ{22,5,67,98,45,32,101,99,73,10};
ƒƒintƒi,ƒmoves;

ƒƒmovesƒ=ƒbubbleSort(nums,ƒNUMEL);

ƒƒcoutƒ<<ƒ“Theƒsortedƒlist,ƒinƒascendingƒorder,ƒis:\n”;
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMEL;ƒi++)
ƒƒƒƒcoutƒ<<ƒ“ƒ“ƒ<<ƒnums[i];

ƒƒcoutƒ<<ƒ'\n'ƒ<<ƒmovesƒ<<ƒ“ƒmovesƒwereƒmadeƒtoƒsortƒthisƒlist\n”;

ƒƒreturnƒ0;
}

intƒbubbleSort(intƒnum[],ƒintƒnumel)
{
ƒƒintƒi,ƒj,ƒtemp,ƒmovesƒ=ƒ0;

ƒƒforƒ(ƒiƒ=ƒ0;ƒiƒ<ƒ(numelƒ-ƒ1);ƒi++)
ƒƒ{
ƒƒƒƒfor(jƒ=ƒ1;ƒjƒ<ƒnumel;ƒj++)
ƒƒƒƒ{
ƒƒƒƒƒƒifƒ(num[j]ƒ<ƒnum[j-1])

☞

H_C7785_07.1c 338H_C7785_07.1c 338 1/18/11 10:48 AM1/18/11 10:48 AM

339Chapter 7
Chapter Supplement: Searching and Sorting
Methods

ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒtempƒ=ƒnum[j];
ƒƒƒƒƒƒƒƒnum[j]ƒ=ƒnum[j-1];
ƒƒƒƒƒƒƒƒnum[j-1]ƒ=ƒtemp;
ƒƒƒƒƒƒƒƒmoves++;
ƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒ}

ƒƒreturnƒmoves;
}

Here’s the output produced by Program 7.12:

Theƒsortedƒlist,ƒinƒascendingƒorder,ƒis:
ƒƒ5ƒƒ10ƒƒ22ƒƒ32ƒƒ45ƒƒ67ƒƒ73ƒƒ98ƒƒ99ƒƒ101
18ƒmovesƒwereƒmadeƒtoƒsortƒthisƒlist

As with the selection sort, the number of comparisons in a bubble sort is O(n2), and the

number of required moves depends on the initial order of values in the list. In the worst case,

when the data is in reverse sorted order, the selection sort performs better than the bubble sort.

Both sorts require n(n - 1)/2 comparisons, but the selection sort needs only n - 1 moves, and

the bubble sort needs n(n - 1)/2 moves. The additional moves the bubble sort requires result

from the intermediate exchanges between adjacent elements to “settle” each element into its

final position. In this regard, the selection sort is superior because no intermediate moves are

necessary. For random data, such as that used in Programs 7.11 and 7.12, the selection sort

generally performs equal to or better than the bubble sort.

H_C7785_07.1c 339H_C7785_07.1c 339 1/18/11 10:48 AM1/18/11 10:48 AM

8 8.1 Introduction to Pointers

 8.2 Array Names as Pointers

 8.3 Pointer Arithmetic

 8.4 Passing Addresses

 8.5 Common Programming Errors

 8.6 Chapter Summary

Programmers often don’t consider that memory addresses of variables are used extensively throughout the
executable versions of their programs. The computer uses these addresses to keep track of where variables
and instructions are physically located in the computer. One of C++’s advantages is that it allows pro-
grammers to access these addresses. This access gives programmers a view into a computer’s basic storage
structure, resulting in capabilities and programming power that aren’t available in other high-level
languages. This is accomplished by using a feature called pointers. Although other languages provide
pointers, C++ extends this feature by providing pointer arithmetic; that is, pointer values can be added,
subtracted, and compared.

Fundamentally, pointers are simply variables used to store memory addresses. This chapter dis-
cusses the basics of declaring pointers, explains the close relationship of pointers and arrays, and then
describes techniques of applying pointer variables in other meaningful ways.

8.1 Introduction to Pointers

In an executable program, every variable has three major items associated with it: the value

stored in the variable, the number of bytes reserved for the variable, and where in memory

these bytes are located. The memory location of the first byte reserved for a variable is known

Chapter

Arrays and Pointers

I_C7785_08.1c 341I_C7785_08.1c 341 1/18/11 10:48 AM1/18/11 10:48 AM

342 Arrays and Pointers

as the variable’s address. Knowing the location of this first byte and how many bytes have been

allocated to the variable (which is based on its data type) allows the executable program to

access the variable’s contents. Figure 8.1 illustrates the relationship between these three items

(address, number of bytes, and contents).

Variable
contents

Variable address

One or more bytes in memory

Figure 8.1 A typical variable

For most applications, a variable’s internal storage is of little or no concern because the

variable name is a simple and sufficient means of locating its contents. Therefore, after a vari-

able is declared, programmers are usually concerned only with the name and value assigned to

it (its contents) and pay little attention to where this value is stored. For example, take a look

at Program 8.1.

 Program 8.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒintƒnum;

ƒƒnumƒ=ƒ22;
ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒnumƒisƒ“ƒ<<ƒnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒƒsizeof(num)ƒ<<ƒ“ƒbytesƒareƒusedƒtoƒstoreƒthisƒvalue”ƒ<<ƒendl;

ƒƒreturnƒ0;
}

This is the output displayed when Program 8.1 is run:

Theƒvalueƒstoredƒinƒnumƒisƒ22
4ƒbytesƒareƒusedƒtoƒstoreƒthisƒvalue

Program 8.1 displays both the number 22, which is the value stored in the integer variable

num, and the amount of storage used for this integer variable.1 Figure 8.2 shows the informa-

tion that Program 8.1 provides.

1The amount of storage allocated for each data type is compiler dependent. Refer to Section 2.1.

I_C7785_08.1c 342I_C7785_08.1c 342 1/18/11 10:48 AM1/18/11 10:48 AM

343Chapter 8
Introduction to Pointers

22

Contents of num

4 bytes of memory

Address of first
byte used by num

x x x x

Figure 8.2 The variable num stored somewhere in memory

C++ permits you to go further, however, and display the address corresponding to any

variable. The address that’s displayed corresponds to the address of the first byte set aside in

the computer’s memory for the variable.

To determine a variable’s address, the address operator, &, must be used. You have seen

this symbol before in declaring reference variables. When used to display an address, it means

“the address of,” and when placed in front of a variable name, it’s translated as the address of

the variable.2 For example, &num means “the address of num,” &total means “the address of

total,” and &price means “the address of price.” Program 8.2 uses the address operator to

display the address of the variable num.

 Program 8.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnum;

ƒƒnumƒ=ƒ22;
ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒnumƒisƒ“ƒ<<ƒnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒaddressƒofƒnumƒ=ƒ“ƒ<<ƒ&numƒ<<ƒendl;

ƒƒreturnƒ0;
}

This is the output of Program 8.2:

Theƒvalueƒstoredƒinƒnumƒisƒ22
Theƒaddressƒofƒnumƒ=ƒ0012FED4

2When used in the declaration of a reference variable (see Section 6.3), the & symbol refers to the data type preceding it. For example,

the declaration intƒ&num is read as “num is the address of an int” or, more commonly, “num is a reference to an int.”

I_C7785_08.1c 343I_C7785_08.1c 343 1/18/11 10:48 AM1/18/11 10:48 AM

344 Arrays and Pointers

Figure 8.3 shows the additional address information provided by Program 8.2’s output.

22

Contents of num

4 bytes of memory

Address of first
byte used by num

0012FED4

Figure 8.3 A more complete picture of the variable num

Clearly, the address output by Program 8.2 depends on both the computer used to run the

program and what other programs or data files are in memory when the program runs. Every

time Program 8.2 runs, however, it displays the address of the first memory location used to

store num. As Program 8.2’s output shows, the address is displayed in hexadecimal notation (see

Section 2.6). This display has no effect on how the program uses addresses internally; it

merely provides a means of displaying addresses in a more compact representation than the

internal binary system used by the computer. As you see in the following sections, however,
using addresses (as opposed to just displaying them) gives C++ programmers a powerful program-
ming tool.

Storing Addresses
Besides displaying the address of a variable, as in Program 8.2, you can store addresses in suit-

ably declared variables. For example, the statement

numAddrƒ=ƒ#

stores the address corresponding to the variable num in the variable numAddr, as illustrated in

Figure 8.4.

Address of num

Variable’s contents:Variable’s name:
numAddr

Figure 8.4 Storing num’s address in numAddr

Similarly, the statements

dƒ=ƒ&m;
tabPointƒ=ƒ&list;
chrPointƒ=ƒ&ch;

store addresses of the variables m, list, and ch in the variables d, tabPoint, and chrPoint,

as shown in Figure 8.5.

I_C7785_08.1c 344I_C7785_08.1c 344 1/18/11 10:48 AM1/18/11 10:48 AM

345Chapter 8
Introduction to Pointers

Variable:

d

tabPoint

chrPoint

Address of m

Address of list

Address of ch

Contents:

Figure 8.5 Storing more addresses

The variables numAddr, d, tabPoint, and chrPoint are formally called pointer variables

or pointers. Pointers are simply variables used to store the addresses of other variables.

Using Addresses
To use a stored address, C++ provides an indirection operator, *. The * symbol, when followed

by a pointer (with a space permitted both before and after the *), means “the variable whose

address is stored in.” Therefore, if numAddr is a pointer (a variable that stores an address),

*numAddr means the variable whose address is stored in numAddr. Similarly, *tabPoint means the
variable whose address is stored in tabPoint, and *chrPoint means the variable whose address is
stored in chrPoint. Figure 8.6 shows the relationship between the address contained in a

pointer variable and the variable.

mmmm

A pointer variable y

The contents at
address mmmm are

qqqq

mmmm

qqqq

The contents of y are
an address

Figure 8.6 Using a pointer variable

Although *d means “the variable whose address is stored in d,” it’s commonly shortened

to the statement “the variable pointed to by d.” Similarly, referring to Figure 8.6, *y can be

read as “the variable pointed to by y.” The value that’s finally obtained, as shown in this figure,

is qqqq.

When using a pointer variable, the value that’s finally obtained is always found by first

going to the pointer for an address. The address contained in the pointer is then used to get

the variable’s contents. Certainly, this procedure is a rather indirect way of getting to the final

value, so the term indirect addressing is used to describe it.

Because using a pointer requires the computer to do a double lookup (retrieving the

address first, and then using the address to retrieve the actual data), you might wonder why

you’d want to store an address in the first place. The answer lies in the shared relationship

between pointers and arrays and the capability of pointers to create and delete variable storage

locations dynamically, as a program is running. Both topics are discussed in the next section.

For now, however, given that each variable has a memory address associated with it, the idea

of storing an address shouldn’t seem unusual.

I_C7785_08.1c 345I_C7785_08.1c 345 1/18/11 10:48 AM1/18/11 10:48 AM

346 Arrays and Pointers

Declaring Pointers
Like all variables, pointers must be declared before they can be used to store an address. When

you declare a pointer variable, C++ requires also specifying the type of variable that’s pointed

to. For example, if the address in the pointer numAddr is the address of an integer, this is the

correct declaration for the pointer:

intƒ*numAddr;

This declaration is read as “the variable pointed to by numAddr (from *numAddr in the

declaration) is an integer.”3

Notice that the declaration intƒ*numAddr; specifies two things: First, the variable

pointed to by numAddr is an integer, and second, numAddr must be a pointer (because it’s

declared with an asterisk, *). Similarly, if the pointer tabPoint points to (contains the address

of) a double-precision number and chrPoint points to a character variable, the required dec-

larations for these pointers are as follows:

doubleƒ*tabPoint;
charƒ*chrPoint;

These two declarations can be read as “the variable pointed to by tabPoint is a double”

and “the variable pointed to by chrPoint is a char.” Because all addresses appear the same,

the compiler needs this additional information to know how many storage locations to access

when it uses the address stored in the pointer.

Here are other examples of pointer declarations:

charƒ*inkey;
intƒ*numPt;
doubleƒ*nm1Ptr

To understand pointer declarations, reading them backward is helpful, starting with the

asterisk, *, and translating it as “the variable whose address is stored in” or “the variable

pointed to by.” Applying this method to pointer declarations, the declaration charƒ*inkey;,

for example, can be read as “the variable whose address is stored in inkey is a char” or “the

variable pointed to by inkey is a char.” Both these statements are often shortened to the sim-

pler “inkey points to a char.” All three interpretations of the declaration statement are correct,

so you can select and use the description that makes the most sense to you. Program 8.3 puts

this information together to construct a program using pointers.

3Pointer declarations can also be written in the form dataType*ƒpointerName, with a space between the indirection operator and

the pointer name. This form, however, is error prone when multiple pointers are declared in the same declaration statement and the

asterisk is inadvertently omitted after declaring the first pointer name. For example, the declaration int*ƒnum1,ƒnum2; declares

num1 as a pointer variable and num2 as an integer variable. To accommodate multiple pointers in the same declaration and clearly mark

a variable as a pointer, the examples in this book adhere to the convention of placing an asterisk in front of each pointer name. This

potential error rarely occurs with reference declarations because references are used almost exclusively as formal parameters, and single

declarations of parameters are mandatory.

I_C7785_08.1c 346I_C7785_08.1c 346 1/18/11 10:48 AM1/18/11 10:48 AM

347Chapter 8
Introduction to Pointers

 Program 8.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒ*numAddr;ƒƒƒƒƒƒƒ//ƒdeclareƒaƒpointerƒtoƒanƒint
ƒƒintƒmiles,ƒdist;ƒƒƒƒ//ƒdeclareƒtwoƒintegerƒvariables

ƒƒdistƒ=ƒ158;ƒƒƒƒƒƒƒƒƒ//ƒstoreƒtheƒnumberƒ158ƒinƒdist
ƒƒmilesƒ=ƒ22;ƒƒƒƒƒƒƒƒƒ//ƒstoreƒtheƒnumberƒ22ƒinƒmiles
ƒƒnumAddrƒ=ƒ&miles;ƒƒƒ//ƒstoreƒtheƒ“addressƒofƒmiles”ƒinƒnumAddr

ƒƒcoutƒ<<ƒ“TheƒaddressƒstoredƒinƒnumAddrƒisƒ“ƒ<<ƒnumAddrƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“TheƒvalueƒpointedƒtoƒbyƒnumAddrƒisƒ“ƒ<<ƒ*numAddrƒ<<ƒ“\n\n”;

ƒƒnumAddrƒ=ƒ&dist;ƒƒ//ƒnowƒstoreƒtheƒaddressƒofƒdistƒinƒnumAddr
ƒƒcoutƒ<<ƒ“TheƒaddressƒnowƒstoredƒinƒnumAddrƒisƒ“ƒ<<ƒnumAddrƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“TheƒvalueƒnowƒpointedƒtoƒbyƒnumAddrƒisƒ“ƒ<<ƒ*numAddrƒ<<ƒendl;

ƒƒreturnƒ0;
}

The output of Program 8.3 is as follows:

TheƒaddressƒstoredƒinƒnumAddrƒisƒ0012FEC8
TheƒvalueƒpointedƒtoƒbyƒnumAddrƒisƒ22

TheƒaddressƒnowƒstoredƒinƒnumAddrƒisƒ0012FEBC
TheƒvalueƒnowƒpointedƒtoƒbyƒnumAddrƒisƒ158

The only use for Program 8.3 is to help you understand what gets stored where, so review

the program to see how the output was produced. The declaration statement intƒ*numAddr;

declares numAddr to be a pointer used to store the address of an integer variable. The state-

ment numAddrƒ=ƒ&miles; stores the address of the variable miles in the pointer numAddr.

The first cout statement causes this address to be displayed. The second cout statement uses

the indirection operator (*) to retrieve and display the value pointed to by numAddr, which is,

of course, the value stored in miles.

Because numAddr has been declared as a pointer to an integer variable, you can use this

pointer to store the address of any integer variable. The statement numAddrƒ=ƒ&dist illus-

trates this use by storing the address of the variable dist in numAddr. The last two cout state-

ments verify the change in numAddr’s value and confirm that the new stored address points to

the variable dist. As shown in Program 8.3, only addresses should be stored in pointers.

I_C7785_08.1c 347I_C7785_08.1c 347 1/18/11 10:48 AM1/18/11 10:48 AM

348 Arrays and Pointers

It certainly would have been much simpler if the pointer used in Program 8.3 could have

been declared as pointerƒnumAddr;. This declaration, however, conveys no information

about the storage used by the variable whose address is stored in numAddr. This information

is essential when the pointer is used with the indirection operator, as in the second cout state-

ment in Program 8.3. For example, if an integer’s address is stored in numAddr, typically only

4 bytes of storage are retrieved when the address is used. If a character’s address is stored in

numAddr, only 1 byte of storage is retrieved, and a double typically requires retrieving 8 bytes

of storage. The declaration of a pointer must, therefore, include the data type of the variable

being pointed to, as shown in Figure 8.7.

An address

An address

An address
A pointer to
a double

A pointer to
an integer

A pointer to
a character

1 byte is
retrieved

4 bytes are
retrieved

8 bytes are
retrieved

Figure 8.7 Addressing different data types by using pointers

References and Pointers
At this point, you might be asking what the difference is between a pointer and a reference.

Essentially, a reference is a named constant for an address; therefore, the address named as a

reference can’t be altered after the address has been assigned. Clearly, for a reference param-

eter (see Section 6.3), a new reference is created and assigned an address each time the func-

tion is called. The address in a pointer, used as a variable or function parameter (discussed in

Section 8.4), can be changed after its initial assignment.

In passing an address to a function, beginning programmers tend to prefer using refer-

ences, as described in Section 6.3. The reason is the simpler notation for reference parameters,

which eliminates the address operator (&) and indirection operator (*) required for pointers.

Technically, references are said to be automatically dereferenced or implicitly dereferenced (the

two terms are used synonymously). In contrast, pointers must be explicitly dereferenced by

using the indirection operator. In other situations, such as dynamically allocating new sections

of memory for additional variables as a program is running and as an alternative to accessing

array elements (both discussed in Section 8.2), pointers are required.

I_C7785_08.1c 348I_C7785_08.1c 348 1/18/11 10:48 AM1/18/11 10:48 AM

349Chapter 8
Introduction to Pointers

Reference Variables4 Although references are used almost exclusively as function parameters

and return types, they can also be declared as variables. For completeness, this use of references

is explained in this section.

After a variable has been declared, it can be given an additional name by using a reference
declaration, which has this form:

dataType&ƒnewNameƒ=ƒexistingName;

For example, the reference declaration

double&ƒsumƒ=ƒtotal;

equates the name sum to the name total. Both now refer to the same variable, as shown in

Figure 8.8.

Two names for the
same memory area

total or sum

Figure 8.8 sum is an alternative name for total

After establishing another name for a variable by using a reference declaration, the new

name, referred to as an alias, can be used in place of the original name. For example, take a

look at Program 8.4.

 Program 8.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒdoubleƒtotalƒ=ƒ20.5;ƒƒƒƒ//ƒdeclareƒandƒinitializeƒtotal
ƒƒdouble&ƒsumƒ=ƒtotal;ƒƒƒƒ//ƒdeclareƒanotherƒnameƒforƒtotal

ƒƒcoutƒ<<ƒ“sumƒ=ƒ“ƒ<<ƒsumƒ<<ƒendl;
ƒƒsumƒ=ƒ18.6;ƒƒƒƒƒƒƒƒƒƒƒƒ//ƒthisƒchangesƒtheƒvalueƒinƒtotal
ƒƒcoutƒ<<ƒ“totalƒ=ƒ“ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

4This section can be omitted with no loss of subject continuity.

I_C7785_08.1c 349I_C7785_08.1c 349 1/18/11 10:48 AM1/18/11 10:48 AM

350 Arrays and Pointers

The following output is produced by Program 8.4:

sumƒ=ƒ20.5
totalƒ=ƒ18.6

Because the variable sum is simply another reference to the variable total, the first cout

statement in Program 8.4 displays the value stored in total. Changing the value in sum then

changes the value in total, which the second cout statement in this program displays.

When constructing reference variables, keep two points in mind. First, the reference vari-

able should be of the same data type as the variable it refers to. For example, this sequence of

declarations

intƒnumƒ=ƒ5;
double&ƒnumrefƒ=ƒnum;ƒƒ//ƒINVALIDƒ-ƒCAUSESƒAƒCOMPILERƒERROR

doesn’t equate numref to num; rather, it causes a compiler error because the two variables are

of different data types.

Second, a compiler error is produced when an attempt is made to equate a reference vari-

able to a constant. For example, the following declaration is invalid:

int&ƒvalƒ=ƒ5;ƒƒ//ƒINVALIDƒ-ƒCAUSESƒAƒCOMPILERƒERROR

After a reference name has been equated to one variable name correctly, the reference

can’t be changed to refer to another variable.

As with all declaration statements, multiple references can be declared in a single state-

ment, as long as each reference name is preceded by an ampersand. Therefore, the following

declaration creates two reference variables named sum and average:5

double&ƒsumƒ=ƒtotal,ƒ&ƒaverage;

Another way of looking at references is to consider them pointers with restricted capabili-

ties that hide a lot of the dereferencing required with pointers. For example, take a look at

these statements:

intƒb;ƒƒƒƒƒƒ//ƒbƒisƒanƒintegerƒvariable
int&ƒaƒ=ƒb;ƒ//ƒaƒisƒaƒreferenceƒvariableƒthatƒstoresƒb'sƒaddress
aƒ=ƒ10;ƒƒƒƒƒ//ƒthisƒchangesƒb'sƒvalueƒtoƒ10

Here, a is declared as a reference variable that’s effectively a named constant for the

address of the b variable. Because the compiler knows from the declaration that a is a reference

variable, it automatically assigns b’s address (rather than b’s contents) to a in the declaration

statement. Finally, in the statement aƒ=ƒ10;, the compiler uses the address stored in a to

change the value stored in b to 10. The advantage of using the reference is that it accesses b’s

value automatically without having to use the indirection operator, *. As noted previously, this

type of access is referred to as an “automatic dereference.”

5Reference declarations can also be written in the form dataTypeƒ&newName = existingName, with a space between the amper-

sand and the data type. This form isn’t used much, however, because it can be confused easily with the notation used to assign

addresses to pointer variables.

I_C7785_08.1c 350I_C7785_08.1c 350 1/18/11 10:48 AM1/18/11 10:48 AM

351Chapter 8
Introduction to Pointers

The following sequence of instructions makes use of this same correspondence between

a and b by using pointers:

intƒb;ƒƒƒƒƒƒƒ//ƒbƒisƒanƒintegerƒvariable
intƒ*aƒ=ƒ&b;ƒ//ƒaƒisƒaƒpointerƒ-ƒstoreƒb'sƒaddressƒinƒa
*aƒ=ƒ10;ƒƒƒƒƒ//ƒthisƒchangesƒb'sƒvalueƒtoƒ10ƒbyƒexplicit
ƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒdereferenceƒofƒtheƒaddressƒinƒa

Here, a is defined as a pointer initialized to store the address of b. Therefore, *a (which

can be read as “the variable whose address is in a” or “the variable pointed to by a”) is b, and

the expression *aƒ=ƒ10 changes b’s value to 10. Notice that with pointers, the stored address

can be altered to point to another variable; with references, the reference variable can’t be

altered to refer to any variable except the one it’s initialized to. Also, notice that to derefer-

ence a, you must use the indirection operator, *. As you might expect, the * is also called the

dereferencing operator.

 EXERCISES 8.1

1. (Review) What are the three items associated with the variable named total?

2. (Review) If average is a variable, what does &average mean?

3. (Practice) For the variables and addresses in Figure 8.9, determine the addresses correspond-

ing to the expressions &temp, &dist, &date, and &miles.

Addresses: 16892 16893 16894 16895 16896 16897 16898 16899

Addresses: 16900 16901 16902 16903 16904 16905 16906 16907

Addresses: 16908 16909 16910 16911 16912 16913 16914 16915

temp dist

date

miles

Figure 8.9 Memory bytes for Exercise 3

I_C7785_08.1c 351I_C7785_08.1c 351 1/18/11 10:48 AM1/18/11 10:48 AM

352 Arrays and Pointers

4. (Practice) a. Write a C++ program that includes the following declaration statements. Have

the program use the address operator and a cout statement to display the addresses corre-

sponding to each variable.

intƒnum,ƒcount;
longƒdate;
floatƒslope;
doubleƒyield;

b. After running the program written for Exercise 4a, draw a diagram of how your computer

has set aside storage for the variables in the program. On your diagram, fill in the addresses

the program displays.

c. Modify the program written in Exercise 4a (using the sizeof() operator discussed in

Section 2.1) to display the amount of storage your computer reserves for each data type.

With this information and the address information provided in Exercise 4b, determine

whether your computer set aside storage for the variables in the order in which they were

declared.

5. (Review) If a variable is declared as a pointer, what must be stored in the variable?

6. (Practice) Using the indirection operator, write expressions for the following:

a. The variable pointed to by xAddr

b. The variable whose address is in yAddr

c. The variable pointed to by ptYld

d. The variable pointed to by ptMiles

e. The variable pointed to by mptr

f. The variable whose address is in pdate

g. The variable pointed to by distPtr

h. The variable pointed to by tabPt

i. The variable whose address is in hoursPt

7. (Practice) Write declaration statements for the following:

a. The variable pointed to by yAddr is an integer.

b. The variable pointed to by chAddr is a character.

c. The variable pointed to by ptYr is a long integer.

d. The variable pointed to by amt is a double-precision variable.

e. The variable pointed to by z is an integer.

f. The variable pointed to by qp is a single-precision variable.

g. datePt is a pointer to an integer.

h. yldAddr is a pointer to a double-precision variable.

i. amtPt is a pointer to a single-precision variable.

j. ptChr is a pointer to a character variable.

8. (Review) a. What are the variables yAddr, chAddr, ptYr, amt, z, qp, datePt, yldAddr,

amtPt, and ptChr used in Exercise 7 called?

b. Why are the variable names amt, z, and qp used in Exercise 7 not good choices for

pointer names?

I_C7785_08.1c 352I_C7785_08.1c 352 1/18/11 10:48 AM1/18/11 10:48 AM

353Chapter 8
Introduction to Pointers

9. (Practice) Write English sentences that describe what’s contained in the following declared

variables:

a. charƒ*keyAddr;

b. intƒ*m;

c. doubleƒ*yldAddr;

d. longƒ*yPtr;

e. doubleƒ*pCou;

f. intƒ*ptDate;

10. (Practice) Which of the following is a declaration for a pointer?

a. longƒa;

b. charƒb;

c. charƒ*c;

d. intƒx;

e. intƒ*p;

f. doubleƒw;

g. floatƒ*k;

h. floatƒl;

i. doubleƒ*z;

11. (Practice) For the following declarations,

intƒ*xPt,ƒ*yAddr;
longƒ*dtAddr,ƒ*ptAddr;
doubleƒ*ptZ;
intƒa;
longƒb;
doubleƒc;

 determine which of the following statements is valid:

a. yAddrƒ=ƒ&a; b. yAddrƒ=ƒ&b; c. yAddrƒ=ƒ&c;

d. yAddrƒ=ƒa; e. yAddrƒ=ƒb; f. yAddrƒ=ƒc;

g. dtAddrƒ=ƒ&a; h. dtAddrƒ=ƒ&b; i. dtAddrƒ=ƒ&c;

j. dtAddrƒ=ƒa; k. dtAddrƒ=ƒb; l. dtAddrƒ=ƒc;

m. ptZƒ=ƒ&a; n. ptAddrƒ=ƒ&b; o. ptAddrƒ=ƒ&c;

p. ptAddrƒ=ƒa; q. ptAddrƒ=ƒb; r. ptAddrƒ=ƒc;

s. yAddrƒ=ƒxPt; t. yAddrƒ=ƒdtAddr; u. yAddrƒ=ƒptAddr;

12. (Practice) For the variables and addresses in Figure 8.10, fill in the data determined by the

following statements:

a. ptNumƒ=ƒ&m;

b. amtAddrƒ=ƒ&amt;

c. *zAddrƒ=ƒ25;

d. kƒ=ƒ*numAddr;

e. ptDayƒ=ƒzAddr;

f. *ptYrƒ=ƒ2011;

g. *amtAddrƒ=ƒ*numAddr;

I_C7785_08.1c 353I_C7785_08.1c 353 1/18/11 10:48 AM1/18/11 10:48 AM

354 Arrays and Pointers

Variable: ptNum
Address: 500

Variable: amtAddr
Address: 564

Variable: zAddr
Address: 8024

Variable: numAddr
Address: 10132

Variable: ptDay
Address: 14862

Variable: ptYr
Address: 15010

Variable: amt
Address: 16256

Variable: firstnum
Address: 18938

Variable: years
Address: 694

Variable: m
Address: 8096

Variable: slope
Address: 20492

Variable: k
Address: 24608

20492 18938

694

154

Figure 8.10 Memory locations for Exercise 12

8.2 Array Names as Pointers

Although pointers are simply, by definition, variables used to store addresses, there’s also a

direct and close relationship between array names and pointers. This section describes this

relationship in detail. Figure 8.11 illustrates the storage of a one-dimensional array named

grade, which contains five integers. Each integer requires 4 bytes of storage.

grade[0]
(4 bytes)

grade[1]
(4 bytes)

grade[2]
(4 bytes)

grade[3]
(4 bytes)

grade[4]
(4 bytes)

Figure 8.11 The grade array in storage

Using subscripts, the fourth element in the grade array is referred to as grade[3]. The

use of a subscript, however, conceals the computer’s extensive use of addresses. Internally, the

computer immediately uses the subscript to calculate the array element’s address, based on

I_C7785_08.1c 354I_C7785_08.1c 354 1/18/11 10:48 AM1/18/11 10:48 AM

355Chapter 8
Array Names as Pointers

both the array’s starting address and the amount of storage each element uses. Calling the

fourth element grade[3] forces the compiler to make this address computation:

&grade[3]ƒ=ƒ&grade[0]ƒ+ƒ(3ƒ*ƒsizeof(int))

Remembering that the address operator (&) means “the address of,” this statement is read

as “the address of grade[3] equals the address of grade[0] plus 3 times the size of an integer

(which is 12 bytes).” Figure 8.12 shows the address computation used to locate grade[3].

grade[0]
(4 bytes)

offset to grade[3] = 3 × 4 = 12 bytes

+ =

grade[1]
(4 bytes)

grade[2]
(4 bytes)

grade[3]
(4 bytes)

grade[4]
(4 bytes)

offset
starting address

of grade[3]
starting address

of the array

Figure 8.12 Using a subscript to obtain an address

Because a pointer is a variable used to store an address, you can create a pointer to store

the address of the first element of an array. Doing so allows you to mimic the computer’s

operation in accessing array elements. Before you do this, take a look at Program 8.5.

 Program 8.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒARRAYSIZEƒ=ƒ5;

ƒƒintƒi,ƒgrade[ARRAYSIZE]ƒ=ƒ{98,ƒ87,ƒ92,ƒ79,ƒ85};

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒARRAYSIZE;ƒi++)
ƒƒƒƒcoutƒ<<ƒ“\nElementƒ“ƒ<<ƒiƒ<<ƒ“ƒisƒ“ƒ<<ƒgrade[i];

ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

I_C7785_08.1c 355I_C7785_08.1c 355 1/18/11 10:48 AM1/18/11 10:48 AM

356 Arrays and Pointers

When Program 8.5 runs, it produces the following display:

Elementƒ0ƒisƒ98
Elementƒ1ƒisƒ87
Elementƒ2ƒisƒ92
Elementƒ3ƒisƒ79
Elementƒ4ƒisƒ85

Program 8.5 displays the values of the grade array by using standard subscript notation.

By storing the address of array element 0 in a pointer first, you can use the address in the

pointer to access each array element. For example, if you store the address of grade[0] in a

pointer named gPtr by using the assignment statement gPtrƒ=ƒ&grade[0];, the expression

*gPtr (which means “the variable pointed to by gPtr”) can be used to access grade[0], as

shown in Figure 8.13.

gPtr

Address of
grade[0]

*gPtr

grade[0] grade[1] grade[2] grade[3] grade[4]

The variable pointed to by the address
in gPtr is

Figure 8.13 The variable pointed to by *gPtr is grade[0]

One unique feature of pointers is that offsets can be included in expressions using point-

ers. For example, the 1 in the expression *(gPtrƒ+ƒ1) is an offset. The complete expression

references the integer that’s one beyond the variable pointed to by gPtr. Similarly, as illus-

trated in Figure 8.14, the expression *(gPtrƒ+ƒ3) references the variable that’s three integers

beyond the variable pointed to by gPtr: the variable grade[3].

gPtr

Address of
grade[0]

*(
gP
tr
+3
)

grade[0] grade[1] grade[2] grade[3] grade[4]

The variable pointed to that’s three integer
locations beyond the address in gPtr is

Figure 8.14 An offset of 3 from the address in gPtr

I_C7785_08.1c 356I_C7785_08.1c 356 1/18/11 10:48 AM1/18/11 10:48 AM

357Chapter 8
Array Names as Pointers

Table 8.1 shows the correspondence between elements referenced by subscripts and by

pointers and offsets. Figure 8.15 illustrates the relationships listed in this table.

Table 8.1 Array Elements Can Be Referenced in Two Ways

Array Element Subscript Notation Pointer Notation
Element 0 grade[0] *gPtr or (gPtrƒ+ƒ0)
Element 1 grade[1] *(gPtrƒ+ƒ1)
Element 2 grade[2] *(gPtrƒ+ƒ2)
Element 3 grade[3] *(gPtrƒ+ƒ3)
Element 4 grade[4] *(gPtrƒ+ƒ4)

Address of
grade[0]

grade[0] grade[1] grade[2] grade[3] grade[4]

*gPtr *(gPtr+1) *(gPtr+2) *(gPtr+3) *(gPtr+4)

gPtr
(enough storage
for an address)

Figure 8.15 The relationship between array elements and pointers

Using the correspondence between pointers and subscripts shown in Figure 8.15, the array

elements accessed in Program 8.5 with subscripts can now be accessed with pointers, which is

done in Program 8.6.

The following display is produced when Program 8.6 runs:

Elementƒ0ƒisƒ98
Elementƒ1ƒisƒ87
Elementƒ2ƒisƒ92
Elementƒ3ƒisƒ79
Elementƒ4ƒisƒ85

I_C7785_08.1c 357I_C7785_08.1c 357 1/18/11 10:48 AM1/18/11 10:48 AM

358 Arrays and Pointers

 Program 8.6

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒconstƒintƒARRAYSIZEƒ=ƒ5;

ƒƒintƒ*gPtr;ƒƒƒƒƒƒƒƒƒƒƒƒ//ƒdeclareƒaƒpointerƒtoƒanƒint
ƒƒintƒi,ƒgrade[ARRAYSIZE]ƒ=ƒ{98,ƒ87,ƒ92,ƒ79,ƒ85};

ƒƒgPtrƒ=ƒ&grade[0];ƒƒƒƒƒ//ƒstoreƒtheƒstartingƒarrayƒaddress
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒARRAYSIZE;ƒi++)
ƒƒƒƒcoutƒ<<ƒ“\nElementƒ“ƒ<<ƒiƒ<<ƒ“ƒisƒ“ƒ<<ƒ*(gPtrƒ+ƒi);

ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

Notice that this display is the same as Program 8.5’s display. The method used in

Program 8.6 to access array elements simulates how the compiler references array elements

internally. The compiler automatically converts any subscript a programmer uses to an

equivalent pointer expression. In this case, because the declaration of gPtr includes the

information that integers are pointed to, any offset added to the address in gPtr is scaled

automatically by the size of an integer. Therefore, *(gPtrƒ+ƒ3), for example, refers to the

address of grade[0] plus an offset of 12 bytes (3ƒ*ƒ4), assuming sizeof(int)ƒ=ƒ4. This

result is the address of grade[3] shown in Figure 8.15.

The parentheses in the expression *(gPtrƒ+ƒ3) are necessary to reference an array ele-

ment correctly. Omitting the parentheses results in the expression *gPtrƒ+ƒ3. Because of

operator precedence, this expression adds 3 to “the variable pointed to by gPtr.” Because

gPtr points to grade[0], this expression adds the value of grade[0] and 3 together. Note

also that the expression *(gPtrƒ+ƒ3) doesn’t change the address stored in gPtr. After the

computer uses the offset to locate the correct variable from the starting address in gPtr, the

offset is discarded and the address in gPtr remains unchanged.

Although the pointer gPtr used in Program 8.6 was created specifically to store the grade

array’s starting address, doing so is unnecessary. When an array is created, the compiler creates

an internal pointer constant for it automatically and stores the array’s starting address in this

pointer. In almost all respects, a pointer constant is identical to a programmer-created pointer

variable, but as you’ll see, there are some differences.

For each array created, the array name becomes the name of the pointer constant the

compiler creates for the array, and the starting address of the first location reserved for the array

I_C7785_08.1c 358I_C7785_08.1c 358 1/18/11 10:48 AM1/18/11 10:48 AM

359Chapter 8
Array Names as Pointers

is stored in this pointer. Therefore, declaring the grade array in Programs 8.4 and 8.5 actually

reserves enough storage for five integers, creates an internal pointer named grade, and stores

the address of grade[0] in the pointer, as shown in Figure 8.16.

grade

&grade[0]

grade[0]
or

*grade

grade[1]
or

*(grade+1)

grade[2]
or

*(grade+2)

grade[3]
or

*(grade+3)

grade[4]
or

*(grade+4)

Figure 8.16 Creating an array also creates a pointer

The implication is that every access to grade made with a subscript can be replaced by

an access using the array name, grade, as a pointer. Therefore, wherever the expression

grade[i] is used, the expression *(gradeƒ+ƒi) can also be used. This equivalence is shown

in Program 8.7, where grade is used as a pointer to access all its elements. It produces the

same output as Programs 8.5 and 8.6. However, using grade as a pointer makes it unnecessary

to declare and initialize the pointer gPtr used in Program 8.6.

 Program 8.7

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒARRAYSIZEƒ=ƒ5;

ƒƒintƒi,ƒgrade[ARRAYSIZE]ƒ=ƒ{98,ƒ87,ƒ92,ƒ79,ƒ85};

ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒARRAYSIZE;ƒi++)
ƒƒƒƒcoutƒ<<ƒ“\nElementƒ“ƒ<<ƒiƒ<<ƒ“ƒisƒ“ƒ<<ƒ*(gradeƒ+ƒi);
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

I_C7785_08.1c 359I_C7785_08.1c 359 1/18/11 10:48 AM1/18/11 10:48 AM

360 Arrays and Pointers

In most respects, an array name and a pointer can be used interchangeably. A true pointer,

however, is a variable, and the address stored in it can be changed. An array name is a pointer
constant, and the address stored in the pointer can’t be changed by an assignment statement.

Therefore, a statement such as gradeƒ=ƒ&grade[2]; is invalid. This should come as no

surprise. Because the purpose of an array name is to locate the beginning of the array cor-

rectly, allowing a programmer to change the address stored in the array name defeats this

purpose and leads to havoc when array elements are accessed. Also, expressions taking the

address of an array name are invalid because the pointer the compiler creates is internal to the

computer, not stored in memory, as pointer variables are. Therefore, trying to store the address

of grade by using the expression &grade results in a compiler error.

An interesting sidelight of accessing array elements with pointers is that any pointer access

can always be replaced with a subscript reference, even if the pointer “points to” a scalar vari-

able. For example, if numPtr is declared as a pointer variable, the expression *(numPtrƒ+ƒi)

can also be written as numPtr[i], even though numPtr isn’t created as an array. As before,

when the compiler encounters the subscript notation, it replaces it internally with the equiva-

lent pointer notation.

Dynamic Array Allocation6

As each variable is defined in a program, it’s assigned sufficient storage from a pool of com-

puter memory locations made available to the compiler. After memory locations have been

reserved for a variable, these locations are fixed for the life of that variable, whether they’re

used or not. For example, if a function requests storage for an array of 500 integers, the storage

is allocated and fixed from the point of the array’s definition. If the application requires fewer

than 500 integers, the unused allocated storage isn’t released back to the system until the

array goes out of existence. If, on the other hand, the application requires more than 500 inte-

gers, the integer array’s size must be increased and the function defining the array must be

recompiled.

An alternative to this fixed or static allocation of memory storage locations is dynamic
allocation of memory. Under a dynamic allocation scheme, the amount of storage to be allo-

cated is determined and adjusted at runtime rather than compile time. Dynamic allocation of

memory is useful when dealing with lists because it allows expanding the list as new items

are added and contracting the list as items are deleted. For example, in constructing a list of

grades, you don’t need to know the exact number of grades. Instead of creating a fixed array

to store grades, having a mechanism for enlarging and shrinking the array as needed is useful.

Table 8.2 describes two C++ operators, new and delete, that provide this capability. (These

operators require the new header file.)

6This topic can be omitted on first reading with no loss of subject continuity.

I_C7785_08.1c 360I_C7785_08.1c 360 1/18/11 10:48 AM1/18/11 10:48 AM

361Chapter 8
Array Names as Pointers

Table 8.2 The new and delete Operators (Require the new Header File)

Operator Name Description
new Reserves the number of bytes requested by the declaration.

Returns the address of the first reserved location or NULL if not
enough memory is available.

delete Releases a block of bytes reserved previously. The address of the
first reserved location must be passed as an argument to the
operator.

Dynamic storage requests for scalar variables or arrays are made as part of a declaration or

an assignment statement.7 For example, the declaration statement intƒ*numƒ=ƒnewƒint;

reserves an area large enough to hold one integer and places this storage area’s address in the

pointer num. This same dynamic allocation can be made by first declaring the pointer with the

declaration statement intƒ*num; and then assigning the pointer an address with the assign-

ment statement numƒ=ƒnewƒint;. In either case, the allocated storage comes from the com-

puter’s free storage area.8

Dynamic allocation of arrays is similar but more useful. For example, the declaration

intƒ*gradesƒ=ƒnewƒint[200];

reserves an area large enough to store 200 integers and places the first integer’s address in the

pointer grades. Although the constant 200 has been used in this declaration, a variable dimen-

sion can be used. For example, take a look at this sequence of instructions:

coutƒ<<ƒ“Enterƒtheƒnumberƒofƒgradesƒtoƒbeƒprocessed:ƒ“;
cinƒƒ>>ƒnumgrades;
intƒ*gradesƒ=ƒnewƒint[numgrades];

In this sequence, the actual size of the array that’s created depends on the number the

user inputs. Because pointer and array names are related, each value in the newly created stor-

age area can be accessed by using standard array notation, such as grades[i], instead of the

pointer notation *(gradesƒ+ƒi). Program 8.8 shows this sequence of code in the context of

a complete program.

7Note that the compiler provides dynamic allocation and deallocation from the stack for all auto variables automatically.
8A computer’s free storage area is formally called the heap. It consists of unallocated memory that can be allocated to a program, as

requested, while the program is running.

I_C7785_08.1c 361I_C7785_08.1c 361 1/18/11 10:48 AM1/18/11 10:48 AM

362 Arrays and Pointers

 Program 8.8

#includeƒ<iostream>
#includeƒ<new>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnumgrades,ƒi;

ƒƒcoutƒ<<ƒ“Enterƒtheƒnumberƒofƒgradesƒtoƒbeƒprocessed:ƒ“;
ƒƒcinƒƒ>>ƒnumgrades;

ƒƒintƒ*gradesƒ=ƒnewƒint[numgrades];ƒƒ//ƒcreateƒtheƒarray

ƒƒfor(iƒ=ƒ0;ƒiƒ<ƒnumgrades;ƒi++)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“ƒƒEnterƒaƒgrade:ƒ“;
ƒƒƒƒcinƒƒ>>ƒgrades[i];
ƒƒ}
ƒƒcoutƒ<<ƒ“\nAnƒarrayƒwasƒcreatedƒforƒ“ƒ<<ƒnumgradesƒ<<ƒ“ƒintegers\n”;
ƒƒcoutƒ<<ƒ“ƒTheƒvaluesƒstoredƒinƒtheƒarrayƒare:”;
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒnumgrades;ƒi++)
ƒƒƒƒcoutƒ<<ƒ“\nƒƒƒ“ƒ<<ƒgrades[i];
ƒƒcoutƒ<<ƒendl;

ƒƒdelete[]ƒgrades;ƒƒƒ//ƒreturnƒtheƒstorageƒtoƒtheƒheap
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒtheƒ[]ƒisƒrequiredƒforƒarrayƒdeletions
ƒƒreturnƒ0;
}

Notice in Program 8.8 that the delete operator is used with braces where the new opera-

tor was used previously to create an array. The delete[] statement restores the allocated

block of storage back to the free storage area (the heap) while the program is running.9 The

only address delete requires is the starting address of the dynamically allocated storage block.

Therefore, any address returned by new can be used subsequently by delete to restore

reserved memory back to the computer. The delete operator doesn’t alter the address passed

9The operating system should return allocated storage to the heap automatically when the program has finished running. Because this

return doesn’t always happen, however, it’s crucial to restore dynamically allocated memory explicitly to the heap when the storage is

no longer needed. The term memory leak is used to describe the condition that occurs when dynamically allocated memory isn’t

returned explicitly by using the delete operator and the operating system doesn’t reclaim previously allocated memory.

I_C7785_08.1c 362I_C7785_08.1c 362 1/18/11 10:48 AM1/18/11 10:48 AM

363Chapter 8
Array Names as Pointers

to it, but simply removes the storage the address references. Following is a sample run of

Program 8.8:

Enterƒtheƒnumberƒofƒgradesƒtoƒbeƒprocessed:ƒ4
ƒƒEnterƒaƒgrade:ƒ85
ƒƒEnterƒaƒgrade:ƒ96
ƒƒEnterƒaƒgrade:ƒ77
ƒƒEnterƒaƒgrade:ƒ92

Anƒarrayƒwasƒcreatedƒforƒ4ƒintegers
ƒTheƒvaluesƒstoredƒinƒtheƒarrayƒare:
ƒƒƒ85
ƒƒƒ96
ƒƒƒ77
ƒƒƒ92

 EXERCISES 8.2

1. (Practice) Replace each of the following references to a subscripted variable with a pointer

reference:

a. prices[5] b. grades[2] c. yield[10]

d. dist[9] e. mile[0] f. temp[20]

g. celsius[16] h. num[50] i. time[12]

2. (Practice) Replace each of the following pointer references with a subscript reference:

a. *(messageƒ+ƒ6) b. *amount c. *(yrsƒ+ƒ10)

d. *(stocksƒ+ƒ2) e. *(ratesƒ+ƒ15) f. *(codesƒ+ƒ19)

3. (Practice) a. List three things the declaration statement doubleƒprices[5]; causes the

compiler to do.

b. If each double-precision number uses 8 bytes of storage, how much storage is set aside for

the prices array?

c. Draw a diagram similar to Figure 8.16 for the prices array.

d. Determine the byte offset in relation to the start of the prices array, corresponding to the

offset in the expression *(pricesƒ+ƒ3).

4. (Practice) a. Write a declaration to store the string “Thisƒisƒaƒsample” in an array named

samtest. Include the declaration in a program that displays the values in samtest by using a

for loop that uses a pointer access to each element in the array.

b. Modify the program written in Exercise 4a to display only array elements 10 through 15 (the

letters s, a, m, p, l, and e).

I_C7785_08.1c 363I_C7785_08.1c 363 1/18/11 10:48 AM1/18/11 10:48 AM

364 Arrays and Pointers

5. (Practice) Write a declaration to store the following values in an array named rates: 12.9,

18.6, 11.4, 13.7, 9.5, 15.2, and 17.6. Include the declaration in a program that displays the values

in the array by using pointer notation.

6. (Modify) a. Repeat Exercise 6a in Section 7.1, but use pointer references to access all array

elements.

b. Repeat Exercise 6b in Section 7.1, but use pointer references to access all array elements.

7. (Modify) Repeat Exercise 7 in Section 7.1, but use pointer references to access all array

elements.

8. (Modify) As described in Table 8.2, the new operator returns the address of the first new stor-

age area allocated or returns NULL if there’s insufficient storage. Modify Program 8.8 to check

that a valid address has been returned before attempting to place values in the grades array.

Display an appropriate message if not enough storage is available.

8.3 Pointer Arithmetic

Pointer variables, like all variables, contain values. The value stored in a pointer is, of course,

an address. Therefore, by adding and subtracting numbers to pointers, you can obtain different

addresses. Additionally, the addresses in pointers can be compared by using any of the rela-

tional operators (==, !=, <, >, and so forth) that are valid for comparing other variables. When

performing arithmetic on pointers, you must be careful to produce addresses that point to

something meaningful. In comparing pointers, you must also make comparisons that make

sense. Take a look at these declarations:

intƒnums[100];
intƒ*nPt;

To set the address of nums[0] in nPt, either of these assignment statements can be used:

nPtƒ=ƒ&nums[0];
nPtƒ=ƒnums;

Both assignment statements produce the same result because nums is a pointer constant

containing the address of the first location in the array: the address of nums[0]. Figure 8.17

illustrates the memory allocation resulting from the previous declaration and assignment state-

ments, assuming each integer requires 4 bytes of memory, and the location of the beginning of

the nums array is address 18934.

I_C7785_08.1c 364I_C7785_08.1c 364 1/18/11 10:48 AM1/18/11 10:48 AM

365Chapter 8
Pointer Arithmetic

Addresses:

nums[0] nums[1] nums[2] nums[3] nums[4]

The address of nums[0]

18
93

4

18
93

8

18
94

2

18
94

6

18
95

0

18934

The starting address of the nums array is 18934

nPt

Figure 8.17 The nums array in memory

After nPt contains a valid address, values can be added and subtracted from the address

to produce new addresses. When adding or subtracting numbers to pointers, the computer

adjusts the number automatically to ensure that the result still “points to” a value of the cor-

rect type. For example, the statement nPtƒ=ƒnPtƒ+ƒ4; forces the computer to scale the 4 by

the correct number to make sure the resulting address is the address of an integer. Assuming

each integer requires 4 bytes of storage, as shown in Figure 8.17, the computer multiplies the

4 by 4 and adds 16 to the address in nPt. The resulting address is 18950, which is the correct

address of nums[4].

The computer’s automatic scaling ensures that the expression nPtƒ+ƒi, where i is any

positive integer, points to the ith element beyond the one currently pointed to by nPt.

Therefore, if nPt initially contains the address of nums[0], nPtƒ+ƒ4 is the address of nums[4],

nPtƒ+ƒ50 is the address of nums[50], and nPtƒ+ƒi is the address of nums[i]. Although

actual addresses are used in Figure 8.17 to illustrate the scaling process, programmers don’t

need to be concerned with the actual addresses the computer uses. Manipulating addresses

with pointers generally doesn’t require knowledge of the actual addresses.

Addresses can also be incremented or decremented with the prefix and postfix increment

and decrement operators. Adding 1 to a pointer causes the pointer to point to the next element

of the type being pointed to. Decrementing a pointer causes the pointer to point to the previ-

ous element. For example, if the pointer variable p is a pointer to an integer, the expression

p++ increments the address in the pointer to point to the next integer, as shown in Figure 8.18.

The pointer p

Address of
an integer

An integer An integer

4 bytes

Adding 1 to the
pointer increases the
address to point here

Figure 8.18 Increments are scaled when used with pointers

I_C7785_08.1c 365I_C7785_08.1c 365 1/18/11 10:48 AM1/18/11 10:48 AM

366 Arrays and Pointers

In reviewing Figure 8.18, notice that the increment added to the pointer is scaled to

account for the fact that the pointer is used to point to integers. It is, of course, up to the pro-

grammer to make sure the correct type of data is stored in the new address contained in the

pointer.

The increment and decrement operators can be applied as both prefix and postfix pointer

operators. All the following combinations using pointers are valid:

*ptNum++ƒƒƒƒ//ƒuseƒtheƒpointerƒandƒthenƒincrementƒit
*++ptNumƒƒƒƒ//ƒincrementƒtheƒpointerƒbeforeƒusingƒit
*ptNum--ƒƒƒƒ//ƒuseƒtheƒpointerƒandƒthenƒdecrementƒit
*--ptNumƒƒƒƒ//ƒdecrementƒtheƒpointerƒbeforeƒusingƒit

Of these four possible forms, the most commonly used is *ptNum++ because it allows

accessing each array element as the address is “marched along” from the array’s starting

address to the address of the last array element. Program 8.9 shows this use of the increment

operator. In this program, each element in the nums array is retrieved by successively incre-

menting the address in nPt.

 Program 8.9

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒVALUESƒ=ƒ5;

ƒƒintƒnums[VALUES]ƒ=ƒ{16,ƒ54,ƒ7,ƒ43,ƒ-5};
ƒƒintƒi,ƒtotalƒ=ƒ0,ƒ*nPt;

ƒƒnPtƒ=ƒnums;ƒƒƒƒ//ƒstoreƒaddressƒofƒnums[0]ƒinƒnPt
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒVALUES;ƒi++)
ƒƒƒƒtotalƒ=ƒtotalƒ+ƒ*nPt++;

ƒƒƒcoutƒ<<ƒ“Theƒtotalƒofƒtheƒarrayƒelementsƒisƒ“ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 8.9 produces the following output:

Theƒtotalƒofƒtheƒarrayƒelementsƒisƒ115

The expression totalƒ=ƒtotalƒ+ƒ*nPt++ in Program 8.9 accumulates the values

pointed to by the nPt pointer. In this expression, the *nPt part causes the computer to retrieve

the integer pointed to by nPt. Next, the postfix increment, ++, adds 1 to the address in nPt so

I_C7785_08.1c 366I_C7785_08.1c 366 1/18/11 10:48 AM1/18/11 10:48 AM

367Chapter 8
Pointer Arithmetic

that nPt then contains the address of the next array element. The computer, of course, scales

the increment so that the actual address in nPt is the correct address of the next element.

Pointers can also be compared, which is particularly useful when dealing with pointers

that point to elements in the same array. For example, instead of using a counter in a for loop

to access each array element, the address in a pointer can be compared to the array’s starting

and ending addresses. The expression

nPtƒ<=ƒ&nums[4]

is true (non-zero) as long as the address in nPt is less than or equal to the address of nums[4].

Because nums is a pointer constant containing the address of nums[0], the term &nums[4] can

be replaced by the equivalent term numsƒ+ƒ4. Using either form, Program 8.9 can be rewritten

in Program 8.10 to continue adding array elements while the address in nPt is less than or

equal to the address of the last array element.

 Program 8.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒVALUESƒ=ƒ5;

ƒƒintƒnums[VALUES]ƒ=ƒ{16,ƒ54,ƒ7,ƒ43,ƒ-5};
ƒƒintƒtotalƒ=ƒ0,ƒ*nPt;

ƒƒnPtƒ=ƒnums;ƒƒƒƒ//ƒstoreƒaddressƒofƒnums[0]ƒinƒnPt
ƒƒwhileƒ(nPtƒ<ƒnumsƒ+ƒVALUES)
ƒƒƒƒtotalƒ+=ƒ*nPt++;

ƒƒcoutƒ<<ƒ“Theƒtotalƒofƒtheƒarrayƒelementsƒisƒ“ƒ<<ƒtotalƒ<<ƒendl;

ƒƒreturnƒ0;
}

In Program 8.10, the compact form of the accumulating expression totalƒ+=ƒ*nPt++

was used in place of the longer form, totalƒ=ƒtotalƒ+ƒ*nPt++. Also, the expression

numsƒ+ƒ4 doesn’t change the address in nums. Because nums is an array name, not a pointer

variable, its value can’t be changed. The expression numsƒ+ƒ4 first retrieves the address in

nums, adds 4 to this address (scaled appropriately), and uses the result for comparison pur-

poses. Expressions such as *nums++, which attempt to change the address, are invalid.

Expressions such as *nums or *(numsƒ+ƒi), which use the address without attempting to alter

it, are valid.

I_C7785_08.1c 367I_C7785_08.1c 367 1/18/11 10:48 AM1/18/11 10:48 AM

368 Arrays and Pointers

Pointer Initialization
Like all variables, pointers can be initialized when they’re declared. When initializing pointers,

however, you must be careful to set an address in the pointer. For example, an initialization

such as

intƒ*ptNumƒ=ƒ&miles;

is valid only if miles is declared as an integer variable before ptNum is. This statement creates

a pointer to an integer and sets the address in the pointer to the address of an integer variable.

If the variable miles is declared after ptNum is declared, as follows, an error occurs:

intƒ*ptNumƒ=ƒ&miles;
intƒmiles;

The error occurs because the address of miles is used before miles has even been

defined. Because the storage area reserved for miles hasn’t been allocated when ptNum is

declared, the address of miles doesn’t exist yet.

Pointers to arrays can also be initialized in their declaration statements. For example, if

prices has been declared as an array of double-precision numbers, either of the following

declarations can be used to initialize the pointer zing to the address of the first element

in prices:

doubleƒ*zingƒ=ƒ&prices[0];
doubleƒ*zingƒ=ƒprices;

The last initialization is correct because prices is a pointer constant containing an

address of the correct type. (The variable name zing was selected in this example to reinforce

the idea that any variable name can be selected for a pointer.)

 EXERCISES 8.3

1. (Modify) Replace the while statement in Program 8.10 with a for statement.

2. (Program) a. Write a program that stores the following numbers in an array named rates:

6.25, 6.50, 6.8, 7.2, 7.35, 7.5, 7.65, 7.8, 8.2, 8.4, 8.6, 8.8, and 9.0. Display the values in the array

by changing the address in a pointer called dispPt. Use a for statement in your program.

b. Modify the program written in Exercise 2a to use a while statement.

3. (Program) a. Write a program that stores the string HoorayƒforƒAllƒofƒUs in an array

named strng. Use the declaration strng[]ƒ=ƒ“HoorayƒforƒAllƒofƒUs”;, which ensures

that the end-of-string escape sequence \0 is included in the array. Display the characters in

the array by changing the address in a pointer called messPt. Use a for statement in your

program.

b. Modify the program written in Exercise 3a to use the while statement whileƒ
(*messPt++ƒ!=ƒ'\0').

c. Modify the program written in Exercise 3a to start the display with the word All.

I_C7785_08.1c 368I_C7785_08.1c 368 1/18/11 10:48 AM1/18/11 10:48 AM

369Chapter 8
Passing Addresses

4. (Program) Write a program that stores the following numbers in the array named miles: 15,

22, 16, 18, 27, 23, and 20. Have your program copy the data stored in miles to another array

named dist, and then display the values in the dist array. Your program should use pointer

notation when copying and displaying array elements.

5. (Program) Write a C++ program that stores the following letters in the array named message:

Thisƒisƒaƒtest. Have your program copy the data stored in message to another array

named mess2 and then display the letters in the mess2 array.

6. (Program) Write a program that declares three one-dimensional arrays named miles,

gallons, and mpg. Each array should be capable of holding 10 elements. In the miles array,

store the numbers 240.5, 300.0, 189.6, 310.6, 280.7, 216.9, 199.4, 160.3, 177.4, and 192.3. In the

gallons array, store the numbers 10.3, 15.6, 8.7, 14, 16.3, 15.7, 14.9, 10.7, 8.3, and 8.4. Each

element of the mpg array should be calculated as the corresponding element of the miles array

divided by the equivalent element of the gallons array: for example, mpg[0]ƒ=ƒmiles[0]
/ƒgallons[0]. Use pointers when calculating and displaying the elements of the mpg array.

8.4 Passing Addresses

In Section 6.3, you saw one method of passing addresses to a function: using reference param-

eters. Passing a reference to a function is an implied use of an address because the reference

does provides the function with an address. Unfortunately, the actual call statement doesn’t

reveal what’s being passed—it could be an address or a value. For example, the function call

swap(num1,num2); doesn’t reveal whether num1 or num2 is a reference (an address) or a

value. Only by looking at the declarations for the variables num1 and num2, or by examining

the function header for swap(), can you determine the data types of num1 and num2. If they

have been defined as reference variables, an address is passed; otherwise, the value stored in

the variables is passed.

In contrast to passing addresses implicitly with references, addresses can be passed explic-

itly with pointers. To pass an address to a function explicitly, all you need to do is place the

address operator, &, in front of the variable being passed. For example, this function call

swap(&firstnum,ƒ&secnum);

passes the addresses of the variables firstnum and secnum to swap(), as shown in

Figure 8.19. This function call also clearly indicates that addresses are being passed to the

function.

I_C7785_08.1c 369I_C7785_08.1c 369 1/18/11 10:48 AM1/18/11 10:48 AM

370 Arrays and Pointers

A value

A value

swap(&firstnum, &secnum)

Variable name: secnum
Variable address: an address

Variable name: firstnum
Variable address: an address

Figure 8.19 Explicitly passing addresses to swap()

Passing an address with a reference parameter or the address operator is referred to as a

pass by reference because the called function can reference, or access, variables in the calling

function by using the passed addresses. As you saw in Section 6.3, pass by references can be

made with reference parameters. In this section, you see how addresses passed with the address

operator are used. Specifically, you use the addresses of the variables firstnum and secnum

passed to swap() to exchange their values—a procedure done previously in Program 6.8 with

reference parameters.

One of the first requirements in writing swap() is to construct a function header that

receives and stores the passed values, which in this case are two addresses. As you saw in

Section 8.1, addresses are stored in pointers, which means the parameters of swap() must be

declared as pointers.

Assuming firstnum and secnum are double-precision variables and swap() returns no

value, a suitable function header for swap() is as follows:

voidƒswap(doubleƒ*nm1Addr,ƒdoubleƒ*nm2Addr);

The choice of the parameter names nm1Addr and nm2Addr is, as with all parameter names,

up to the programmer. The declaration doubleƒ*nm1Addr, however, states that the parameter

named nm1Addr is used to store the address of a double-precision value. Similarly, the

declaration doubleƒ*nm2Addr specifies that nm2Addr also stores the address of a double-

precision value.

Before writing the body of swap() to exchange the values in firstnum and secnum, it’s

useful to verify that the values accessed by using the addresses in nm1Addr and nm2Addr are

correct. Program 8.11 performs this check.

The output displayed when Program 8.11 runs is as follows:

Theƒnumberƒwhoseƒaddressƒisƒinƒnm1Addrƒisƒ20.5
Theƒnumberƒwhoseƒaddressƒisƒinƒnm2Addrƒisƒ6.25

I_C7785_08.1c 370I_C7785_08.1c 370 1/18/11 10:48 AM1/18/11 10:48 AM

371Chapter 8
Passing Addresses

 Program 8.11

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒswap(doubleƒ*,ƒdoubleƒ*);ƒƒƒ//ƒfunctionƒprototype
intƒmain()
{
ƒƒdoubleƒfirstnumƒ=ƒ20.5,ƒsecnumƒ=ƒ6.25;

ƒƒswap(&firstnum,ƒ&secnum);ƒƒƒƒ//ƒcallƒswap
ƒƒreturnƒ0;
}

//ƒthisƒfunctionƒillustratesƒpassingƒpointerƒarguments
voidƒswap(doubleƒ*nm1Addr,ƒdoubleƒ*nm2Addr)
{

ƒƒcoutƒ<<ƒ“Theƒnumberƒwhoseƒaddressƒisƒinƒnm1Addrƒisƒ“
ƒƒƒƒƒƒƒ<<ƒ*nm1Addrƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒnumberƒwhoseƒaddressƒisƒinƒnm2Addrƒisƒ“
ƒƒƒƒƒƒƒ<<ƒ*nm2Addrƒ<<ƒendl;
ƒƒreturn;
}

In reviewing Program 8.11, note two things. First, the function prototype for swap()

voidƒswap(doubleƒ*,ƒdoubleƒ*)

declares that swap() returns no value directly, and its parameters are two pointers that “point

to” double-precision values. When the function is called, it requires that two addresses be

passed, and each address is the address of a double-precision value.

Second, the indirection operator is used in swap() to access the values stored in firstnum

and secnum. The swap() function has no knowledge of these variable names, but it

does have the address of firstnum stored in nm1Addr and the address of secnum stored in

nm2Addr. The expression *nm1Addr in the first cout statement means “the variable whose

address is in nm1Addr.” It is, of course, the firstnum variable. Similarly, the second cout state-

ment obtains the value stored in secnum as “the variable whose address is in nm2Addr.” As the

output shows, pointers have been used successfully to allow swap() to access variables in

main(). Figure 8.20 illustrates storing addresses in parameters.

I_C7785_08.1c 371I_C7785_08.1c 371 1/18/11 10:48 AM1/18/11 10:48 AM

372 Arrays and Pointers

Parameter name: nm1Addr

&firstnum

Parameter name: nm2Addr

&secnum

swap(&firstnum, &secnum)

Figure 8.20 Storing addresses in parameters

Having verified that swap() can access main()’s local variables firstnum and secnum,

you can now expand swap() to exchange the values in these variables. The values in main()’s

variables firstnum and secnum can be interchanged from within swap() by using the three-

step interchange algorithm described in Section 6.3:

1. Store firstnum’s value in a temporary location.

2. Store secnum’s value in firstnum.

3. Store the temporary value in secnum.

Using pointers in swap(), this algorithm takes the following form:

1. Store the value of the variable that nm1Addr points to in a temporary location by using

the statement tempƒ=ƒ*nm1Addr; (see Figure 8.21).

nm1Addr

Address of
firstnum

firstnum

A value

(b) Store the
value found

temp

 firstnum’s
value

(a) Go to the address
for a value

Figure 8.21 Indirectly storing firstnum’s value

2. Store the value of the variable whose address is in nm2Addr in the variable whose

address is in nm1Addr with the statement *nm1Addrƒ=ƒ*nm2Addr; (see Figure 8.22).

I_C7785_08.1c 372I_C7785_08.1c 372 1/18/11 10:48 AM1/18/11 10:48 AM

373Chapter 8
Passing Addresses

nm1Addr

Address of
firstnum

firstnum

Goes here *nm1Addr=*nm2Addr

nm2Addr secnum

This value

This address
points here

This address
points hereAddress of

secnum

Figure 8.22 Indirectly changing firstnum’s value

3. Move the value in the temporary location into the variable whose address is in

nm2Addr by using the statement *nm2Addrƒ=ƒtemp; (see Figure 8.23).

Address of
secnum

firstnum’s
value

firstnum’s
value

temp

nm2Addr secnum

Store the value

Locate the
address

Figure 8.23 Indirectly changing secnum’s value

Program 8.12 contains the final form of swap(), written according to this description. A

sample run of Program 8.12 produced this output:

Theƒvalueƒstoredƒinƒfirstnumƒis:ƒ20.5
Theƒvalueƒstoredƒinƒsecnumƒis:ƒ6.25

Theƒvalueƒstoredƒinƒfirstnumƒisƒnow:ƒ6.25
Theƒvalueƒstoredƒinƒsecnumƒisƒnow:ƒ20.5

I_C7785_08.1c 373I_C7785_08.1c 373 1/18/11 10:48 AM1/18/11 10:48 AM

374 Arrays and Pointers

 Program 8.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒswap(doubleƒ*,ƒdoubleƒ*);ƒƒƒ//ƒfunctionƒprototype
intƒmain()
{
ƒƒdoubleƒfirstnumƒ=ƒ20.5,ƒsecnumƒ=ƒ6.25;

ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒfirstnumƒis:ƒ“ƒ<<ƒfirstnumƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒsecnumƒis:ƒ“ƒ<<ƒsecnumƒ<<ƒ“\n\n”;

ƒƒswap(&firstnum,ƒ&secnum);ƒƒƒƒƒƒƒƒ//ƒcallƒswap

ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒfirstnumƒisƒnow:ƒ“
ƒƒƒƒƒƒƒ<<ƒfirstnumƒ<<ƒƒendl;
ƒƒcoutƒ<<ƒ“Theƒvalueƒstoredƒinƒsecnumƒisƒnow:ƒ“
ƒƒƒƒƒƒƒ<<ƒsecnumƒ<<ƒendl;
ƒƒreturnƒ0;
}

//ƒthisƒfunctionƒswapsƒtheƒvaluesƒinƒitsƒtwoƒarguments
voidƒswap(doubleƒ*nm1Addr,ƒdoubleƒ*nm2Addr)
{
ƒƒdoubleƒtemp;

ƒƒtempƒ=ƒ*nm1Addr;ƒƒƒƒƒƒ//ƒsaveƒfirstnum'sƒvalue
ƒƒ*nm1Addrƒ=ƒ*nm2Addr;ƒƒ//ƒmoveƒsecnum'sƒvalueƒintoƒfirstnum
ƒƒ*nm2Addrƒ=ƒtemp;ƒƒƒƒƒƒ//ƒchangeƒsecnum'sƒvalue
ƒƒreturn;
}

As the program output shows, the values stored in main()’s variables have been modified

in swap(), which was made possible by using pointers. To make sure you understand, you

could compare this version of swap() with the version using references in Program 6.10. The

advantage of using pointers rather than references is that the function call specifies that

addresses are being used, which is an alert that the function will most likely alter variables of

the calling function. The advantage of using references is that the notation is much simpler.

Generally, for functions such as swap(), ease of notation wins out, and references are used. In

passing arrays to functions, however, which is the next topic, the compiler passes an address

automatically, which dictates using pointers to store the address.

I_C7785_08.1c 374I_C7785_08.1c 374 1/18/11 10:48 AM1/18/11 10:48 AM

375Chapter 8
Passing Addresses

Passing Arrays
When an array is passed to a function, its address is the only item actually passed. “Address”

means the address of the first location used to store the array, as shown in Figure 8.24. Because

the first location reserved for an array corresponds to element 0 of the array, the “address of the

array” is also the address of element 0.

An array is a series of memory locations

The address of the first location is passed as an argument

Figure 8.24 An array’s address is the address of the first location reserved for the array

For a specific example of passing an array to a function, examine Program 8.13. In this

program, the nums array is passed to the findMax() function, using conventional array notation.

 Program 8.13

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒfindMax(intƒ[],ƒint);ƒƒƒƒ//ƒfunctionƒprototype
intƒmain()
{
ƒƒconstƒintƒNUMPTSƒ=ƒ5;

ƒƒintƒnums[NUMPTS]ƒ=ƒ{2,ƒ18,ƒ1,ƒ27,ƒ16};

ƒƒcoutƒ<<ƒ“\nTheƒmaximumƒvalueƒisƒ“
ƒƒƒƒƒƒƒ<<ƒfindMax(nums,NUMPTS)ƒ<<ƒendl;
ƒƒreturnƒ0;
}

//ƒthisƒfunctionƒreturnsƒtheƒmaximumƒvalueƒinƒanƒarrayƒofƒints
intƒfindMax(intƒvals[],ƒintƒnumels)
{
ƒƒintƒi,ƒmaxƒ=ƒvals[0];

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒnumels;ƒi++)
ƒƒƒifƒ(maxƒ<ƒvals[i])
ƒƒƒƒƒmaxƒ=ƒvals[i];
ƒƒreturnƒmax;
}

I_C7785_08.1c 375I_C7785_08.1c 375 1/18/11 10:48 AM1/18/11 10:48 AM

376 Arrays and Pointers

The following output is displayed when Program 8.13 runs:

Theƒmaximumƒvalueƒisƒ27

The parameter named vals in the function header declaration for findMax() actually

receives the address of the nums array. Therefore, vals is really a pointer because pointers are

variables (or parameters) used to store addresses. Because the address passed to findMax() is

the address of an integer, the following function header for findMax() is also suitable:

intƒfindMax(intƒ*vals,ƒintƒnumels)ƒ//ƒvalsƒisƒdeclaredƒas
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒaƒpointerƒtoƒanƒinteger

The declaration intƒ*vals in the function header declares that vals is used to store an

address of an integer. The address stored is, of course, the location of the beginning of an array.

The following is a rewritten version of the findMax() function that uses the new pointer

declaration for vals but retains the use of subscripts to refer to array elements:

intƒfindMax(intƒ*vals,ƒintƒnumels)ƒƒƒ//ƒfindƒtheƒmaximumƒvalue
{
ƒƒintƒi,ƒmaxƒ=ƒvals[0];

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒnumels;ƒi++)
ƒƒƒifƒ(maxƒ<ƒvals[i])
ƒƒƒƒƒmaxƒ=ƒvals[i];
ƒƒreturnƒmax;
}

Regardless of how vals is declared in the function header or how it’s used in the function

body, it’s truly a pointer variable. Therefore, the address in vals can be modified. This isn’t

true for the name nums, however. Because nums is the name of the originally created array, it’s

a pointer constant. As described in Section 8.2, this means the address in nums can’t be

changed, and the address of nums can’t be taken. No such restrictions, however, apply to the

pointer variable vals. Therefore, all the pointer arithmetic you learned in Section 8.3 can be

applied to vals.

Following are two more versions of findMax(), both using pointers instead of subscripts.

In the first version, you simply substitute pointer notation for subscript notation. In the second

version, you use pointer arithmetic to change the address in the pointer. As stated, access to an

array element with the subscript notation arrayName[i] can always be replaced by the

pointer notation *(arrayNameƒ+ƒi).

I_C7785_08.1c 376I_C7785_08.1c 376 1/18/11 10:48 AM1/18/11 10:48 AM

377Chapter 8
Passing Addresses

In the first modification to findMax(), you make use of this correspondence by simply

replacing all references to vals[i] with the expression *(valsƒ+ƒi):

intƒfindMax(intƒ*vals,ƒintƒnumels)ƒƒƒ//ƒfindƒtheƒmaximumƒvalue
{
ƒƒintƒi,ƒmaxƒ=ƒ*vals;

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒnumels;ƒi++)
ƒƒƒifƒ(maxƒ<ƒ*(valsƒ+ƒi)ƒ)
ƒƒƒƒƒmaxƒ=ƒ*(valsƒ+ƒi);
ƒƒreturnƒmax;
}

The second modification of findMax() makes use of being able to change the address

stored in vals. After each array element is retrieved by using the address in vals, the address

is incremented by 1 in the altering list of the for statement. The expression maxƒ=ƒ*vals

previously used to set max to the value of vals[0] is replaced by the expression

maxƒ=ƒ*vals++, which adjusts the address in vals to point to the second array element. The

element this expression assigns to max is the array element vals points to before it’s incre-

mented. The postfix increment, ++, doesn’t change the address in vals until after the address

has been used to retrieve the first array element.

intƒfindMax(intƒ*vals,ƒintƒnumels)ƒƒƒ//ƒfindƒtheƒmaximumƒvalue
{
ƒƒintƒi,ƒmaxƒ=ƒ*vals++;ƒƒƒ//ƒgetƒtheƒfirstƒelementƒandƒincrementƒit
ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒnumels;ƒi++,ƒvals++)
ƒƒ{
ƒƒƒƒifƒ(maxƒ<ƒ*vals)
ƒƒƒƒƒƒmaxƒ=ƒ*vals;
ƒƒ}
ƒƒreturnƒmax;
}

Review this version of findMax(). Initially, the maximum value is set to “the thing

pointed to by vals.” Because vals initially contains the address of the first array element

passed to findMax(), the value of this first element is stored in max. The address in vals is

then incremented by 1. The 1 added to vals is scaled automatically by the number of bytes

used to store integers. Therefore, after the increment, the address stored in vals is the address

of the next array element, as shown in Figure 8.25. The value of this next element is compared

with the maximum, and the address is again incremented, this time in the altering list of the

for statement. This process continues until all array elements have been examined.

I_C7785_08.1c 377I_C7785_08.1c 377 1/18/11 10:48 AM1/18/11 10:48 AM

378 Arrays and Pointers

vals
Before incrementing:

vals[0] vals[1] vals[2] vals[3] vals[4]

vals
After incrementing:

Address of
vals[1]

Address of
vals[0]

Figure 8.25 Pointing to different elements

The version of findMax() you choose is a matter of personal style. Generally, beginning

programmers feel more at ease using subscripts rather than pointers. Also, if the program uses

an array as the natural storage structure for the application and data, an array access using sub-

scripts is more appropriate to indicate the program’s intent clearly. However, as you learn more

about data structures, pointers become an increasingly useful and powerful tool. In more com-

plex data structures, there’s no simple or easy equivalence for subscripts.

There’s one more neat trick you can glean from this discussion. Because passing an array

to a function actually involves passing an address, you can pass any valid address. For example,

the function call findMax(&nums[2],3) passes the address of nums[2] to findMax(). In

findMax(), the pointer vals stores the address, and the function starts the search for a maxi-

mum at the element corresponding to this address. Therefore, from findMax()’s perspective,

it has received an address and proceeds appropriately.

Advanced Pointer Notation10

You can also access multidimensional arrays by using pointer notation, although the notation

becomes more cryptic as the array dimensions increase. Pointer notation is especially useful

with two-dimensional character arrays, and this section discusses pointer notation for two-

dimensional numeric arrays. For example, examine this declaration:

intƒnums[2][3]ƒ=ƒ{ƒ{16,18,20},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{25,26,27}ƒ};

This declaration creates an array of elements and a set of pointer constants named nums,

nums[0], and nums[1]. Figure 8.26 shows the relationship between these pointer constants

and the elements of the nums array.

10This topic can be omitted without loss of subject continuity.

I_C7785_08.1c 378I_C7785_08.1c 378 1/18/11 10:48 AM1/18/11 10:48 AM

379Chapter 8
Passing Addresses

nums[1]

nums[0]

nums[1][0]

nums[0][0] nums[0][1] nums[0][2]

nums[1][1] nums[1][2]

16

25

18

26

20

27

nums

Address of
nums[0]

Address of
nums[0][0]

Address of
nums[1][0]

Figure 8.26 Storage of the nums array and associated pointer constants

The availability of the pointer constants associated with a two-dimensional array enables

you to access array elements in a variety of ways. One way is to view a two-dimensional array

as an array of rows, with each row as an array of three elements. From this viewpoint, the

address of the first element in the first row is provided by nums[0], and the address of the first

element in the second row is provided by nums[1]. Therefore, the variable pointed to by

nums[0] is nums[0][0], and the variable pointed to by nums[1] is nums[1][0]. Each ele-

ment in the array can be accessed by applying an offset to the correct pointer. Therefore, the

following notations are equivalent:

Pointer Notation Subscript Notation Value
*nums[0] nums[0][0] 16
*(nums[0]ƒ+ƒ1) nums[0][1] 18
*(nums[0]ƒ+ƒ2) nums[0][2] 20
*nums[1] nums[1][0] 25
*(nums[1]ƒ+ƒ1) nums[1][1] 26
*(nums[1]ƒ+ƒ2) nums[1][2] 27

You can now go further and replace nums[0] and nums[1] with their pointer notations,

using the address of nums. As shown in Figure 8.26, the variable pointed to by nums is

nums[0]. That is, *nums is nums[0]. Similarly, *(numsƒ+ƒ1) is nums[1]. Using these rela-

tionships leads to the following equivalences:

Pointer Notation Subscript Notation Value
*(*nums) nums[0][0] 16
*(*numsƒ+ƒ1) nums[0][1] 18
*(*numsƒ+ƒ2) nums[0][2] 20
((numsƒ+ƒ1)) nums[1][0] 25
((numsƒ+ƒ1)ƒ+ƒ1) nums[1][1] 26
((numsƒ+ƒ1)ƒ+ƒ2) nums[1][2] 27

The same notation applies when a two-dimensional array is passed to a function. For

example, the two-dimensional array nums is passed to the calc() function by using the call

I_C7785_08.1c 379I_C7785_08.1c 379 1/18/11 10:48 AM1/18/11 10:48 AM

380 Arrays and Pointers

calc(nums);. As with all array passes, an address is passed. A suitable function header for the

calc() function is as follows:

voidƒcalc(intƒpt[2][3])

As you have seen, the parameter declaration for pt can also be the following:

voidƒcalc(intƒpt[][3])

Using pointer notation, the following is another suitable declaration:

voidƒcalc(intƒ(*pt)[3])

In this declaration, the inner parentheses are required to create a single pointer to arrays

of three integers. Each array is, of course, equivalent to a single row of the nums array. By off-

setting the pointer, each element in the array can be accessed. Notice that without the paren-

theses, the declaration becomes

intƒ*pt[3]

which creates an array of three pointers, each one pointing to a single integer. After the correct

declaration for pt is made (any of the three valid declarations can be used), all the following

notations in the calc() function are equivalent:

Pointer Notation Subscript Notation Value
*(*pt) pt[0][0] 16
*(*pt+1) pt[0][1] 18
*(*pt+2) pt[0][2] 20
((pt+1)) pt[1][0] 25
((pt+1)+1) pt[1][1] 26
((pt+1)+2) pt[1][2] 27

The last two notations using pointers are seen in more advanced C++ programs. The first

occurs because functions can return any valid C++ scalar data type, including pointers to any

of these data types. If a function returns a pointer, the data type being pointed to must be

declared in the function’s declaration. For example, the declaration

intƒ*calc()

declares that calc() returns a pointer to an integer value, which means the address of an

integer variable is returned. Similarly, the declaration

doubleƒ*taxes()

declares that taxes() returns a pointer to a double-precision value, which means the address

of a double-precision variable is returned.

In addition to declaring pointers to integers, double-precision numbers, and C++’s other

data types, you can declare pointers that point to (contain the address of) a function. Pointers

I_C7785_08.1c 380I_C7785_08.1c 380 1/18/11 10:48 AM1/18/11 10:48 AM

381Chapter 8
Passing Addresses

to functions are possible because function names, like array names, are pointer constants. For

example, the declaration

intƒ(*calc)()

declares calc to be a pointer to a function that returns an integer. This means calc contains

the address of a function, and the function whose address is in the variable calc returns an

integer value. If, for example, the function sum() returns an integer, the assignment

calcƒ=ƒsum; is valid.

 EXERCISES 8.4

1. (Practice) The following declaration was used to create the prices array:

doubleƒprices[500];

 Write three different headers for a function named sortArray() that accepts the prices

array as a parameter named inArray and returns no value.

2. (Practice) The following declaration was used to create the keys array:

charƒkeys[256];

 Write three different headers for a function named findKey() that accepts the keys array as

a parameter named select and returns no value.

3. (Practice) The following declaration was used to create the rates array:

doubleƒrates[256];

 Write three different headers for a function named maximum() that accepts the rates array as

a parameter named speed and returns a double-precision value.

4. (Modify) Modify the findMax() function to locate the minimum value of the passed array.

Write the function using only pointers.

5. (Debug) In the second version of findMax(), vals was incremented in the altering list of the

for statement. Instead, you do the incrementing in the condition expression of the if state-

ment, as follows:

intƒfindMax(intƒ*vals,ƒintƒnumels)ƒƒƒƒ//ƒincorrectƒversion
{
ƒƒintƒi,ƒmaxƒ=ƒ*vals++;ƒƒƒ//ƒgetƒtheƒfirstƒelementƒandƒincrement

ƒƒforƒ(iƒ=ƒ1;ƒiƒ<ƒnumels;ƒi++)
ƒƒƒƒifƒ(maxƒ<ƒ*vals++)
ƒƒƒƒƒƒmaxƒ=ƒ*vals;
ƒƒreturnƒ(max);
}

 Determine why this version produces an incorrect result.

I_C7785_08.1c 381I_C7785_08.1c 381 1/18/11 10:48 AM1/18/11 10:48 AM

382 Arrays and Pointers

6. (Program) a. Write a program that has a declaration in main() to store the following numbers

in an array named rates: 6.5, 7.2, 7.5, 8.3, 8.6, 9.4, 9.6, 9.8, and 10.0. Include a function call to

show() that accepts rates in a parameter named rates and then displays the numbers by

using the pointer notation *(ratesƒ+ƒi).

b. Modify the show() function written in Exercise 6a to alter the address in rates. Always

use the expression *rates rather than *(ratesƒ+ƒi) to retrieve the correct element.

7. (Program) a. Write a program that has a declaration in main() to store the string

Vacationƒisƒnear in an array named message. Include a function call to display() that

accepts message in an argument named strng and then displays the contents of message by

using the pointer notation *(strngƒ+ƒi).

b. Modify the display() function written in Exercise 7a to use the expression *strng

rather than *(strngƒ+ƒi) to retrieve the correct element.

8. (Program) Write a program that declares three one-dimensional arrays named price,

quantity, and amount. Each array should be declared in main() and be capable of holding

10 double-precision numbers. The numbers to be stored in price are 10.62, 14.89, 13.21,

16.55, 18.62, 9.47, 6.58, 18.32, 12.15, and 3.98. The numbers to be stored in quantity are 4,

8.5, 6, 7.35, 9, 15.3, 3, 5.4, 2.9, and 4.8. Have your program pass these three arrays to a function

called extend(), which calculates the elements in the amount array as the product of the

equivalent elements in the price and quantity arrays: for example, amount[1]ƒ=ƒprice[1]

*ƒquantity[1].

 After extend() has put values in the amount array, display the values in the array from with-

in main(). Write the extend() function by using pointers.

9. (Program) Write a function named trimfrnt() that deletes all leading blanks from a string.

Write the function using pointers with the return type void.

10. (Program) Write a function named trimrear() that deletes all trailing blanks from a string.

Write the function using pointers with the return type void.

11. (Program) Write a C++ program that asks for two lowercase characters. Pass the two entered

characters, using pointers, to a function named capit(). The capit() function should capi-

talize the two letters and return the capitalized values to the calling function through its

pointer arguments. The calling function should then display all four letters.

12. (Desk check) a. Determine the output of the following program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
voidƒarr(intƒ[]ƒ[3]);ƒ//ƒequivalentƒtoƒvoidƒarr(intƒ(*)ƒ[3]);

intƒmain()
{
ƒƒconstƒintƒROWSƒ=ƒ2;
ƒƒconstƒintƒCOLSƒ=ƒ3;

☞

I_C7785_08.1c 382I_C7785_08.1c 382 1/18/11 10:48 AM1/18/11 10:48 AM

383Chapter 8
Common Programming Errors

ƒƒintƒnums[ROWS][COLS]ƒ=ƒ{ƒ{33,16,29},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{54,67,99}};
ƒƒarr(nums);
ƒƒreturnƒ0;
}

voidƒarr(intƒ(*val)ƒ[3])
{
ƒƒcoutƒ<<ƒendlƒ<<ƒ*(*val);
ƒƒcoutƒ<<ƒendlƒ<<ƒ*(*valƒ+ƒ1);
ƒƒcoutƒ<<ƒendlƒ<<ƒ*(*(valƒ+ƒ1)ƒ+ƒ2);
ƒƒcoutƒ<<ƒendlƒ<<ƒ*(*val)ƒ+ƒ1;
ƒƒreturn;
}

b. Given the declaration for val in the arr() function, is the notation val[1][2] valid in the

function?

8.5 Common Programming Errors

In using the material in this chapter, be aware of the following possible errors:

1. Attempting to store an address in a variable that hasn’t been declared as a pointer.

2. Using a pointer to access nonexistent array elements. For example, if nums is an array

of 10 integers, the expression *(numsƒ+ƒ15) points to a location six integer locations

beyond the last array element. Because C++ doesn’t do bounds checking on array

accesses, the compiler doesn’t catch this type of error. It’s the same error, disguised in

pointer notation form, that occurs when using a subscript to access an out-of-bounds

array element.

3. Forgetting to use the brackets, [], after the delete operator when dynamically deal-

locating memory that was allocated dynamically as a array.

4. Incorrectly applying address and indirection operators. For example, if pt is a pointer

variable, both expressions

ptƒ=ƒ&45
ptƒ=ƒ&(milesƒ+ƒ10)

 are invalid because they attempt to take the address of a value. Notice that the expres-

sion ptƒ=ƒ&milesƒ+ƒ10, however, is valid. This expression adds 10 to the address of

miles. It’s the programmer’s responsibility to ensure that the final address points to a

valid data element.

I_C7785_08.1c 383I_C7785_08.1c 383 1/18/11 10:48 AM1/18/11 10:48 AM

384 Arrays and Pointers

5. Taking addresses of pointer constants. For example, given the declarations

intƒnums[25];
intƒ*pt;

 the assignment

ptƒ=ƒ&nums;

 is invalid. The constant nums is a pointer constant that’s equivalent to an address. The

correct assignment is ptƒ=ƒnums.

6. Taking addresses of a reference argument, reference variable, or register variable. The

reason is that reference arguments and variables are essentially the same as pointer

constants, in that they’re named address values. Similarly, the address of a register vari-

able can’t be taken. Therefore, for the declarations

registerƒintƒtotal;
intƒ*ptTot;

 the assignment

ptTotƒ=ƒ&total;ƒƒ//ƒINVALID

 is invalid. The reason is that register variables are stored in a computer’s internal reg-

isters, and these storage areas don’t have standard memory addresses.

7. Initializing pointer variables incorrectly. For example, the following initialization is

invalid:

intƒ*ptƒ=ƒ5;

 Because pt is a pointer to an integer, it must be initialized with a valid address.

8. Becoming confused about whether a variable contains an address or is an address.

Pointer variables and pointer arguments contain addresses. Although a pointer con-

stant is synonymous with an address, it’s useful to treat pointer constants as pointer

variables with two restrictions:

• The address of a pointer constant can’t be taken.

• The address “contained in” the pointer constant can’t be altered.

 Except for these two restrictions, pointer constants and pointer variables can be used

almost interchangeably. Therefore, when an address is required, any of the following

can be used:

• A pointer variable name

• A pointer argument name

• A pointer constant name

• A non-pointer variable name preceded by the address operator (for example,

&variable)

• A non-pointer argument name preceded by the address operator (for example,

&argument)

I_C7785_08.1c 384I_C7785_08.1c 384 1/18/11 10:48 AM1/18/11 10:48 AM

385Chapter 8
Chapter Summary

Some confusion surrounding pointers is caused by careless use of the word pointer. For

example, the phrase “a function requires a pointer argument” is more clearly understood when

you realize it actually means “a function requires an address as an argument.” Similarly, the

phrase “a function returns a pointer” actually means “a function returns an address.”

If you’re ever in doubt as to what’s contained in a variable or how it should be treated, use

a cout statement to display the variable’s contents, the “thing pointed to,” or “the address of

the variable.” Seeing what’s actually displayed often helps sort out what the variable contains.

8.6 Chapter Summary
1. Every variable has an address. In C++, you can obtain the address of a variable by using the

address operator, &.

2. A pointer is a variable used to store the address of another variable. Pointers, like all C++

variables, must be declared. An asterisk, *, is used both to declare a pointer variable and to

access the variable whose address is stored in a pointer.

3. An array name is a pointer constant. The value of the pointer constant is the address of the

first element in the array. Therefore, if val is the name of an array, val and &val[0] can

be used interchangeably.

4. Any access to an array element with subscript notation can always be replaced with pointer

notation. That is, the notation a[i] can always be replaced by the notation *(aƒ+ƒi). This

is true whether a was initially declared as an array or a pointer.

5. Arrays can be created dynamically as a program is running. For example, the following

sequence of statements creates an array named grades of size num:

coutƒƒ<<ƒ“Enterƒtheƒarrayƒsize:ƒ“;
cinƒƒƒ>>ƒnum;
intƒƒ*gradesƒ=ƒnewƒint[num];

 The area allocated for the array can be destroyed dynamically by using the delete[]

operator. For example, the statement delete[]ƒgrades; returns the allocated area for the

grades array back to the computer.

6. Arrays are passed to functions as addresses. The called function always receives direct

access to the originally declared array elements.

7. When a one-dimensional array is passed to a function, the function’s parameter declaration

can be an array declaration or a pointer declaration. Therefore, the following parameter

declarations are equivalent:

doubleƒa[];
doubleƒ*a;

8. Pointers can be incremented, decremented, compared, and assigned. Numbers added to or

subtracted from a pointer are scaled automatically. The scale factor used is the number of

bytes required to store the data type originally pointed to.

I_C7785_08.1c 385I_C7785_08.1c 385 1/18/11 10:48 AM1/18/11 10:48 AM

9 9.1 I/O File Stream Objects and
Methods

 9.2 Reading and Writing Text Files

 9.3 Random File Access

 9.4 File Streams as Function
Arguments

 9.5 Common Programming Errors

 9.6 Chapter Summary

 9.7 Chapter Supplement: The
iostream Class Library

The data for the programs you have used so far has been assigned internally in the programs or entered
by the user during program execution. Therefore, the data used in these programs is stored in the com-
puter’s main memory and ceases to exist after the program using it has finished executing. This type of
data entry is fine for small amounts of data. However, imagine a company having to pay someone to type
in the names and addresses of hundreds or thousands of customers every month when bills are prepared
and sent.

As you learn in this chapter, storing large amounts of data outside a program on a convenient stor-
age medium is more sensible. Data stored together under a common name on a storage medium other than
the computer’s main memory is called a data file. Typically, data files are stored on disks, USB drives,
or CD/DVDs. Besides providing permanent storage for data, data files can be shared between programs,
so the data one program outputs can be input in another program. In this chapter, you learn how data
files are created and maintained in C++.

Chapter

I/O Streams and
Data Files

J_C7785_09.1c 387J_C7785_09.1c 387 1/18/11 10:50 AM1/18/11 10:50 AM

388 I/O Streams and Data Files

9.1 I/O File Stream Objects and Methods

To store and retrieve data outside a C++ program, you need two things:

• A file

• A file stream object

Files
A file is a collection of data stored together under a common name, usually on a disk, USB

drive, or CD/DVD. For example, the C++ programs you store on disk are examples of files.

The stored data in a program file is the code that becomes input data to the C++ compiler. In

the context of data processing, however, stored programs aren’t usually considered data files;

the term “data file” typically refers only to files containing the data used in a C++ program.

Each stored data file has a unique filename, referred to as the file’s external name. The

external name is how the operating system (OS) knows the file. When you review the contents

of a directory or folder (for example, in Windows Explorer), you see files listed by their exter-

nal names. Each computer OS has its own specification for the maximum number of characters

permitted for an external filename. Table 9.1 lists these specifications for common current and

past OSs.

Table 9.1 Maximum Allowable Filename Characters

OS Maximum Filename Length
DOS 8 characters plus an optional period and

3-character extension
Windows 98, 2000, XP, Vista 255 characters
Windows 7 255 characters
UNIX
 Early versions 14 characters
 Current versions 255 characters

For current OSs, you should take advantage of the increased length specification to create

descriptive filenames, but avoid using extremely long filenames because they take more time

to type and can result in typing errors. A manageable length for a filename is 12 to 14 charac-

ters, with a maximum of 25 characters.

For all the OSs listed in Table 9.1, the following are valid data filenames:

prices.datƒƒƒƒƒrecordsƒƒƒƒƒƒinfo.txt
exper1.datƒƒƒƒƒmvRecordƒƒƒƒƒmath.mem

Choose filenames that indicate the type of data in the file and the application for which it’s

used. Typically, the first 8 to 10 characters describe the data, and an optional extension (a period

and three or four characters) describes the application used to create the file. For example,

J_C7785_09.1c 388J_C7785_09.1c 388 1/18/11 10:50 AM1/18/11 10:50 AM

389Chapter 9
I/O File Stream Objects and Methods

Excel adds the .xls or .xlsx extension automatically to all spreadsheet files (x refers to the

version number), Microsoft Word stores files with the extension .doc or .docx, and C++

compilers require a program file with the extension .cpp. When creating your own filenames,

you should adhere to this practice of using descriptive filenames. For example, the name

exper1.dat is suitable for describing a file of data corresponding to experiment number 1.

Two basic types of files exist: text files, also known as character-based files, and binary-based
files. Both file types store data by using a binary code; the difference is in what the codes rep-

resent. Briefly, text files store each character, such as a letter, digit, dollar sign, decimal point,

and so on, by using a character code (typically ASCII or Unicode). With a character code, a word-

processing program or text editor can read and display these files. Additionally, because text

files are easy to create, most programmers use them more often. Text files are the default file

type in C++ and the file type discussed in this chapter.

Binary-based files use the same code the C++ compiler uses for primitive data types. This

means numbers appear in their true binary form and can’t be read by word-processing pro-

grams and text editors. The advantage of binary-based files is compactness; storing numbers

with their binary code usually takes less space than with character values.

File Stream Objects
A file stream is a one-way transmission path used to connect a file to a program. Each file

stream has its own mode that determines the direction of data on the transmission path—that

is, whether the path moves data from a file to a program or from a program to a file. A file

stream used to transfer data from a file to a program is an input file stream. A file stream that

sends data from a program to a file is an output file stream. The direction, or mode, is defined

in relation to the program, not the file; data going into a program is considered input data, and

data sent out from a program is considered output data. Figure 9.1 illustrates the data flow from

and to a file, using input and output file streams.

Point of Information
Functions and Methods

C++ programmers can make full use of the many functions C++ classes provide without
knowing the internal details of how the function is constructed or even how to construct
a class. Functions provided as part of a class are formally referred to as class methods (or
methods, for short). Although a method is often referred to as a function, the term
“method” tells you it’s not just a stand-alone function, as discussed in Chapter 6, but is
available as part of a class. Typically, a class contains other methods of a similar type.
More important, almost all class methods are invoked in a different manner from func-
tions. Chapters 10 and 11 in Part II explain classes and their construction in detail. As
you’ll see, a class is constructed from C++ code that includes both data and methods.

J_C7785_09.1c 389J_C7785_09.1c 389 1/18/11 10:50 AM1/18/11 10:50 AM

390 I/O Streams and Data Files

Disk

Input file stream
#include <fstream>
int main()
{

return 0;
}

Program

Output file stream

File

Figure 9.1 Input and output file streams

For each file your program uses, regardless of the file’s type (text or binary), a distinct file

stream object must be created. If you want your program to read from and write to a file, both

input and output file stream objects are required. Input file stream objects are declared to be

of type ifstream, and output file stream objects are declared to be of type ofstream. For

example, the following declaration statement declares an input file stream object named

inFile to be an object of the ifstream class:

ifstreamƒinFile;

Similarly, the following declaration statement declares an output file stream object named

outFile to be an object of the ofstream class:

ofstreamƒoutFile;

In a C++ program, a file stream is accessed by its stream object name: one name for read-

ing the file and one name for writing to the file. Object names, such as inFile and outFile,

can be any programmer-selected name that conforms to C++’s identifier rules.

File Stream Methods
Each file stream object has access to the methods defined for its ifstream or ofstream class.

These methods include connecting a stream object name to an external filename (called

opening a file), determining whether a successful connection has been made, closing a connec-

tion (called closing a file), getting the next data item into the program from an input stream,

putting a new data item from the program onto an output stream, and detecting when the end

of a file has been reached.

Opening a file connects a file stream object to a specific external filename by using a file

stream’s open() method, which accomplishes two purposes. First, opening a file establishes

the physical connecting link between a program and a file. Because details of this link are

handled by the computer’s OS, not by the program, normally the programmer doesn’t need to

consider them.

From a coding perspective, the second purpose of opening a file is more relevant. Besides

establishing the actual physical connection between a program and a data file, opening a file

connects the file’s external OS name to the file stream object name the program uses inter-

nally. The method that performs this task, open(), is provided by the ifstream and ofstream

classes.

J_C7785_09.1c 390J_C7785_09.1c 390 1/18/11 10:50 AM1/18/11 10:50 AM

391Chapter 9
I/O File Stream Objects and Methods

In using the open() method to connect the file’s external name to its internal object

stream name, only one argument is required: the external filename. For example, the following

statement connects the external text file named prices.dat to the internal file stream object

named inFile:

inFile.open(“prices.dat”);

This statement assumes, of course, that inFile has been declared as an ifstream or

ofstream object. If a file has been opened with the preceding statement, the program

accesses the file by using the internal object name inFile, and the OS accesses the file

under the external name prices.dat. The external filename argument passed to open() is

a string enclosed in double quotation marks. The prices.dat file exists or is created

(depending on whether it’s designated as an input or output file) in the same folder as the

program. More generally, data files are stored in separate folders, and the data file’s full path-

name can be specified as in this example:

inFile.open(“c:\\datafiles\\prices.dat”);

Notice that two slashes separate folder names and filenames, which is required when

providing a full pathname. Also, in these two examples, the open() method is called by giving

the object name (inFile) first, followed by a period, and then the method name (open). With

a few notable exceptions, this is how all class methods are called.

When an existing file is connecting to an input file stream, the file’s data is made available

for input, starting at the first data item in the file. Similarly, a file connected to an output file

stream creates a new file, said to be in output mode, and makes the file available for output. If

Point of Information
Input and Output Streams

A stream is a one-way transmission path between a source and a destination. In data
transmission, a stream of bytes is sent down this transmission path, similar to a stream of
water providing a one-way path for water to travel from a source to a destination.

Stream objects are created from stream classes. You have already used two stream
objects extensively: the input stream object named cin and the output stream object
named cout. The cin object, created from the istream class, provides a transmission
path from keyboard to program, and the cout object, created from the ostream class,
provides a transmission path from program to screen. The istream and ostream
classes are used to construct a class named iostream. When the iostream header
file is included in a program with the #includeƒ<iostream> directive, the cin and
cout stream objects are declared automatically and opened by the C++ compiler.

File stream objects provide the same capabilities as the cin and cout objects, except
they connect a program to a file rather than the keyboard or screen. File stream objects
must be created and declared in a similar manner as variables. Instead of being declared
as int or char, however, file stream objects are declared as being of the ifstream
class (for input) or of the ofstream class (for output). These two classes are made avail-
able by including the fstream header file with the #includeƒ<fstream> directive.

J_C7785_09.1c 391J_C7785_09.1c 391 1/18/11 10:50 AM1/18/11 10:50 AM

392 I/O Streams and Data Files

a file exists with the same name as a file opened in output mode, the old file is erased (over-

written) and all its data is lost.

When opening a file for input or output, good programming practice requires checking

that the connection has been established before attempting to use the file. You can do this with

the fail() method, which returns a true value if the file was opened unsuccessfully (that is,

it’s true the open failed) or a false value if the open succeeded. Typically, the fail() method

is used in code similar to the following, which attempts to open the prices.dat file for input,

checks that a valid connection was made, and reports an error message if the file wasn’t opened

for input successfully:

ifstreamƒinFile;ƒƒ//ƒanyƒobjectƒnameƒcanƒbeƒusedƒhere
inFile.open(“prices.dat”);ƒƒ//ƒopenƒtheƒfile

//ƒcheckƒthatƒtheƒconnectionƒwasƒopenedƒsuccessfully
ifƒ(inFile.fail())
{
ƒƒcoutƒ<<ƒ“\nTheƒfileƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒ<<ƒendl;
ƒƒexit(1);
}

If the fail() method returns a true, indicating that the open failed, this code displays an

error message. In addition, the exit() function, which is a request to the OS to end program

execution immediately, is called. The cstdlib header function must be included in any pro-

gram using exit(), and exit()’s single-integer argument is passed directly to the OS for any

further program action or user inspection. Throughout the remainder of the book, this type of

error checking is included whenever a file is opened. (Section 14.4 shows how to use exception

handling for the same type of error checking.) In addition to the fail() method, C++ pro-

vides three other methods, listed in Table 9.2, for detecting a file’s status.

Table 9.2 File Status Methods

Prototype Description
fail() Returns a Boolean true if the file hasn’t

been opened successfully; otherwise,
returns a Boolean false value.

eof() Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, returns a Boolean false. The
value becomes true only when the first
character after the last valid file character
is read.

J_C7785_09.1c 392J_C7785_09.1c 392 1/18/11 10:50 AM1/18/11 10:50 AM

393Chapter 9
I/O File Stream Objects and Methods

Prototype Description
good() Returns a Boolean true while the file

is available for program use. Returns
a Boolean false if a read has been
attempted past the end of file. The value
becomes false only when the first
character after the last valid file character
is read.

bad() Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, returns a false. The value
becomes true only when the first
character after the last valid file character
is read.

Program 9.1 shows the statements required to open a file for input, including an error-

checking routine to ensure that the open was successful. A file opened for input is said to be

in read mode or input mode. (These two terms are synonymous.)

 Program 9.1

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒifstreamƒinFile;
ƒƒinFile.open(“prices.dat”);ƒƒ//ƒopenƒtheƒfileƒwithƒthe
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒexternalƒnameƒprices.dat
ƒƒifƒ(inFile.fail())ƒƒ//ƒcheckƒforƒaƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}
ƒƒcoutƒ<<ƒ“\nTheƒfileƒhasƒbeenƒsuccessfullyƒopenedƒforƒreading.”
ƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒ//ƒstatementsƒtoƒreadƒdataƒfromƒtheƒfileƒareƒplacedƒhere
ƒƒreturnƒ0;
}

Table 9.2 File Status Methods (continued)

J_C7785_09.1c 393J_C7785_09.1c 393 1/18/11 10:50 AM1/18/11 10:50 AM

394 I/O Streams and Data Files

A sample run of Program 9.1 produces the following output:

Theƒfileƒhasƒbeenƒsuccessfullyƒopenedƒforƒreading.

A different check is required for output files (files that are written to) because if a file

exists with the same name as the file to be opened in output mode, the existing file is erased

and all its data is lost. To avoid this situation, the file is first opened in input mode to see

whether it exists. If it does, the user is given the choice of permitting it to be overwritten when

it’s opened later in output mode. The code to perform this check is shaded in Program 9.2.

 Program 9.2

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒifstreamƒinFile;
ƒƒofstreamƒoutFile;
ƒƒcharƒresponse;
ƒƒinFile.open(“prices.dat”);ƒƒ//ƒattemptƒtoƒopenƒtheƒfileƒforƒinput

ƒƒifƒ(!inFile.fail())ƒƒ//ƒifƒitƒdoesn'tƒfail,ƒtheƒfileƒexists
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Aƒfileƒbyƒtheƒnameƒprices.datƒexists.\n”
ƒƒƒƒƒƒƒƒƒ<<ƒ“Doƒyouƒwantƒtoƒcontinueƒandƒoverwriteƒit\n”
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwithƒtheƒnewƒdataƒ(yƒorƒn):ƒ“;
ƒƒƒƒcinƒƒ>>ƒresponse;
ƒƒƒƒifƒ(tolower(response)ƒ==ƒ'n')
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒ“Theƒexistingƒfileƒwillƒnotƒbeƒoverwritten.”ƒ<<ƒendl;
ƒƒƒƒƒƒƒexit(1);ƒƒ//terminateƒprogramƒexecution
ƒƒƒƒ}
ƒƒ}

ƒƒoutFile.open(“prices.dat”);ƒ//ƒnowƒopenƒtheƒfileƒforƒwriting

☞

J_C7785_09.1c 394J_C7785_09.1c 394 1/18/11 10:50 AM1/18/11 10:50 AM

395Chapter 9
I/O File Stream Objects and Methods

ƒƒifƒ(inFile.fail())ƒƒ//ƒcheckƒforƒaƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒwasƒnotƒsuccessfullyƒopened”ƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒcoutƒ<<ƒ“Theƒfileƒhasƒbeenƒsuccessfullyƒopenedƒforƒoutput.”ƒ<<ƒendl;

ƒƒ//ƒstatementsƒtoƒwriteƒtoƒtheƒfileƒwouldƒbeƒplacedƒhere

ƒƒreturnƒ0;
}

The following two runs were made with Program 9.2:

Aƒfileƒbyƒtheƒnameƒprices.datƒexists.
Doƒyouƒwantƒtoƒcontinueƒandƒoverwriteƒit
ƒƒwithƒtheƒnewƒdataƒ(yƒorƒn):ƒn
Theƒexistingƒfileƒwillƒnotƒbeƒoverwritten.

and

Aƒfileƒbyƒtheƒnameƒprices.datƒexists.
Doƒyouƒwantƒtoƒcontinueƒandƒoverwriteƒit
ƒƒwithƒtheƒnewƒdataƒ(yƒorƒn):ƒy
Theƒfileƒhasƒbeenƒsuccessfullyƒopenedƒforƒoutput.

Although Programs 9.1 and 9.2 can be used to open an existing file for reading and writing,

both programs lack statements to perform a read or write and close the file. These topics are

discussed shortly. Before moving on, however, note that it’s possible to combine the declara-

tion of an ifstream or ofstream object and its associated open() statement into one state-

ment. For example, examine these two statements in Program 9.1:

ifstreamƒinFile;
inFile.open(“prices.dat”);

They can be combined into a single statement:

ifstreamƒinFile(“prices.dat”);

Embedded and Interactive Filenames Programs 9.1 and 9.2 have two problems:

• The external filename is embedded in the program code.

• There’s no provision for a user to enter the filename while the program is running.

As both programs are written, if the filename is to change, a programmer must modify the

external filename embedded in the call to open() and recompile the program. Both these

problems can be avoided by assigning the filename to a string variable.

J_C7785_09.1c 395J_C7785_09.1c 395 1/18/11 10:50 AM1/18/11 10:50 AM

396 I/O Streams and Data Files

In declaring and initializing a string variable for use in an open() method, the variable

must represent a C-string, a one-dimensional array of characters terminated with a null char-

acter. (See the Point of Information “Using C-Strings as Filenames” for precautions when

using a C-string.) A safer alternative, as it doesn’t require specifying a character count—and

one used throughout this book—is to use an object created from the string class. To do this,

add an #includeƒ<string> directive, declare an object to be of this class, and convert the

object to a C-string in the open() method call by using the string class method c_str().

After a string variable is declared to store a filename, it can be used in one of two ways.

First, as shown in Program 9.3a, it can be used to avoid embedding a filename in the open()

method by placing the declaration statement at the top of a program. This method also clearly

identifies the file’s name up front.

 Program 9.3a

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒ//ƒneededƒforƒexit()
#includeƒ<string>ƒƒƒ//ƒneededƒforƒtheƒstringƒclass
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfilenameƒ=ƒ“prices.dat”;ƒ//ƒcreateƒandƒinitializeƒaƒstringƒobject
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒwithƒtheƒfilenameƒatƒtheƒtopƒofƒthe
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒmain()ƒfunction
ƒƒifstreamƒinFile;

Point of Information
Using C-Strings as Filenames

If you use a C-string (which is simply a one-dimensional array of characters) to store an
external filename, you must specify the C-string’s maximum length in brackets immedi-
ately after it’s declared. For example, examine the following declaration:

charƒfilename[21]ƒ=ƒ“prices.dat”;

The number in brackets (21) is one more than the maximum number of characters
that can be assigned to the variable filename because the compiler adds an end-of-
string character to terminate the string. Therefore, the string value “prices.dat”,
which consists of 10 characters, is actually stored as 11 characters. In this example, the
maximum value that can be assigned to the string variable filename is a string value
consisting of 20 characters.

☞

J_C7785_09.1c 396J_C7785_09.1c 396 1/18/11 10:50 AM1/18/11 10:50 AM

397Chapter 9
I/O File Stream Objects and Methods

ƒƒinFile.open(filename.c_str());ƒƒ//ƒopenƒtheƒfile

ƒƒifƒ(inFile.fail())ƒƒ//ƒcheckƒforƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒnamedƒ“ƒ<<ƒfilename
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒhasƒbeenƒsuccessfullyƒopenedƒforƒreading.\n”;

ƒƒƒƒreturnƒ0;
}

In Program 9.3a, the string object is declared and initialized with the name filename.1 This

name is placed at the top of main() for easy file identification and modification. When a string

object is used, as opposed to a string literal, the object name isn’t enclosed in double quotation

marks in the open() method call. However, because open() requires a C-string (the string

class doesn’t use C-strings), the string object must be converted to a C-string in the open() call,

which is done by using the c_str() method in the expression filename.c_str().

Finally, in the fail() method, the file’s external name is displayed by inserting the string

object’s name in the cout output stream. External names of files are identified in this manner

in this book.

Another useful role string objects play is to permit users to enter the filename as the pro-

gram is running. For example, the code

stringƒfilename;

coutƒ<<ƒ“Pleaseƒenterƒtheƒnameƒofƒtheƒfileƒyouƒwishƒtoƒopen:ƒ“;
cinƒƒ>>ƒfilename;

allows a user to enter a file’s external name at runtime. The only restriction in this code is that

the user must not enclose the entered string value in double quotation marks, and the entered

string value can’t contain any blanks. The reason no blanks can be included is that when cin

is used, the compiler terminates the string when it encounters a blank. Program 9.3b uses this

code in the context of a complete program.

1If the file were located in the datafiles folder on the C drive, specifying the full pathname would require the statement

stringƒfilenameƒ=ƒ“C:\\datafiles\\prices.dat”;.

J_C7785_09.1c 397J_C7785_09.1c 397 1/18/11 10:50 AM1/18/11 10:50 AM

398 I/O Streams and Data Files

 Program 9.3b

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>ƒƒƒƒ//ƒneededƒforƒtheƒstringƒclass
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfilename;ƒ//ƒdeclareƒaƒstringƒobjectƒwithƒnoƒinitialization
ƒƒifstreamƒinFile;

ƒƒcoutƒ<<ƒ“Pleaseƒenterƒtheƒnameƒofƒtheƒfileƒyouƒwishƒtoƒopen:ƒ“;
ƒƒcinƒƒ>>ƒfilename;

ƒƒinFile.open(filename.c_str());ƒƒ//ƒopenƒtheƒfile
ƒƒifƒ(inFile.fail())ƒƒ//ƒcheckƒforƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒnamedƒ“ƒ<<ƒfilename
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}
ƒƒcoutƒ<<ƒ“\nTheƒfileƒhasƒbeenƒsuccessfullyƒopenedƒforƒreading.\n”;

ƒƒreturnƒ0;
}

The following is a sample output of Program 9.3b:

Pleaseƒenterƒtheƒnameƒofƒtheƒfileƒyouƒwishƒtoƒopen:ƒfoobar

Theƒfileƒnamedƒfoobarƒwasƒnotƒsuccessfullyƒopened
ƒƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.

J_C7785_09.1c 398J_C7785_09.1c 398 1/18/11 10:50 AM1/18/11 10:50 AM

399Chapter 9
I/O File Stream Objects and Methods

Closing a File A file is closed by using the close() method. This method breaks the con-

nection between the file’s external name and the file stream object, which can be used for

another file. Examine the following statement, which closes the inFile stream’s connection

to its current file:

inFile.close();

As indicated, the close() method takes no argument.

Because all computers have a limit on the maximum number of files that can be open at

one time, closing files that are no longer needed makes good sense. Any open files existing at

the end of normal program execution are closed automatically by the OS.

Point of Information
A Way to Identify a File’s Name and Location

During program development, test files are usually placed in the same directory or folder
as the program. Therefore, a method call such as inFile.open(“exper.dat”)
causes no problems to the OS. In production systems, however, it’s not uncommon for
data files to reside in one folder and program files to reside in another. For this reason,
including the full pathname of any file that’s opened is always a good idea.

For example, if the exper.dat file resides in the C:\test\files directory, the
open() call should include the full pathname: inFile.open(“C:\\test\\
files\\exper.dat”). Then, no matter where the program is run from, the OS
knows where to locate the file. Note the use of double backslashes, which is required.

Another important convention is to list all filenames at the top of a program instead
of embedding the names deep in the code. You can do this easily by declaring each file-
name as a string object (or a one-dimensional array of characters). For example, placing
the following statement at the top of a program file clearly lists both the name of the
file and its location:

stringƒfilenameƒ=ƒ“c:\\test\\files\\exper.dat”;

If some other file is to be tested, all that’s required is a simple change to the string lit-
eral in this easy-to-find statement. Remember that using the string class requires add-
ing the #includeƒ<string> directive in your program.

J_C7785_09.1c 399J_C7785_09.1c 399 1/18/11 10:50 AM1/18/11 10:50 AM

400 I/O Streams and Data Files

Point of Information
Using fstream Objects

In using ifstream and ofstream objects, the input or output mode is indicated by
the object. Therefore, ifstream objects must be used for input, and ofstream
objects must be used for output. Another means of creating file streams is with
fstream objects that can be used for input or output, but this method requires an
explicit mode designation. An fstream object is declared by using the following syntax:

fstreamƒobjectName;

When using the fstream class’s open() method, two arguments are required: a
file’s external name and a mode indicator. Here are the permissible mode indicators;
except for the first two, they can also be used when opening ifstream and
ofstream objects:

Indicator Description
ios::in Open a text file in input mode (not used for ifstream objects)
ios::out Open a text file in output mode (not used for ofstream objects)
ios::app Open a text file in append mode
ios::ate Go to the end of the opened file
ios::binary Open a binary file in input mode (default is text file)
ios::trunc Delete file contents if it exists
ios::nocreate If file doesn’t exist, open fails
ios::noreplace If file exists, open for output fails

As with ofstream objects, an fstream object in output mode creates a new file
and makes the file available for writing. If a file exists with the same name as a file
opened for output, the old file is erased. For example, the following statement declares
file1 as an object of type fstream:

fstreamƒfile1;

The following statement attempts to open the text file prices.dat for output:

file1.open(“prices.dat”,ios::out);

After this file has been opened, the program accesses the file by using the internal object
name file1, and the computer saves the file under the external name prices.dat.

An fstream file object opened in append mode means an existing file is available for
data to be added to the end of the file. If the file opened for appending doesn’t exist, a
new file with the designated name is created and made available to receive output from
the program. For example, the following statement declares file1 as an fstream
object and attempts to open a text file named prices.dat and make it available for
data to be added to the end of the file:

file1.open(“prices.dat”,ios::app);

continued

J_C7785_09.1c 400J_C7785_09.1c 400 1/18/11 10:50 AM1/18/11 10:50 AM

401Chapter 9
I/O File Stream Objects and Methods

 EXERCISES 9.1

1. (Practice) Write declaration and open statements that link the following external filenames

to their corresponding internal filenames. All files are text-based.

External Filename Internal Filename Mode
coba.mem memo output
book.let letter output
coupons.bnd coups append
yield.bnd yield append
prices.dat priFile input
rates.dat rates input

2. (Practice) a. Write a set of two statements that declares the following objects as ifstream

objects and then opens them as text input files:ƒinData.txt, prices.txt, coupons.dat,

and exper.dat.

b. Rewrite the two statements for Exercise 2a, using a single statement.

3. (Practice) a. Write a set of two statements declaring the following objects as ofstream objects

and then opening them as text output files: outDate.txt, rates.txt, distance.txt, and

file2.txt.

b. Rewrite the two statements for Exercise 3a, using a single statement.

Point of Information
Using fstream Objects (continued)

Finally, an fstream object opened in input mode means an existing external file has
been connected and its data is available as input. For example, the following statement
declares file1 to be of type fstream and attempts to open a text file named
prices.dat for input:

file1.open(“prices.dat”,ios::in);

Mode indicators can be combined by the bitwise OR operator, | (see Appendix C,
available online). For example, the following statement opens the file1 stream, which
can be an fstream or ifstream object, as an input binary stream:

file1.open(“prices.dat”,ƒios::inƒ|ƒios::binary)

If the mode indicator is omitted as the second argument for an ifstream object,
the stream is opened as a text input file by default; if the mode indicator is omitted for
an ofstream object, the stream is opened as a text output file by default.

J_C7785_09.1c 401J_C7785_09.1c 401 1/18/11 10:50 AM1/18/11 10:50 AM

402 I/O Streams and Data Files

4. (Practice) Enter and run Program 9.1 on your computer.

5. (Practice) Enter and run Program 9.2 on your computer.

6. (Practice) a. Enter and run Program 9.3a on your computer.

b. Add a close() method to Program 9.3a, and then run the program.

7. (Practice) a. Enter and run Program 9.3b on your computer.

b. Add a close() method to Program 9.3b, and then run the program.

8. (Practice) Using the reference manuals provided with your computer’s OS, determine the

following:

a. The maximum number of characters the computer can use to name a file for storage

b. The maximum number of data files that can be open at the same time

9. (Practice) Is calling a saved C++ program a file appropriate? Why or why not?

Point of Information
Checking for a Successful Connection

You should always check that the open() method established a connection between a
file stream and an external file successfully because the open() call is a request to the
OS that can fail for various reasons. Chief among these reasons is a request to open an
existing file for reading that the OS can’t locate or a request to open a file for output in
a nonexistent folder. If the OS can’t satisfy the open request, you need to know about it
and terminate your program. Failure to do so can result in abnormal program behavior
or a program crash.

The most common method for checking that a fail didn’t occur when attempting to
use a file for input is the one coded in Program 9.1, which uses separate calls to the
open() and fail() methods. Similarly, the check made in Program 9.2 is typically
included when a file is being opened in output mode.

Alternatively, you might encounter programs that use fstream objects in place of
ifstream and ofstream objects (see the previous Point of Information box). Except for
the open() method (which requires two arguments: a file’s external name and a mode
indicator), the fail() method is called the same as in Program 9.1 or Program 9.2.

In all these cases, you can substitute the expression !inFile for the conditional
expression inFile.fail().

J_C7785_09.1c 402J_C7785_09.1c 402 1/18/11 10:50 AM1/18/11 10:50 AM

403Chapter 9
Reading and Writing Text Files

10. (Practice) a. Write declaration and open statements to link the following external filenames

to their corresponding internal filenames. Use only ifstream and ofstream objects.

External Filename Internal Filename Mode
coba.mem memo binary and output
coupons.bnd coups binary and append
prices.dat priFile binary and input

b. Redo Exercise 10a, using only fstream objects.

c. Write close() statements for each file opened in Exercise 10a.

9.2 Reading and Writing Text Files

Reading or writing text files involves almost the identical operations for reading input from the

keyboard and writing data to the screen. For writing to a file, the cout object is replaced by

the ofstream object name declared in the program. For example, if outFile is declared as an

object of type ofstream, the following output statements are valid:

outFileƒ<<ƒ'a';
outFileƒ<<ƒ“HelloƒWorld!”;
outFileƒ<<ƒdescripƒ<<ƒ'ƒ'ƒ<<ƒprice;

The filename in each of these statements, in place of cout, directs the output stream to a

specific file instead of to the screen. Program 9.4 shows using the insertion operator, <<, to

write a list of descriptions and prices to a file.

When Program 9.4 runs, the, prices.dat file is created and saved by the computer as a

text file (the default file type) in the same folder where the program is located. It’s a sequential

file consisting of the following data:

Matsƒ39.95
Bulbsƒ3.22
Fusesƒ1.08

The actual storage of characters in the file depends on the character codes the computer

uses. Although only 30 characters appear to be stored in the file—corresponding to the descrip-

tions, blanks, and prices written to the file—the file contains 36 characters.

J_C7785_09.1c 403J_C7785_09.1c 403 1/18/11 10:50 AM1/18/11 10:50 AM

404 I/O Streams and Data Files

 Program 9.4

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>ƒƒƒƒ//ƒneededƒforƒtheƒstringƒclass
#includeƒ<iomanip>ƒƒƒ//ƒneededƒforƒformatting
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfilenameƒ=ƒ“prices.dat”;ƒƒ//ƒputƒtheƒfilenameƒupƒfront
ƒƒofstreamƒoutFile;

ƒƒoutFile.open(filename.c_str());

ƒƒifƒ(outFile.fail())
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Theƒfileƒwasƒnotƒsuccessfullyƒopened”ƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒ//ƒsetƒtheƒoutputƒfileƒstreamƒformats
ƒƒoutFileƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒƒƒƒ<<ƒsetprecision(2);

ƒƒ//ƒsendƒdataƒtoƒtheƒfile
ƒƒoutFileƒ<<ƒ“Matsƒ“ƒƒ<<ƒ39.95ƒ<<ƒendl
ƒƒƒƒƒƒƒƒƒƒ<<ƒ“Bulbsƒ“ƒ<<ƒ3.22ƒ<<ƒendl
ƒƒƒƒƒƒƒƒƒƒ<<ƒ“Fusesƒ“ƒ<<ƒ1.08ƒ<<ƒendl;

ƒƒoutFile.close();
ƒƒcoutƒ<<ƒ“Theƒfileƒ“ƒ<<ƒfilename
ƒƒƒƒƒƒƒ<<ƒ“ƒhasƒbeenƒsuccessfullyƒwritten.”ƒ<<ƒendl;

ƒreturnƒ0;
}

The extra characters consist of the newline escape sequence at the end of each line cre-

ated by the endl manipulator, which is created as a carriage return character (cr) and linefeed

(lf). Assuming characters are stored with the ASCII code, the prices.dat file is physically

stored as shown in Figure 9.2. For convenience, the character corresponding to each hexa-

decimal code is listed below the code. A code of 20 represents the blank character. Additionally,

J_C7785_09.1c 404J_C7785_09.1c 404 1/18/11 10:50 AM1/18/11 10:50 AM

405Chapter 9
Reading and Writing Text Files

Point of Information
Formatting Text File Output Stream Data

Output file streams can be formatted in the same manner as the cout standard output
stream. For example, if an output stream named fileOut has been declared, the fol-
lowing statement formats all data inserted in the fileOut stream in the same way
these manipulators work for the cout stream:

fileOutƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒƒ<<ƒsetprecision(2);

The first manipulator parameter, ios::fixed, causes the stream to output all num-
bers as though they were floating-point values. The next parameter, ios::showpoint,
tells the stream to always provide a decimal point. Therefore, a value such as 1.0 appears
as 1.0, not as 1, which doesn’t contain a decimal point. Finally, the setprecision()
manipulator tells the stream to display two decimal values after the decimal point.
Therefore, the number 1.0, for example, appears as 1.00.

Instead of using manipulators, you can use the stream methods setf() and
precision(). For example, the previous formatting can be accomplished with the
following code:

fileOut.setf(ios::fixed);
fileOut.setf(ios::showpoint);
fileOut.precision(2);

The style you select is a matter of preference. In both cases, the formats need be
specified only once and remain in effect for every number subsequently inserted in the
file stream.

C and C++ append the low-value hexadecimal byte 0x00 as the end-of-file (EOF) sentinel

when the file is closed. This EOF sentinel is never counted as part of the file.

4D

M

61

a

74

t

73

s

20 33

3

39

9

2E

.

39

9

35

5

0D

cr

0A

1f

42

B

75

u

6C

l

62

b

73

s

20

33

3

2E

.

32

2

32

2

0D

cr

0A

1f

46

F

75

u

73

s

65

e

73

s

20 31

1

2E

.

30

0

38

8

0D

cr

0A

1f

Figure 9.2 The prices.dat file as stored by the computer

J_C7785_09.1c 405J_C7785_09.1c 405 1/18/11 10:50 AM1/18/11 10:50 AM

406 I/O Streams and Data Files

Reading from a Text File
Reading data from a text file is almost identical to reading data from a standard keyboard, except

the cin object is replaced by the ifstream object declared in the program. For example, if

inFile is declared as an object of type ifstream that’s opened for input, the following state-

ment reads the next two items in the file and stores them in the variables descrip and price:

inFileƒ>>ƒdescripƒ>>ƒprice;

The file stream name in this statement, in place of cin, directs the input to come from the

file stream rather than the keyboard. Table 9.3 lists other methods that can be used for stream

input. When called, these methods must be preceded by a stream object name.

Point of Information
Writing One Character at a Time with the put()ƒMethod

All output streams have access to the fstream class’s put() method, which permits
character-by-character output to a stream. This method works in the same manner as
the character insertion operator, <<. The syntax of this method call is the following:

ofstreamName.put(characterExpression);

The characterExpression can be a character variable or literal value. For example,
the following code can be used to output an 'a' to the screen:

cin.put('a');

In a similar manner, if outFile is an ofstream object file that has been opened,
the following code outputs the character value in the character variable named
keycode to the outFile stream:

charƒkeycode;
ƒƒ.
ƒƒ.
outFile.put(keycode);

J_C7785_09.1c 406J_C7785_09.1c 406 1/18/11 10:50 AM1/18/11 10:50 AM

407Chapter 9
Reading and Writing Text Files

Table 9.3 fstream Methods

Method Name Description
get() Returns the next character extracted from the

input stream as an int.
get(charVar) Overloaded version of get() that extracts the

next character from the input stream and assigns
it to the specified character variable, charVar.

getline(strObj,ƒtermChar) Extracts characters from the specified input
stream, strObj, until the terminating character,
termChar, is encountered. Assigns the characters
to the specified string class object, strObj.

peek() Returns the next character in the input stream
without extracting it from the stream.

ignore(intƒn) Skips over the next n characters. If n is omit-
ted, the default is to skip over the next single
character.

Program 9.5 shows how the prices.dat file created in Program 9.4 can be read. This

program illustrates one way of detecting the EOF marker by using the good() method (see

Table 9.2). Because this method returns a Boolean true value before the EOF marker has been

read or passed over, it can be used to verify that the data read is valid file data. Only after the

EOF marker has been read or passed over does this method return a Boolean false. Therefore,

the notation while(inFile.good()) used in Program 9.5 ensures that data is from the file

before the EOF has been read.

J_C7785_09.1c 407J_C7785_09.1c 407 1/18/11 10:50 AM1/18/11 10:50 AM

408 I/O Streams and Data Files

 Program 9.5

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>ƒƒƒƒ//ƒneededƒforƒtheƒstringƒclass
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfilenameƒ=ƒ“prices.dat”;ƒƒ//ƒputƒtheƒfilenameƒupƒfront
ƒƒstringƒdescrip;
ƒƒdoubleƒprice;

ƒƒifstreamƒinFile;

ƒƒinFile.open(filename.c_str());

ƒƒifƒ(inFile.fail())ƒƒ//ƒcheckƒforƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒ//ƒreadƒandƒdisplayƒtheƒfile'sƒcontents
ƒƒinFileƒ>>ƒdescripƒ>>ƒprice;
ƒƒwhileƒ(inFile.good())ƒ//ƒcheckƒnextƒcharacter
ƒƒ{
ƒƒƒƒcoutƒ<<ƒdescripƒ<<ƒ'ƒ'ƒ<<ƒpriceƒ<<ƒendl;
ƒƒƒƒinFileƒ>>ƒdescripƒ>>ƒprice;
ƒƒ}

ƒƒinFile.close();

ƒƒreturnƒ0;
}

J_C7785_09.1c 408J_C7785_09.1c 408 1/18/11 10:50 AM1/18/11 10:50 AM

409Chapter 9
Reading and Writing Text Files

Program 9.5 produces the following display:

Matsƒ39.95
Bulbsƒ3.22
Fusesƒ1.08

Examine the expression inFile.good() used in the while statement. This expression

is true as long as the EOF marker hasn’t been read. Therefore, as long as the last character read

is good (that is, the EOF marker hasn’t been passed), the loop continues to read the file. Inside

the loop, the items just read are displayed, and then a new string and a double-precision num-

ber are input to the program. When the EOF has been detected, the expression returns a

Boolean value of false and the loop terminates. This termination ensures that data is read and

displayed up to, but not including, the EOF marker.

A replacement for the expression while(inFile.good()) is the expression

while(!inFile.eof()), which is read as “while the end of file has not been reached.” This

replacement works because the eof() method returns a true only after the EOF marker has

been read or passed over. In effect, the relational expression checks that the EOF hasn’t been

read—hence, the use of the NOT operator, !.

Another means of detecting the EOF is to use the fact that the extraction operator, >>,

returns a Boolean value of true if data is extracted from a stream; otherwise, it returns a

Boolean false value. Using this return value, the following code can be used in Program 9.5

to read the file:

//ƒreadƒandƒdisplayƒtheƒfile'sƒcontents
whileƒ(inFileƒ>>ƒdescripƒ>>ƒprice)ƒ//ƒcheckƒnextƒcharacter
ƒƒcoutƒ<<ƒdescripƒ<<ƒ'ƒ'ƒ<<ƒpriceƒ<<ƒendl;

Although this code seems a bit cryptic at first glance, it makes perfect sense when you

understand that the expression being tested extracts data from the file and returns a Boolean

value to indicate whether the extraction was successful.

Finally, in the previous while statement or in Program 9.5, the expression

inFileƒ>>ƒdescripƒ>>ƒprice can be replaced by a getline() method (see Table 9.3). For

file input, this method has the following syntax:

getline(fileObject,ƒstrObj,ƒterminatingChar)

fileObject is the name of the ifstream file, strObj is a string class object , and

terminatingChar is an optional character constant or variable specifying the terminating

character. If this optional third argument is omitted, the default terminating character is the

newline ('\n') character. Program 9.6 shows using getline() in the context of a complete

program.

J_C7785_09.1c 409J_C7785_09.1c 409 1/18/11 10:50 AM1/18/11 10:50 AM

410 I/O Streams and Data Files

 Program 9.6

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>ƒƒƒƒ//ƒneededƒforƒtheƒstringƒclass
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfilenameƒ=ƒ“prices.dat”;ƒƒ//ƒputƒtheƒfilenameƒupƒfront
ƒƒstringƒline;
ƒƒifstreamƒinFile;

ƒƒinFile.open(filename.c_str());

ƒƒifƒ(inFile.fail())ƒƒ//ƒcheckƒforƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒ//ƒreadƒandƒdisplayƒtheƒfile'sƒcontents
ƒƒwhileƒ(getline(inFile,line))
ƒƒƒƒcoutƒ<<ƒlineƒ<<ƒendl;

ƒƒinFile.close();

ƒƒreturnƒ0;
}

Program 9.6 is a line-by-line text-copying program, which reads a line of text from the file

and then displays it on the screen. This program’s output is the following:

Matsƒ39.95
Bulbsƒ3.22
Fusesƒ1.08

If obtaining the description and price as separate variables is necessary, either Program 9.5

should be used, or the string returned by getline() in Program 9.6 must be processed further

to extract the separate data items. (See Section 9.7 for parsing procedures.)

J_C7785_09.1c 410J_C7785_09.1c 410 1/18/11 10:50 AM1/18/11 10:50 AM

411Chapter 9
Reading and Writing Text Files

Standard Device Files
The file stream objects you have seen so far have been logical file objects. A logical file object
is a stream that connects a file of logically related data, such as a data file, to a program. In

addition, C++ supports a physical file object, which is a stream that connects to a hardware

device, such as a keyboard, screen, or printer.

The actual physical device assigned to your program for data entry is formally called the

standard input file. Usually, it’s the keyboard. When a cin object method call is encountered in

a C++ program, it’s a request to the OS to go to this standard input file for the expected input.

Similarly, when a cout object method call is encountered, the output is automatically displayed

Point of Information
The get()ƒandƒputback()ƒMethods

All input streams have access to the fstream class’s get() method, used for character-
by-character input from an input stream. This method works similarly to character extrac-
tion, using the >> operator, with two important differences: If a newline character,
'\n', or a blank character, 'ƒ', is encountered, these characters are read in the same
manner as any other alphanumeric character. The syntax of this method call is the
following:

istreamName.get(characterVariable);

For example, the following code can be used to read the next character from the
standard input stream and store the character in the variable ch:

charƒch;
cin.get(ch);

Similarly, if inFile is an ifstream object that has been opened to a file, the fol-
lowing code reads the next character in the stream and assigns it to the character vari-
able keycode:

charƒkeycode;
inFile.get(keycode);

In addition to the get() method, all input streams have a putback() method for
putting the last character read from an input stream back on the stream. This method
has the following syntax (with characterExpression representing any character vari-
able or character value):

ifstreamName.putback(characterExpression);

The putback() method provides output capability to an input stream. The putback
character need not be the last character read; it can be any character. All putback char-
acters, however, have no effect on the data file. They affect only the open input stream.
Therefore, the data file characters remain unchanged, although the characters subse-
quently read from the input stream can change.

J_C7785_09.1c 411J_C7785_09.1c 411 1/18/11 10:50 AM1/18/11 10:50 AM

412 I/O Streams and Data Files

or “written to” a device that has been assigned as the standard output file. For most systems,

it’s a computer screen, although it can also be a printer.

When a program including the iostream header file is executed, the standard input

stream cin is connected to the standard input device. Similarly, the standard output stream

cout is connected to the standard output device. These two object streams are available for

programmer use, as are the standard error stream, cerr, and the standard log stream, clog.

Both these streams connect to the screen.

Other Devices
The keyboard, display, error, and log streams are connected automatically to the stream objects

cin, cout, cerr, and clog when the iostream header file is included in a program. Other

devices can be used for input or output if the name the system assigns is known. For example,

most PCs assign the name prn to the printer connected to the computer. For these computers,

a statement such as outFile.open(“prn”) connects the printer to the ofstream object

named outFile. A subsequent statement, such as outFile <<ƒ“HelloƒWorld!”;, would

cause the string HelloƒWorld! to be output directly to the printer. As the name of an actual

file, prn must be enclosed in double quotation marks in the open() method call.

 EXERCISES 9.2
1. (Practice and Modify) a. Enter and run Program 9.5.

b. Modify Program 9.5 to use the expression !inFile.eof() in place of the expression

inFile.good(), and run the program to see whether it operates correctly.

2. (Practice and Modify) a. Enter and run Program 9.6.

b. Modify Program 9.6 by replacing cout with cerr, and verify that the output for the stan-

dard error file stream is the screen.

c. Modify Program 9.6 by replacing cout with clog, and verify that the output for the stan-

dard log stream is the screen.

3. (Practice and Modify) a. Write a C++ program that accepts lines of text from the keyboard

and writes each line to a file named text.dat until an empty line is entered. An empty line

is a line with no text that’s created by pressing the Enter (or Return) key.

b. Modify Program 9.6 to read and display the data stored in the text.dat file created in

Exercise 3a.

4. (Practice) Determine the OS command or procedure your computer provides to display the

contents of a saved file.

5. (Program) a. Create a text file named employee.dat containing the following data:

Anthony A 10031 11.82 12/18/2010
Burrows W 10067 12.14 6/9/2011
Fain B 10083 10.79 5/18/2011
Janney P 10095 12.57 9/28/2008
Smith G 10105 9.50 12/20/2006

J_C7785_09.1c 412J_C7785_09.1c 412 1/18/11 10:50 AM1/18/11 10:50 AM

413Chapter 9
Reading and Writing Text Files

b. Write a C++ program to read the employee.dat file created in Exercise 5a and produce a

duplicate copy of the file named employee.bak.

c. Modify the program written in Exercise 5b to accept the names of the original and duplicate

files as user input.

d. The program written for Exercise 5c always copies data from an original file to a duplicate

file. What’s a better method of accepting the original and duplicate filenames, other than

prompting the user for them each time the program runs?

6. (Program) a. Write a C++ program that opens a file and displays its contents with line num-

bers. That is, the program should print the number 1 before displaying the first line, print the

number 2 before displaying the second line, and so on for each line in the file.

b. Modify the program written in Exercise 6a to list the file’s contents on the printer assigned

to your computer.

7. (Program) a. Create a text file named info.dat containing the following data (without the

headings):

Name Social Security
Number

Hourly Rate Hours Worked

B Caldwell 555-88-2222 10.50 37
D Memcheck 555-77-4444 12.80 40
R Potter 555-77-6666 16.54 40
W Rosen 555-99-8888 11.80 35

b. Write a C++ program that reads the data file created in Exercise 7a and computes and dis-

plays a payroll schedule. The output should list the Social Security number, name, and gross

pay for each person, calculating gross pay as Hourly Rate × Hours Worked.

8. (Program) a. Create a text file named car.dat containing the following data (without the

headings):

Car Number Miles Driven Gallons of Gas Used
54 250 19
62 525 38
71 123 6
85 1322 86
97 235 14

b. Write a C++ program that reads the data in the file created in Exercise 8a and displays the

car number, miles driven, gallons of gas used, and miles per gallon (mpg) for each car. The

output should contain the total miles driven, total gallons of gas used, and average mpg for

all cars. These totals should be displayed at the end of the output report.

J_C7785_09.1c 413J_C7785_09.1c 413 1/18/11 10:50 AM1/18/11 10:50 AM

414 I/O Streams and Data Files

9. (Program) a. Create a text file named parts.dat with the following data (without the

headings):

Part Number Initial Amount Quantity Sold Minimum
Amount

QA310 95 47 50
CM145 320 162 200
MS514 34 20 25
EN212 163 150 160

b. Write a C++ program to create an inventory report based on the data in the file created in

Exercise 9a. The display should consist of the part number, current balance, and the amount

needed to bring the inventory to the minimum level. The current balance is the initial

amount minus the quantity sold.

10. (Program) a. Create a text file named pay.dat containing the following data (without the

headings):

Name Rate Hours
Callaway, G. 16.00 40
Hanson, P. 15.00 48
Lasard, D. 16.50 35
Stillman, W. 12.00 50

b. Write a C++ program that uses the information in the file created in Exercise 10a to produce

the following pay report for each employee:

NameƒƒƒPayƒRateƒƒƒHoursƒƒƒRegularƒPayƒƒƒOvertimeƒPayƒƒƒGrossƒPay

 Compute regular pay as any hours worked up to and including 40 hours multiplied by the pay

rate. Compute overtime pay as any hours worked above 40 hours at a pay rate of 1.5 multiplied

by the regular rate. The gross pay is the sum of regular and overtime pay. At the end of the

report, the program should display the totals of the regular, overtime, and gross pay columns.

11. (Program) a. Store the following data in a file named numbers.dat:

5ƒƒ96ƒƒ87ƒƒ78ƒƒ93ƒƒ21ƒƒ4ƒƒ92ƒƒ82ƒƒ85ƒƒ87ƒƒ6ƒƒ72ƒƒ69ƒƒ85ƒƒ75ƒƒ81ƒƒ73

b. Write a C++ program to calculate and display the average of each group of numbers in the

file created in Exercise 11a. The data is arranged in the file so that each group of numbers

is preceded by the number of data items in the group. Therefore, the first number in the

file, 5, indicates that the next five numbers should be grouped together. The number 4

indicates that the following four numbers are a group, and the 6 indicates that the last six

numbers are a group. (Hint: Use a nested loop. The outer loop should terminate when the

end of file has been encountered.)

J_C7785_09.1c 414J_C7785_09.1c 414 1/18/11 10:50 AM1/18/11 10:50 AM

415Chapter 9
Reading and Writing Text Files

12. (Program) Write a C++ program that allows users to enter the following information from the

keyboard for each student in a class (up to 20 students) and stores the data in a text file named

grade.dat:

NameƒƒƒExamƒ1ƒGradeƒƒƒExamƒ2ƒGradeƒƒƒHomeworkƒGradeƒƒƒƒFinalƒExamƒGrade

 For each student, your program should first calculate a final grade, using this formula:

Final Grade = 0.20 × Exam 1 + 0.20 × Exam 2 + 0.35 × Homework + 0.25 × Final Exam

 Then assign a letter grade on the basis of 90–100 = A, 80–89 = B, 70–79 = C, 60–69 = D, and

less than 60 = F. All the information, including the final grade and the letter grade, should then

be displayed and written to a file.

13. (Program) A bank’s customer records are to be stored in a file and read into a set of arrays so

that a customer’s record can be accessed randomly by account number. Create the file by

entering five customer records, with each record consisting of an integer account number

(starting with account number 1000), a first name (maximum of 10 characters), a last name

(maximum of 15 characters), and a double-precision number for the account balance.

 After the file is created, write a C++ program that requests a user-input account number and

displays the corresponding name and account balance from the file. (Hint: Read the data in the

file into an array, and then search the array for the account number.)

14. (Program) Create a text file with the following data or use the shipped.dat file provided on

this book’s Web site. The headings aren’t part of the file; they simply indicate what the data

represents.

Shipped
Date

Tracking
Number

Part
Number

First
Name

Last
Name

Company

04/12/11 D50625 74444 James Lehoff Rotech
04/12/11 D60752 75255 Janet Lezar Rotech
04/12/11 D40295 74477 Bill McHenry Rotech
04/12/11 D23745 74470 Diane Kaiser Rotech
04/12/11 D50892 75155 Helen Richardson NapTime

 The format of each line in the file is identical, with fixed-length fields defined as follows:

Field
Position

Field Name Starting
Col. No.

Ending
Col. No.

Field Length

1 Shipped Date 1 8 8
2 Tracking

Number
12 17 6

3 Part Number 22 26 5
4 First Name 31 35 5
5 Last Name 39 48 10
6 Company 51 64 14

J_C7785_09.1c 415J_C7785_09.1c 415 1/18/11 10:50 AM1/18/11 10:50 AM

416 I/O Streams and Data Files

 Using this data file, write a C++ program that reads the file and produces a report listing the

shipped date, part number, first name, last name, and company name.

9.3 Random File Access

The term file access refers to the process of retrieving data from a file. There are two types of

file access: sequential access and random access. To understand file access types, first you need

to understand how data is organized in a file.

The term file organization refers to the way data is stored in a file. The files you have used,

and will continue to use, have a sequential organization, meaning characters in the file are

stored in a sequential manner. In addition, each open file has been read in a sequential manner,

meaning characters are accessed one after another, which is called sequential access. Although

characters are stored sequentially, they don’t have to be accessed the same way. In fact, you

can skip over characters and read a sequentially organized file in a nonsequential manner.

In random access, any character in the opened file can be read without having to sequen-

tially read all characters stored ahead of it first. To provide random access to files, each

ifstream object creates a file position marker automatically that keeps track of where the

next character is to be read from or written to. Table 9.4 lists the methods used to access and

change the file position marker. The suffixes g and p in these method names denote get and

put; get refers to an input (get from) file, and put refers to an output (put to) file.

Table 9.4 File Position Marker Methods

Name Description
seekg(offset,ƒmode) For input files, move to the offset position

indicated by the mode.
seekp(offset,ƒmode) For output files, move to the offset posi-

tion indicated by the mode.
tellg(void) For input files, return the current value of

the file position marker.
tellp(void) For output files, return the current value

of the file position marker.

To understand these methods, you must know how data is referenced in the file by using

the file position marker and how an offset can be used to alter the file position marker’s value.

Each character in a data file is located by its position in the file. The first character in the file

is located at position 0, the next character at position 1, and so forth. The file position marker

contains the positional value, starting from the first character in the file, of where the next

character is to be read from or written. Therefore, if the first character is accessed (read from

or written to), the file position marker is 0; if the second character is to be accessed, the file

position marker is 1, and so on, for each character in the file. By adjusting the file position

marker’s value, the seek() methods enable the programmer to move to any position in the

file. This adjustment is specified by an offset value.

J_C7785_09.1c 416J_C7785_09.1c 416 1/18/11 10:50 AM1/18/11 10:50 AM

417Chapter 9
Random File Access

The seek() methods require two arguments: an offset value, as a long integer, and what

position in the file the offset is to be applied to, determined by the mode. The three available

modes are ios::beg, ios::cur, and ios::end, which denote the beginning of the file, cur-

rent position, and end of the file. Therefore, the mode ios::beg means the offset is relative

to the position of the first character in the file. The mode ios::cur means the offset is rela-

tive to the current position in the file, and the mode ios::end means the offset is relative to

the last character in the file. From a practical standpoint, a positive offset means move forward

in the file from the designated starting position, and a negative offset means move backward

from this position.

Examples of seek() method calls are shown in the following code. In these examples,

inFile has been opened as an input file and outFile as an output file. The offset passed to

seekg() and seekp() must be a long integer, hence the uppercase L appended to each num-

ber in the method calls.

inFile.seekg(4L,ios::beg);ƒƒƒƒ//ƒgoƒtoƒtheƒfifthƒcharacterƒinƒtheƒinputƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile
outFile.seekp(4L,ios::beg);ƒƒƒ//ƒgoƒtoƒtheƒfifthƒcharacterƒinƒtheƒoutput
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile
inFile.seekg(4L,ios::cur);ƒƒƒƒ//ƒmoveƒaheadƒfiveƒcharactersƒinƒtheƒinput
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile
outFile.seekp(4L,ios::cur);ƒƒƒ//ƒmoveƒaheadƒfiveƒcharactersƒinƒtheƒoutput
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile
inFile.seekg(-4L,ios::cur);ƒƒƒ//ƒmoveƒbackƒfiveƒcharactersƒinƒtheƒinputƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile
outFile.seekp(-4L,ios::cur);ƒƒ//ƒmoveƒbackƒfiveƒcharactersƒinƒtheƒoutput
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile
inFile.seekg(0L,ios::beg);ƒƒƒƒ//ƒgoƒtoƒstartƒofƒtheƒinputƒfile
outfile.seekp(0L,ios::beg);ƒƒƒ//ƒgoƒtoƒstartƒofƒtheƒoutputƒfile
inFile.seekg(0L,ios::end);ƒƒƒƒ//ƒgoƒtoƒendƒofƒtheƒinputƒfile
outFile.seekp(0L,ios::end);ƒƒƒ//ƒgoƒtoƒendƒofƒtheƒoutputƒfile
inFile.seekg(-10L,ios::end);ƒƒ//ƒgoƒtoƒ10ƒcharactersƒbeforeƒtheƒinputƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile'sƒend
outFile.seekp(-10L,ios::end);ƒ//ƒgoƒtoƒ10ƒcharactersƒbeforeƒtheƒoutputƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒfile'sƒend

As opposed to seek() methods that move the file position marker, the tell() methods

return the file position marker’s offset value. For example, if 10 characters have been read from

an input file named inFile, the method call returns the long integer 10:

inFile.tellg();

This method call means the next character to be read is offset 10 byte positions from the

start of the file and is the 11th character in the file.

Program 9.7 shows using seekg() and tellg() to read a file in reverse order, from the

last character to the first. As each character is read, it’s also displayed.

J_C7785_09.1c 417J_C7785_09.1c 417 1/18/11 10:50 AM1/18/11 10:50 AM

418 I/O Streams and Data Files

 Program 9.7

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<string>
#includeƒ<cstdlib>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfilenameƒ=ƒ“test.dat”;
ƒƒcharƒch;
ƒƒlongƒoffset,ƒlast;

ƒƒifstreamƒinFile(filename.c_str());

ƒƒifƒ(inFile.fail())ƒƒƒ//ƒcheckƒforƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒinFile.seekg(0L,ios::end);ƒƒƒ//ƒmoveƒtoƒtheƒendƒofƒtheƒfile
ƒƒlastƒ=ƒinFile.tellg();ƒƒƒƒƒƒƒ//ƒsaveƒtheƒoffsetƒofƒtheƒlastƒcharacter

ƒƒfor(offsetƒ=ƒ1L;ƒoffsetƒ<=ƒlast;ƒoffset++)
ƒƒ{
ƒƒƒƒinFile.seekg(-offset,ƒios::end);
ƒƒƒƒchƒ=ƒinFile.get();
ƒƒƒƒcoutƒ<<ƒchƒ<<ƒ“ƒ:ƒ“;
ƒƒ}

ƒƒinFile.close();

ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

Assume the test.dat file contains the following characters:

Theƒgradeƒwasƒ92.5

J_C7785_09.1c 418J_C7785_09.1c 418 1/18/11 10:50 AM1/18/11 10:50 AM

419Chapter 9
File Streams as Function Arguments

The output of Program 9.7 is the following:

5ƒ:ƒ.ƒ:ƒ2ƒ:ƒ9ƒ:ƒƒƒ:ƒsƒ:ƒaƒ:ƒwƒ:ƒƒƒ:ƒeƒ:ƒdƒ:ƒaƒ:ƒrƒ:ƒgƒ:ƒƒƒ:ƒeƒ:ƒhƒ:ƒTƒ:

Program 9.7 initially goes to the last character in the file. The offset of this character, the

EOF character, is saved in the variable last. Because tellg() returns a long integer, last has

been declared as a long integer.

Starting from the end of the file, seekg() is used to position the next character to be read,

referenced from the end of the file. As each character is read, it’s displayed, and the offset is

adjusted to access the next character. The first offset used is -1, which represents the character

immediately preceding the EOF marker.

 EXERCISES 9.3

1. (Practice) a. Create a file named test.dat containing the data in the test.dat file used in

Program 9.7. (You can use a text editor or copy the test.dat file from this book’s Web site.)

b. Enter and run Program 9.7 on your computer.

2. (Modify) Rewrite Program 9.7 so that the origin for the seekg() method used in the for loop

is the start of the file rather than the end.

3. (Modify) Modify Program 9.7 to display an error message if seekg() attempts to reference a

position beyond the end of file.

4. (Practice) Write a program that reads and displays every second character in a file named

test.dat.

5. (Practice) Using the seek() and tell() methods, write a function named fileChars()

that returns the total number of characters in a file.

6. (Practice) a. Write a function named readBytes() that reads and displays n characters start-

ing from any position in a file. The function should accept three arguments: a file object name,

the offset of the first character to be read, and the number of characters to be read. (Note: The

prototype for readBytes() should be voidƒreadBytes(fstream&,ƒlong,ƒint).)

b. Modify the readBytes() function written in Exercise 6a to store the characters read into

a string or an array. The function should accept the storage address as a fourth argument.

9.4 File Streams as Function Arguments

A file stream object can be used as a function argument. The only requirement is that the

function’s formal parameter be a reference (see Section 6.3) to the correct stream: ifstream&

or ofstream&. For example, in Program 9.8, an ofstream object named outFile is opened

in main(), and this stream object is passed to the inOut() function. The function prototype

and header for inOut() declare the formal parameter as a reference to an ostream object

type. The inOut() function is then used to write five lines of user-entered text to the file.

J_C7785_09.1c 419J_C7785_09.1c 419 1/18/11 10:50 AM1/18/11 10:50 AM

420 I/O Streams and Data Files

 Program 9.8

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfnameƒ=ƒ“list.dat”;ƒƒ//ƒhereƒisƒtheƒfileƒyouƒareƒworkingƒwith
ƒƒvoidƒinOut(ofstream&);ƒƒƒƒƒƒ//ƒfunctionƒprototype
ƒƒofstreamƒoutFile;

ƒƒoutFile.open(fname.c_str());

ƒƒifƒ(outFile.fail())ƒƒƒ//ƒcheckƒforƒaƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒoutputƒfileƒ“ƒ<<ƒfnameƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒinOut(outFile);ƒƒ//ƒcallƒtheƒfunction

ƒƒreturnƒ0;
}

voidƒinOut(ofstream&ƒfileOut)
{
ƒƒconstƒintƒNUMLINESƒ=ƒ5;ƒƒ//ƒnumberƒofƒlinesƒofƒtext
ƒƒstringƒline;
ƒƒintƒcount;

ƒƒcoutƒ<<ƒ“Pleaseƒenterƒfiveƒlinesƒofƒtext:”ƒ<<ƒendl;
ƒƒforƒ(countƒ=ƒ0;ƒcountƒ<ƒNUMLINES;ƒcount++)
ƒƒ{
ƒƒƒƒgetline(cin,line);
ƒƒƒƒfileOutƒ<<ƒlineƒ<<ƒendl;
ƒƒ}

ƒƒcoutƒ<<ƒ“\nTheƒfileƒhasƒbeenƒsuccessfullyƒwritten.”ƒ<<ƒendl;

ƒƒreturn;
}

J_C7785_09.1c 420J_C7785_09.1c 420 1/18/11 10:50 AM1/18/11 10:50 AM

421Chapter 9
File Streams as Function Arguments

In main(), the file is an ostream object named outFile. This object is passed to the

inOut() function and accepted as the formal parameter fileOut, which is declared as a

reference to an ostream object type. The inOut() function then uses its reference param-

eter outFile as an output file stream name in the same manner that main() would use the

fileOut stream object. Program 9.8 uses the getline() method introduced in Section 9.2

(see Table 9.3).

Program 9.9 expands on Program 9.8 by adding a getOpen() function to perform the

open. Like inOut(), getOpen() accepts a reference argument to an ofstream object. After

getOpen() finishes executing, this reference is passed to inOut(), as in Program 9.8.

Although you might be tempted to write getOpen() to return a reference to an ofstream, it

won’t work because it results in an attempt to assign a returned reference to an existing one.

 Program 9.9

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒgetOpen(ofstream&);ƒƒ//ƒfunctionƒprototypeƒ-ƒpassƒaƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒreferenceƒtoƒanƒfstream
voidƒinOut(ofstream&);ƒƒƒ//ƒfunctionƒprototypeƒ-ƒpassƒaƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒreferenceƒtoƒanƒfstream

intƒmain()
{
ƒƒofstreamƒoutFile;ƒƒƒƒ//ƒfilenameƒisƒanƒfstreamƒobject

ƒƒgetOpen(outFile);ƒƒƒƒ//ƒopenƒtheƒfile
ƒƒinOut(outFile);ƒƒƒƒƒƒ//ƒwriteƒtoƒit

ƒƒreturnƒ0;
}

intƒgetOpen(ofstream&ƒfileOut)
{
ƒƒstringƒname;

ƒƒcoutƒ<<ƒ“\nEnterƒaƒfilename:ƒ“;
ƒƒgetline(cin,name);

ƒƒfileOut.open(name.c_str());ƒƒƒƒƒƒ//ƒopenƒtheƒfile

☞

J_C7785_09.1c 421J_C7785_09.1c 421 1/18/11 10:50 AM1/18/11 10:50 AM

422 I/O Streams and Data Files

ƒƒifƒ(fileOut.fail())ƒƒƒƒƒƒ//ƒcheckƒforƒsuccessfulƒopen
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Cannotƒopenƒtheƒfile”ƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}
ƒƒelse
ƒƒƒƒreturnƒ1;
}

voidƒinOut(ofstream&ƒfileOut)
{
ƒƒconstƒintƒNUMLINESƒ=ƒ5;ƒƒ//ƒnumberƒofƒlines
ƒƒintƒcount;
ƒƒstringƒline;

ƒƒcoutƒ<<ƒ“Pleaseƒenterƒfiveƒlinesƒofƒtext:”ƒ<<ƒendl;
ƒƒforƒ(countƒ=ƒ0;ƒcountƒ<ƒNUMLINES;ƒ++count)
ƒƒ{
ƒƒƒƒgetline(cin,line);
ƒƒƒƒfileOutƒ<<ƒlineƒ<<ƒendl;
ƒƒ}
ƒƒcoutƒ<<ƒ“\nTheƒfileƒhasƒbeenƒsuccessfullyƒwritten.”;

ƒƒreturn;
}

Program 9.9 allows the user to enter a filename from the standard input device and then

opens the ofstream connection to the external file. If an existing data file’s name is entered,

the file is destroyed when it’s opened for output. A useful trick for preventing this mishap is

shown in the shaded code in Program 9.2.

 EXERCISES 9.4

1. (Practice) A function named pFile() is to receive a filename as a reference to an ifstream

object. What declarations are required to pass a filename to pFile()?

2. (Practice) Write a function named fcheck() that checks whether a file exists. The function

should accept an ifstream object as a formal reference parameter. If the file exists, the func-

tion should return a value of 1; otherwise, the function should return a value of 0.

3. (Practice) A data file consisting of a group of lines has been created. Write a function named

printLine() that reads and displays any line of the file. For example, the function called

printLine(fstream&ƒfName,5); should display the fifth line of the passed object stream.

J_C7785_09.1c 422J_C7785_09.1c 422 1/18/11 10:50 AM1/18/11 10:50 AM

423Chapter 9
Chapter Summary

4. (Modify) Rewrite the getOpen() function used in Program 9.9 to incorporate the file-checking

procedures described in this section. Specifically, if the entered filename exists, an appropriate

message should be displayed. The user should be given the option of entering a new filename

or allowing the program to overwrite the existing file. Use the function written for Exercise 2

in your program.

9.5 Common Programming Errors

The common programming errors with files are as follows:

1. Forgetting to open a file before attempting to read from it or write to it.

2. Using a file’s external name in place of the internal file stream object name when

accessing the file. The only stream method that uses the data file’s external name is

the open() method. As always, all stream methods discussed in this chapter must be

preceded by a stream object name followed by a period (the dot operator).

3. Opening a file for output without first checking that a file with the same name already

exists. If it does and you didn’t check for a preexisting filename, the file is overwritten.

4. Not understanding that the end of a file is detected only after the EOF marker has been

read or passed over.

5. Attempting to detect the end of a file by using character variables for the EOF marker.

Any variable used to accept the EOF must be declared as an integer variable. For

example, if ch is declared as a character variable, the following expression produces an

infinite loop:2

whileƒ(ƒ(chƒ=ƒin.file.peek())ƒ!=ƒEOFƒ)

 This problem occurs because a character variable can never take on an EOF code. EOF

is an integer value (usually -1) with no character representation, which ensures that the

EOF code can’t be confused with a legitimate character encountered as normal data in

the file. To terminate the loop created by the preceding expression, the variable ch

must be declared as an integer variable.

6. Using an integer argument with the seekg() and seekp() functions. This offset must

be a long integer constant or variable. Any other value passed to these functions can

have unpredictable results.

9.6 Chapter Summary
1. A data file is any collection of data stored together in an external storage medium under a

common name.

2. A data file is connected to a file stream by using a file stream object.

2This infinite loop doesn’t occur on UNIX systems, where characters are stored as signed integers.

J_C7785_09.1c 423J_C7785_09.1c 423 1/18/11 10:50 AM1/18/11 10:50 AM

424 I/O Streams and Data Files

3. File stream objects are created from the ifstream, ofstream, or fstream classes. File

stream objects declared as ifstream objects are created as input streams, and file streams

declared as ofstream objects are created as output streams. File stream objects declared as

fstream objects must indicate the type of stream explicitly. To do this, use declaration

statements similar to the following (inFile and outFile are user-selected object names):

ifstreamƒinFile; or fstream(inFile,ƒios::in)
ofstreamƒoutFile; or fstream(outFile,ƒios::out)

4. After a file stream object is created, it’s connected to a file by using an open() method. This

method connects a file’s external name with an internal stream object name. After the file

is opened, all subsequent accesses to it require the internal stream object name.

5. An opened output file stream creates a new data file or erases the data in an existing opened

file. An opened input file stream makes an existing file’s data available for input. An error

condition results if the file doesn’t exist and can be detected by using the fail() method.

6. In addition to any files opened in a function, the standard stream objects cin, cout, and

cerr are declared and opened automatically when a program runs. cin is an input file

stream object used for data entry (usually from the keyboard), cout is an output file stream

object used for data display (usually onscreen), and cerr is an output file stream object

used for displaying system error messages (usually onscreen).

7. Data files can be accessed randomly by using the seekg(), seekp(), tellg(), and

tellp() methods. The g versions of these methods are used to alter and query the file

position marker for input file streams, and the p versions do the same for output file

streams.

8. Table 9.5 lists class-supplied methods for file manipulation. The getline() method is

defined in the string class, and all other methods are defined in the fstream class. These

methods can be used by all ifstream and ofstream files.

Table 9.5 File Manipulation Methods

Method Name Description
get() Extract the next character from the

input stream and return it as an int.
get(chrVar) Extract the next character from the

input stream and assign it to chrVar.
getline(fileObj,ƒstring,ƒtermChar) Extract the next string of characters

from the input file stream object and
assign them to string until the speci-
fied terminating character is detected.
If omitted, the default terminating
character is a newline.

J_C7785_09.1c 424J_C7785_09.1c 424 1/18/11 10:50 AM1/18/11 10:50 AM

425Chapter 9
Chapter Summary

Method Name Description
getline(C-stringVar,intƒn,'\n') Extract and return characters from the

input stream until n-1 characters are
read or a newline is encountered (ter-
minates the input with a '\0').

peek() Return the next character in the input
stream without extracting it from the
stream.

put(chrExp) Put the character specified by chrExp
on the output stream.

putback(chrExp) Push the character specified by chrExp
back onto the input stream. Does not
alter the data in the file.

ignore(intƒn) Skip over the next n characters; if n is
omitted, the default is to skip over the
next single character.

eof() Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, it returns a Boolean false.
The value becomes true only when
the first character after the last valid
file character is read.

good() Returns a Boolean true while the file
is available for program use. Returns
a Boolean false if a read has been
attempted past the end of file. The
value becomes false only when the
first character after the last valid file
character is read.

bad() Returns a Boolean true if a read has
been attempted past the end of file;
otherwise, it returns a false. The
value becomes true only when the
first character after the last valid file
character is read.

fail() Returns a Boolean true if the file
hasn’t been opened successfully; other-
wise, it returns a Boolean false.

Table 9.5 File Manipulation Methods (continued)

J_C7785_09.1c 425J_C7785_09.1c 425 1/18/11 10:50 AM1/18/11 10:50 AM

426 I/O Streams and Data Files

9.7 Chapter Supplement: The iostream Class Library

As you have seen, the classes in the iostream class library access files by using entities called

streams. For most systems, the data bytes transferred on a stream represent ASCII characters

or binary numbers. The mechanism for reading a byte stream from a file or writing a byte

stream to a file is hidden when using a high-level language, such as C++. Nevertheless, under-

standing this mechanism is useful so that you can place the services provided by the iostream

class library in context.

File Stream Transfer Mechanism
Figure 9.3 illustrates the mechanism for transferring data between a program and a file. As

shown, this transfer involves an intermediate file buffer contained in the computer’s memory.

Each opened file is assigned its own file buffer, which is a storage area used by the data trans-

ferred between the program and the file.

Disk, tape, or
CD/DVDComputer memory

Transfer handled

by a device driver

Transfer handled

by iostream library

Program

Buffer

File

Figure 9.3 The data transfer mechanism

The program either writes a set of data bytes to the file buffer or reads a set of data bytes

from the file buffer by using a stream object. The data transfer between the device storing the

data file (usually a disk or CD/DVD) and the file buffer is handled by special OS programs.

These programs, called device drivers, aren’t stand-alone programs; they’re an integral part of

the OS. A device driver is a section of OS code that accesses a hardware device, such as a disk,

and handles the data transfer between the device and the computer’s memory. Because the

computer’s internal data transfer rate is generally much faster than any device connected to it,

the device driver must correctly synchronize the data transfer speed between the computer

and the device sending or receiving data.

Typically, a disk device driver transfers data between the disk and file buffer only in fixed

sizes, such as 1024 bytes at a time. Therefore, the file buffer is a convenient means of permitting

a device driver to transfer data in blocks of one size, and the program can access them by using

a different size (typically, as separate characters or as a fixed number of characters per line).

Components of the iostream Class Library
The iostream class library consists of two primary base classes: streambuf and ios. The

streambuf class provides the file buffer, shown in Figure 9.3, and general routines for trans-

ferring binary data. The ios class contains a pointer to the file buffers provided by the

J_C7785_09.1c 426J_C7785_09.1c 426 1/18/11 10:50 AM1/18/11 10:50 AM

427Chapter 9
Chapter Supplement: The iostream Class
Library

streambuf class and general routines for transferring text data. From these two base classes,

several other classes are derived and included in the iostream class library.

Figure 9.4 is an inheritance diagram for the ios family of classes as it relates to the

ifstream, ofstream, and fstream classes. Figure 9.5 is an inheritance diagram for the

streambuf family of classes. In these diagrams, the arrows point from a derived class to a base

class, so they’re actually easier to read from top to bottom. For example, Figure 9.4 indicates

that all the stream objects shown are derived from the ios class, and the ifstream class is

derived from both the fstream and istream classes. In all cases, a derived class has full access

to all methods of its base class.

frstream

iostream

fstreamistream ostream

ios

ifstream ofstream

Figure 9.4 The base class ios and its derived classes

streambuf

strstreambuffilebuf

Figure 9.5 The base class streambuf and its derived classes

Table 9.6 lists the correspondence between the classes shown in Figures 9.4 and 9.5,

including the header files defining these classes.

J_C7785_09.1c 427J_C7785_09.1c 427 1/18/11 10:50 AM1/18/11 10:50 AM

428 I/O Streams and Data Files

Table 9.6 Correspondence Between Classes in Figures 9.4 and 9.5

ios Class streambuf Class Header File
istream streambuf iostream or fstream
ostream
iostream
ifstream filebuf fstream
ofstream
fstream

Therefore, the ifstream, ofstream, and fstream classes you have used for file access

use a buffer provided by the filebuf class and defined in the fstream header file. Similarly,

the cin, cout, cerr, and clog iostream objects use a buffer provided by the streambuf

class and defined in the iostream header file.

In-Memory Formatting
In addition to the classes shown in Figure 9.5, a class named strstream is derived from the

ios class. This class uses the strstreambuf class shown in Figure 9.5, requires the strstream

header file, and provides capabilities for writing and reading strings to and from in-memory

defined streams.

When created as an output stream, in-memory streams are typically used to “assemble” a

string from smaller pieces until a complete line of characters is ready to be written to cout or

to a file. Attaching a strstream object to a buffer for this purpose is similar to attaching an

fstream object to an output file. For example, the statement

strstreamƒinmem(buf,ƒ72,ƒios::out);

creates a strstream object named buf to have a capacity of 72 bytes in output mode.

Program 9.10 shows how this statement is used in the context of a complete program.

Program 9.10 produces the following output:

|No.ƒofƒunitsƒ=ƒƒ10ƒƒPriceƒperƒunitƒ=ƒ$ƒƒ36.85|

This output illustrates that the character buffer has been filled in correctly by insertions

to the inmem stream. (Note that the end-of-string NULL, '\0', which is the last insertion to

the stream, is required to close off the C-string correctly.) After the character array has been

filled, it’s written to a file as a single string.

J_C7785_09.1c 428J_C7785_09.1c 428 1/18/11 10:50 AM1/18/11 10:50 AM

429Chapter 9
Chapter Supplement: The iostream Class
Library

 Program 9.10

#includeƒ<iostream>
#includeƒ<strstream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXCHARSƒ=ƒ81;ƒƒ//ƒoneƒmoreƒthanƒtheƒmaximumƒcharactersƒinƒaƒline
ƒƒintƒunitsƒ=ƒ10;
ƒƒdoubleƒpriceƒ=ƒ36.85;
ƒƒcharƒbuf[MAXCHARS];

ƒƒstrstreamƒinmem(buf,ƒMAXCHARS,ƒios::out);ƒƒ//ƒopenƒanƒin-memoryƒstream

ƒƒ//ƒwriteƒtoƒtheƒbufferƒthroughƒtheƒstream
ƒƒinmemƒ<<ƒ“No.ƒofƒunitsƒ=ƒ“
ƒƒƒƒƒƒƒƒ<<ƒsetw(3)ƒ<<ƒunits
ƒƒƒƒƒƒƒƒ<<ƒ“ƒƒPriceƒperƒunitƒ=ƒ$”
ƒƒƒƒƒƒƒƒ<<ƒsetw(6)ƒ<<ƒsetprecision(2)ƒ<<ƒfixedƒ<<ƒpriceƒ<<ƒ'\0';

ƒƒcoutƒ<<ƒ'|'ƒ<<ƒbufƒ<<ƒ'|';

ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

In a similar manner, a strstream object can be opened in input mode. Input in-memory

streams are used as a working storage area, or buffer, for accepting and storing a complete line

of text read from a file or standard input. After the buffer has been filled, the extraction

operator would be used to “disassemble” the string into component parts and convert each

data item into its designated data type. Doing this allows inputting data from a file on a line-

by-line basis before assigning data items to their respective variables.

J_C7785_09.1c 429J_C7785_09.1c 429 1/18/11 10:50 AM1/18/11 10:50 AM

10 Introduction to Classes

11 Adding Functionality to
Your Classes

12 Extending Your Classes

13 The Standard Template
Library

Object-Oriented
Programming

TwoPart

L_C7785_10.1c 431L_C7785_10.1c 431 1/18/11 10:53 AM1/18/11 10:53 AM

Besides being an improved version of C, the distinguishing characteristic of C++ is its support of object-
oriented programming. Central to this object orientation is the concept of a class, which is a programmer-
defined data type. Objects are created from classes.

This chapter explores the implications of allowing programmers to define their own data types by
using classes. Additionally, you see how to construct classes and create objects from them. As you’ll see,
the construction of a class is based on variables and methods. What C++ provides is a unique way of
combining these two elements into a self-contained, cohesive unit from which objects can be created.

10.1 Object-Based Programming

As you learned in Chapter 1, a procedural program is simply an algorithm written in a program-

ming language. The reasons for this emphasis on procedural programming are mostly histori-

cal. When computers were developed in the 1940s, mathematicians used them for military

purposes. These early computers computed bomb trajectories and decoded enemy orders and

diplomatic transmissions. Until well into the 1970s, computers were still used mainly for

Introduction to
Classes

 10.1 Object-Based Programming

 10.2 Creating Your Own Classes

 10.3 Constructors

 10.4 Examples

 10.5 Class Scope and Duration Categories

 10.6 Common Programming Errors

 10.7 Chapter Summary

 10.8 Chapter Supplement: Thinking in
Terms of Objects

10Chapter

L_C7785_10.1c 433L_C7785_10.1c 433 1/18/11 10:53 AM1/18/11 10:53 AM

434 Introduction to Classes

mathematical and scientific as well as accounting and payroll applications. The common factor

in all these applications is that they use well-defined algorithms and equations. This use was

reflected in the name of the first commercial high-level language, introduced in 1957: Formula

Translation (FORTRAN).1 In the 1960s, nearly all computer courses were taught in engineer-

ing or mathematics departments. The term computer science wasn’t yet in common use, and

computer science departments were just being formed.

This situation has changed dramatically, mainly for two reasons. One reason was the failure

of procedural programs to adequately contain software costs for larger programming projects.

These costs included both initial program development and subsequent program maintenance

costs. As Figure 10.1 shows, the major cost of most large computer projects, whether technical

or commercial, is software. Software costs contribute so heavily to total project costs because

they’re related to human productivity and are labor-intensive, whereas equipment costs are

related to manufacturing technologies.

To
ta

l s
ys

te
m

 c
os

t

100%

Hardware
(the equipment)

1980 20101995
Year

Software
(the programs)

Figure 10.1 Software is the major cost of most computer projects

Increasing manufacturing productivity a thousandfold, with the resulting decrease in hard-

ware costs, is far easier than for programmers to double the quantity or quality of the code they

produce. For example, microchips that cost more than $500 10 years ago can now be purchased

for less than $1. Similarly, the processing power of computers that cost more than a million

dollars in the 1960s is now exceeded by laptop computers costing only hundreds of dollars.

Consequently, as hardware costs have plummeted, software productivity and its associated

costs have remained fairly constant. Therefore, the ratio of software costs to total system costs

(hardware plus software) has increased substantially. One way to increase programmer produc-

tivity is to create code that can be reused easily without extensive revising, retesting, and

revalidating. Procedural code didn’t provide this reusability, which has led to the search for

better software approaches.

1Business-oriented applications, such as accounting and payroll, were usually coded in Common Business-Oriented Language

(COBOL).

L_C7785_10.1c 434L_C7785_10.1c 434 1/18/11 10:53 AM1/18/11 10:53 AM

435Chapter 10
Object-Based Programming

A second reason for disenchantment with traditional procedural programming was the

emergence of graphical screens and windowed applications. Programming multiple windows

on the same graphical screen is almost impossible with standard procedural programming tech-

niques. The solution to producing cost-effective and reusable graphical programs was found in

artificial intelligence–based and simulation programming techniques. Artificial intelligence

programming contained extensive research on object recognition, and simulation programming

required considerable background on representing items as objects, with well-defined interac-

tions between them. This object-based paradigm was well suited for graphical windowed

environments, in which each window can be specified as a self-contained object. Items then

placed in a window can also be represented as objects.

Objects are also well suited to a programming representation because an object can be

specified by two basic characteristics: a current state, which defines how the object appears at

the moment, and a behavior, which defines how the object reacts to external inputs. Both

characteristics can be coded easily by using an object-based approach.

To understand this point, consider a physical object, such as an elevator. Like all objects,

an elevator can be modeled in terms of a state and a behavior. Its state might be given in terms

of its size, location, interior decoration, or any number of attributes, and its behavior might be

Point of Information
Procedural, Hybrid, and Pure Object-Oriented Languages

Most high-level programming languages can be categorized as procedural, object-oriented,
or hybrid. FORTRAN, the first commercial high-level programming language, is procedural.
This makes sense because FORTRAN was designed to perform mathematical calculations
that used standard algebraic formulas. These formulas were described as algorithms, and
then the algorithms were coded by using function and subroutine procedures. Subsequent
procedural languages included BASIC, COBOL, and Pascal.

The first requirement of a pure object-oriented language, such as Smalltalk and Eiffel,
is that it must contain three specific features: classes, inheritance, and polymorphism
(described in this chapter and Chapter 12). In addition, however, a “pure” object-oriented
language must always use classes. In a pure object-oriented language, all data types are
constructed as classes, all data values are objects, all operators can be overloaded, and
every data operation can be executed only by using a class member method. In a pure
object-oriented language, it’s impossible not to use object-oriented features in a program.
This isn’t the case in a hybrid language.

In a hybrid language, such as C++, it’s impossible not to use procedural elements in a
program because the use of any non-class data type or operation, such as adding two
integers, violates pure object-oriented requirements. Although a hybrid language must be
able to define classes, its distinguishing feature is that it’s possible to write a complete pro-
gram with only procedural code. Additionally, hybrid languages need not provide inheri-
tance and polymorphism—but they must provide classes. Languages that use classes but
don’t provide inheritance and polymorphism are referred to as object-based languages
rather than object-oriented languages. All versions of Visual Basic before version 4 are
examples of object-based hybrid languages.

L_C7785_10.1c 435L_C7785_10.1c 435 1/18/11 10:53 AM1/18/11 10:53 AM

436 Introduction to Classes

specified in terms of its reaction when one of its buttons is pushed. Constructing a model of

an elevator, however, requires selecting the attributes and behaviors that are of interest. For

purposes of a simulation, for example, you might be concerned only with the elevator’s current

floor position and how to simulate movement between floors. Other attributes and behaviors

might be left out of the model because they don’t affect the aspects of the elevator you’re

interested in studying. In Section 10.4, you see how to create an elevator object in C++ and

then simulate its movement from floor to floor.

A Class Is a Plan
In creating C++’s objects, you must first create a structure, or plan, for a class of objects from

which individual objects are created. For example, before attempting to assemble a bicycle or

a backyard basketball hoop, you would want to know that all the parts are available and have

a set of assembly instructions. In preparing a dinner, you might consult a recipe that specifies

a list of ingredients and procedures for combining them correctly. In all these examples, even

if written instructions aren’t available, they have to at least exist in the mind of the builder, the

chef, or whoever is in charge of the project. In C++, the plans from which objects are created

and used are referred to as classes.

From a programming perspective, a class can be considered a construction plan for objects

and how they can be used. This plan lists the required data items and supplies instructions for

using the data. After one or more objects from this plan, or class, have been constructed, they

can then be operated on only in ways defined by the class. Although many objects can be cre-

ated from the same class, each different object type requires its own class, which is similar to

producing many Chevrolet Camaros from one set of plans and Chevrolet Malibus from another.

To understand how a C++ class is actually constructed, a recipe is a useful analogy. The

difference is that a C++ class is a recipe for assembling data rather than food items. Other than

that, the relationship between a C++ class and a somewhat modified recipe is almost one to

one and is extremely informative.

Take a look at the recipe shown in Figure 10.2. Most recipes contain similar types of com-

ponents, but what’s surprising is that almost exactly the same elements are required in con-

structing a C++ class. Notice that the recipe shown in this figure isn’t the final spread; it

merely provides a plan for creating a sardine spread. The recipe can be used many times, and

each time it’s used, a particular batch of sardine spread is produced.

From Recipe to Class
Now you can make the connection between the recipe in Figure 10.2 and a C++ class. As

mentioned, a class can be considered the plan or recipe from which programming objects are

created. Like its recipe counterpart, a class typically contains sections for ingredients and

methods.

L_C7785_10.1c 436L_C7785_10.1c 436 1/18/11 10:53 AM1/18/11 10:53 AM

437Chapter 10
Object-Based Programming

Recipe Name: Gary's Sardine Spread
Ingredients:
Measure
1 can
2 stalks
1/4 medium
1 tablespoon
1/4 cup
dash
splash
dash
dash

Method of Preparation:
Finely shred the sardines using two forks
Finely dice the celery and onion and mix well with sardines
Add olive oil and mix well
Add mayonnaise and mix well
Add red wine vinegar and mix well
Finely dice the parsley and mix well
Salt and pepper to taste

Contents
Boneless and skinless sardines
Celery
Red onion
Mayonnaise
Parsley
Olive oil
Red wine vinegar
Salt
Pepper

Figure 10.2 Recipe for Gary’s sardine spread

In the ingredients section, instead of recipe measures such as a teaspoon or cup, C++ deals

with measures for holding integers, double-precision numbers, strings, and other types of suit-

able data “ingredients.” Besides a measure, each data item has a specific value, such as 5, and

a name, such as firstIntegerNumber. Therefore, the list of data items used in a C++ class

is, like the list of ingredients in a recipe, contained in a specific section. As an example, sup-

pose you’re creating a C++ program to calculate the average of two numbers. The following

programming plan for determining an average shows the data elements and methods for con-

structing a class for this application, which will form the basis of an object-oriented solution:

//ƒClassƒdeclarationƒsection
ClassƒName:ƒAverageofTwoNumbers
ƒƒƒƒ//ƒAƒlistƒofƒdataƒitemsƒtoƒuseƒ(theƒpartsƒlist)
ƒƒƒTypeƒƒƒƒƒƒName
ƒƒƒdoubleƒƒƒƒfirstNumber
ƒƒƒdoubleƒƒƒƒsecondNumber
ƒƒƒƒ//ƒAƒlistƒofƒnecessaryƒmethodsƒ(prototypes)
ƒƒƒƒdoubleƒassignValues(double,ƒdouble);
ƒƒƒƒdoubleƒcalculateAndDisplay(double,ƒdouble);
//ƒClassƒimplementationƒsectionƒ(the instructions)
ƒƒƒƒCodeƒforƒtheƒtwoƒmethodsƒlistedƒpreviously

Notice that this programming plan contains the same two basic sections shown in Figure 10.2:

a list of ingredients (in this case, the ingredients are data items) and an assembly section contain-

ing the actual instructions, as methods, for using the ingredients listed.

L_C7785_10.1c 437L_C7785_10.1c 437 1/18/11 10:53 AM1/18/11 10:53 AM

438 Introduction to Classes

There are, however, three notable differences in the ingredients section. First, the

Measure column in Figure 10.2 is relabeled as Type in the programming plan. Second, the

Contents column in Figure 10.2 is missing in the programming plan. The actual values, or

contents, can be assigned as default method parameters or, more typically, provided as user-

entered values requested by the listed methods. Finally, the class declaration section provides

not only a list of data “ingredients,” but also a list of method names and data types (the proto-

types). Using this basic structure, you’re ready to learn how to develop C++ classes in the next

section for constructing working object-oriented programs.

 EXERCISES 10.1

1. (Practice) Figure 10.3 is a simplified diagram for assembling a birdhouse. Referring to this

diagram, create a parts list and instructions for constructing it.

Roof

House

Screw
holes

Screw
holes

Screw
holes

Screw
holesA

B

C

C

E F

H

G

D

Back

Front

Peg

Figure 10.3 Building a birdhouse

2. (Practice) a. List the items you need to build a staircase with five steps.

 b. Write instructions for assembling the items listed in Exercise 2a.

3. (Practice) a. List the ingredients you need to create 10 peanut butter and jelly sandwiches.

 b. Write instructions for assembling the items listed in Exercise 3a.

L_C7785_10.1c 438L_C7785_10.1c 438 1/18/11 10:53 AM1/18/11 10:53 AM

439Chapter 10
Creating Your Own Classes

4. (Practice) Find assembly instructions from a recent item you have built (for example, a bicycle

or a bookcase with one shelf). Identify the major elements in the assembly instructions that

correspond to the Ingredients and Method of Preparation sections shown in Figure 10.2.

5. (Practice) Determine the data items and methods that would be useful for a class used for

simulating tossing a single die. Choose your own class name and data item names.

6. (Practice) Determine the data items and methods that would be useful for a class used for cal-

culating the floor space of a rectangular room. Choose your own class name and data item names.

10.2 Creating Your Own Classes

In computer terminology, the combination of data and associated operations is defined as a class.

That is, a class defines both the types of data and the types of operations that can be performed

on the data. Seen in this light, the built-in data types in C++ can also be considered classes, in

that they provide types of data and operations that can be performed on the data. Because of

this correspondence, C++ classes are sometimes referred to as programmer-defined data types

or abstract data types. In a simplified form, this relationship can be described as follows:

class = allowable data values + operational capabilities

Before seeing how to construct your own classes, take a moment to review a list of the

operational capabilities supplied with C++’s built-in data types. The reason for this review is

that you have to provide some of these capabilities as part of the classes you create. Although

you probably don’t think of these capabilities when you use them, the designers of C++

clearly had to when they created the C++ compiler. Table 10.1 lists the minimum set of these

capabilities.

Table 10.1 Operational Capabilities of C++’s Built-In Data Types

Capability Example
Define one or more variables of the class intƒa,ƒb;
Initialize a variable at definition intƒaƒ=ƒ5;
Assign a value to a variable aƒ=ƒ10;
Assign one variable’s value to another
variable

aƒ=ƒb;

Perform mathematical operations aƒ+ƒb;
Convert from one data type to another aƒ=ƒintƒ(7.2);

Constructing a class is easy, and you already have all the necessary tools in variables and

functions. In C++, variables provide the means of defining new data types, and functions pro-

vide the means of defining operational capabilities. Using this information, you can extend the

previous definition of a class to its C++ representation:

C++ class = data + functions

L_C7785_10.1c 439L_C7785_10.1c 439 1/18/11 10:53 AM1/18/11 10:53 AM

440 Introduction to Classes

In other words, a C++ class provides a mechanism for packaging data and functions

together in a self-contained unit. This chapter explains how classes are constructed and how

objects are created from them, including initialization and assignment of values to objects.

The mathematical and conversion capabilities listed in Table 10.1, as they apply to classes,

are discussed in Chapter 11.

Class Construction
A class defines both data and functions. This definition is usually accomplished by construct-

ing a class in two parts: a declaration section and an implementation section. As shown in the

following code example, the declaration section declares both the data types and functions for

the class. The implementation section then defines the functions whose prototypes have been

declared in the declaration section.2

//ƒclassƒdeclarationƒsection
classƒclassName
{
ƒƒdataƒdeclarations
ƒƒfunctionƒprototypes
};

//ƒclassƒimplementationƒsection
functionƒdefinitions

Both the variables and functions listed in the class declaration section are collectively

referred to as class members. Separately, the variables are referred to as both data members and

instance variables (the terms are synonymous), and the functions are referred to as member
functions and methods. (The term “class methods” is also used.) A method can’t have the same

name as a data member.

As a specific example of a class, take a look at the following definition of a class named

Date. This type of class is important in applications where equipment delivery dates and

schedules depend on exact date determinations. To accomplish this task, a number of methods

for determining whether a date falls on a weekend or holiday, for example, would still have to

be added to this class:

//classƒdeclarationƒsection
classƒDate
{
ƒƒprivate:ƒƒƒƒƒƒƒƒ//ƒnoticeƒtheƒcolonƒafterƒtheƒwordƒprivate
ƒƒƒƒƒintƒmonth;ƒƒƒ//ƒaƒdataƒmember
ƒƒƒƒƒintƒday;ƒƒƒƒƒ//ƒaƒdataƒmember
ƒƒƒƒƒintƒyear;ƒƒƒƒ//ƒaƒdataƒmember

2This separation into two parts isn’t mandatory, as the implementation can be included in the declaration statement.

☞

L_C7785_10.1c 440L_C7785_10.1c 440 1/18/11 10:53 AM1/18/11 10:53 AM

441Chapter 10
Creating Your Own Classes

ƒƒpublic:ƒƒƒƒƒƒƒƒƒ//ƒagain,ƒnoticeƒtheƒcolonƒhere
ƒƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒ//ƒaƒmemberƒmethod
ƒƒƒƒƒvoidƒsetDate(int,ƒint,ƒint);ƒƒƒƒƒƒƒƒ//ƒaƒmemberƒmethod
ƒƒƒƒƒvoidƒshowDate();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒaƒmemberƒmethod
};ƒƒ//ƒthisƒisƒaƒdeclarationƒ-ƒdon'tƒforgetƒtheƒsemicolon

//ƒclassƒimplementationƒsection
//ƒthisƒisƒwhereƒmethodsƒareƒdefined
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

voidƒDate::setDate(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;ƒdayƒ=ƒdd;ƒyearƒ=ƒyyyy;
ƒƒreturn;
}

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒ“Theƒdateƒisƒ“;
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;ƒ//ƒextractƒtheƒlastƒ2ƒyearƒdigits
ƒƒcoutƒ<<ƒendl;
ƒƒreturn;
}

Because this definition might look overwhelming, first notice that it does consist of two

sections—a declaration section and an implementation section. The declaration section begins

with the keyword class followed by a class name. Following the class name are the class’s

variable declarations and method prototypes, enclosed in a brace pair terminated with a semi-

colon. The general structure of this form is as follows:3

//classƒdeclarationƒsection
classƒName
{

3Other forms are possible. However, this form is commonly used and easy to understand, so it serves as the standard model in this book.

☞

L_C7785_10.1c 441L_C7785_10.1c 441 1/18/11 10:53 AM1/18/11 10:53 AM

442 Introduction to Classes

ƒƒprivate:
ƒƒƒƒaƒlistƒofƒvariableƒdeclarations
ƒƒpublic:
ƒƒƒƒaƒlistƒofƒmethodƒprototypes
};

Notice that the Date class follows this format. For convenience, it’s listed again with no

internal comments:

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒƒintƒmonth;
ƒƒƒƒƒintƒday;
ƒƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);
ƒƒƒƒƒvoidƒsetDate(int,ƒint,ƒint);
ƒƒƒƒƒvoidƒshowDate();
};

The name of this class is Date. Although the initial uppercase letter isn’t required, it’s

used by convention to designate a class. The body of the class declaration section, enclosed in

braces, consists of variable and method declarations. In this case, the data members month,

day, and year are declared as integers, and three methods named Date(), setDate(), and

showDate() are declared via prototypes. The keywords private and public are access
specifiers that define access rights.

The private keyword specifies that the class members following it—in this case, month,

day, and year—can be accessed only by using the class methods (or friend functions, as dis-

cussed in Section 11.1).4 The private designation is meant to enforce data security by requir-

ing that all access to private data members be made through the provided member methods.

This type of access, which prevents a user from seeing how data is actually stored, is referred

to as data hiding. After a class category such as private is designated, it remains in force until

a new category is listed.

In this Date class, a date is stored by using three integers for the month, day, and year. In

addition, the year will always be stored as a four-digit number. For example, the year 1998 is

stored as 1998, not as 98. Making sure to store all years with their century designation eliminates

a multitude of problems that can crop up if only the last two digits are stored. For example, the

number of years between 2012 and 1999 can be calculated quickly as 2012 - 1999 = 13 years,

but getting this same answer isn’t as easy with the year values 12 and 99. Additionally, with

four digits, it’s clear what the year 2012 refers to, but the two-digit value 12 could refer to 1912

or 2012.

4Note that the default membership category in a class is private, which means this keyword can be omitted. In this book, the

private designation is used to reinforce the idea of access restrictions in class memberships.

L_C7785_10.1c 442L_C7785_10.1c 442 1/18/11 10:53 AM1/18/11 10:53 AM

443Chapter 10
Creating Your Own Classes

Following the private class data members, the method prototypes listed in the Date

class have been declared as public. This means these class methods can be called by any

objects and functions not in the class (from outside the class, in other words). In general, all

class methods should be public so that they provide capabilities to manipulate class variables

from outside the class.

The Date class provides three methods named Date(), setDate(), and showDate().

Notice that one of these member methods has the same name, Date, as the class name. It’s

referred to as a constructor method, and it has a special purpose: It can be used to initialize class

data members with values. The default values used for this method are the numbers 7, 4, and

2012, which, as you see shortly, are used as the default month, day, and year values. Note that

the default year is represented as a four-digit integer to retain the century designation. Also,

notice that the constructor method has no return type, which is a requirement for this special

method. The two remaining methods declared in the Date class, setDate() and showDate(),

have been declared as returning no value (void).

The class implementation section is where the member methods declared in the declara-

tion section are written to permit the initialization, assignment, and display capabilities

implied by their names.5 The following example shows the general form of methods written

in the implementation section. This format is correct for all methods except the constructor,

which, as stated previously, has no return type:

ƒƒreturnTypeƒclassName::methodName(parameterƒlist)
ƒƒ{
ƒƒƒƒƒƒmethodƒbody
ƒƒ}

As this example shows, member methods defined in the class implementation section

have the same format as all user-written C++ functions, with the addition of the class name

and scope resolution operator, ::, that identifies the method as a member of a particular class.

Now take another look at the implementation section of the Date class, which is repeated for

convenience:

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

5You can also define these methods in the declaration section by declaring and writing them as inline functions. Section 10.3 includes

examples of inline member functions.

☞

L_C7785_10.1c 443L_C7785_10.1c 443 1/18/11 10:53 AM1/18/11 10:53 AM

444 Introduction to Classes

voidƒDate::setDate(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
ƒƒreturn;
}

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒ“TheƒDateƒisƒ“;
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;ƒ//ƒextractƒtheƒlastƒ2ƒyearƒdigits
ƒƒcoutƒ<<ƒendl;
ƒƒreturn;
}

Notice that the first method in this implementation section has the same name as the class,

which makes it a constructor method. Therefore, it has no return type. The Date:: at the begin-

ning of the header identifies this method as a member of the Date class. The rest of the header

Date(intƒmm,ƒintƒdd,ƒintƒyyyy)

defines the method as having three integer parameters. The body of this method simply assigns

the data members month, day, and year with the values of the parameters mm, dd, and yyyy.

The next header

voidƒDate::setDate(intƒmm,ƒintƒdd,ƒintƒyyyy)

defines setDate() as belonging to the Date class (Date::). This method returns no value

(void) and expects three integer parameters: mm, dd, and yyyy. In a manner similar to the

Date() method, the body of this method assigns the data members month, day, and year the

values of its parameters.

Finally, the last header in the class implementation section

voidƒDate::showDate()

defines a method named showDate(). This method has no parameters, returns no value,

and is a member of the Date class. The body of this method, however, needs a little more

explanation.

Although all years have been stored as four-digit values to retain century information,

users are accustomed to seeing dates with the year represented as a two-digit value, such as

12/15/12. To display the last two digits of the year value, the expression yearƒ%ƒ100 can be

used. For example, if the year is 1999, the expression 1999ƒ%ƒ100 yields the value 99, and if

the year is 2012, the expression 2012ƒ%ƒ100 yields the value 12.

If you had used an assignment statement such as yearƒ=ƒyearƒ%ƒ100;, however, you

would actually be altering the stored value of year to correspond to the last two digits of the

L_C7785_10.1c 444L_C7785_10.1c 444 1/18/11 10:53 AM1/18/11 10:53 AM

445Chapter 10
Creating Your Own Classes

year. Because you want to retain the year as a four-digit number, you must be careful to manip-

ulate only the displayed value by using the expression yearƒ%ƒ100 in the cout statement. The

setfill and setw manipulators are used to make sure the displayed values correspond to

conventionally accepted dates. For example, the date March 9, 2008, should appear as 3/9/08 or

03/09/08. The setw manipulator forces each value to be displayed in a field width of 2. Because

this manipulator remains in effect only for the next insertion, it’s used before the display of

each date value. Because the setfill manipulator remains in effect until the fill character is

changed, however, it must be included only once. The setfill manipulator has been used to

change the fill character from the default of a blank space to the character 0. Doing this ensures

that a date such as December 9, 2009 appears as 12/09/09, not as 12/ƒ9/ƒ9.

To see how the Date class can be used in the context of a complete program, take a look

at Program 10.1. To make the program easier to read, the shaded area contains the class decla-

ration and implementation sections. The unshaded area contains the header and main() func-

tion. This shading is used in the remainder of the book for all programs using classes.6

 Program 10.1

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒ//ƒconstructor
ƒƒƒƒvoidƒsetDate(int,ƒint,ƒint);ƒƒƒ//ƒmemberƒmethodƒtoƒcopyƒaƒdate
ƒƒƒƒvoidƒshowDate();ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒmemberƒmethodƒtoƒdisplayƒaƒdate
};
//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

☞
6This shading isn’t accidental. In practice, the shaded area containing the class definition is placed in a separate file. A single

#include statement is then used to include this class declaration in the program. The final program would consist of the unshaded

areas in Program 10.1, with the addition of another #include statement.

L_C7785_10.1c 445L_C7785_10.1c 445 1/18/11 10:53 AM1/18/11 10:53 AM

446 Introduction to Classes

voidƒDate::setDate(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
ƒƒreturn;
}
voidƒDate::showDate()
{
ƒƒƒƒcoutƒ<<ƒ“Theƒdateƒisƒ“;
ƒƒƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;ƒ//ƒextractƒtheƒlastƒ2ƒyearƒdigits
ƒƒƒƒcoutƒ<<ƒendl;

ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒa,ƒb,ƒc(4,1,2000);ƒƒ//ƒdeclareƒ3ƒobjects

ƒƒb.setDate(12,25,2009);ƒƒ//ƒassignƒvaluesƒtoƒb'sƒdataƒmembers
ƒƒa.showDate();ƒƒƒƒƒƒƒƒƒƒƒ//ƒdisplayƒobjectƒa'sƒvalues
ƒƒb.showDate();ƒƒƒƒƒƒƒƒƒƒƒ//ƒdisplayƒobjectƒb'sƒvalues
ƒƒc.showDate();ƒƒƒƒƒƒƒƒƒƒƒ//ƒdisplayƒobjectƒc'sƒvalues

ƒƒreturnƒ0;
}

The class declaration and implementation sections in the shaded area of Program 10.1

should look familiar to you. Notice, however, that this area only declares the class; it doesn’t

create any variables of this class type. This is true of all C++ types, including the built-in types,

such as integers and doubles. Just as a variable of an integer type must be defined, variables

of a user-declared class must also be defined. Variables defined to be of a user-declared class

are referred to as objects.

Using this new terminology, the first statement in Program 10.1’s main() function defines

three objects—named a, b, and c—to be of the class type Date. In C++, when a new object is

defined, memory is allocated for the object, and its data members are initialized automatically

by a call to the class constructor method. For example, examine the definition

Dateƒa,ƒb,ƒc(4,1,2000); in main(). When the object named a is defined, the constructor

L_C7785_10.1c 446L_C7785_10.1c 446 1/18/11 10:53 AM1/18/11 10:53 AM

447Chapter 10
Creating Your Own Classes

method Date() is called automatically. Because no parameters have been assigned to a, the

constructor method’s default values are used, resulting in this initialization:

a.monthƒ=ƒ7
a.dayƒ=ƒ4
a.yearƒ=ƒ2012

Notice the notation used here: an object name and an attribute name separated by a

period. This is the standard syntax for referring to an object’s attribute:

objectName.attributeName

The objectName is the name of a specific object, and attributeName is the name of a

data member defined for the object’s class. Therefore, the notation a.monthƒ=ƒ7 indicates

that object a’s month data member has been set to the value 7. Similarly, the notations

a.dayƒ=ƒ4 and a.yearƒ=ƒ2012 indicate that a’s day and year data members have been set

to the values 4 and 2012.

In the same manner, when the object named b is defined, the same default parameters are

used, resulting in the initialization of b’s data members as follows:

b.monthƒ=ƒ7
b.dayƒ=ƒ4
b.yearƒ=ƒ2012

The object named c, however, is defined with the arguments 4, 1, and 2000. These three

arguments are passed to the constructor method when the object is defined, resulting in the

following initialization of c’s data members:

c.monthƒ=ƒ4
c.dayƒ=ƒ1
c.yearƒ=ƒ2000

The next statement in main(), b.setDate(12,25,2009), calls b’s setDate() method,

which assigns the argument values 12, 25, and 2009 to b’s data members, resulting in this

assignment:

b.monthƒ=ƒ12
b.dayƒ=ƒ25
b.yearƒ=ƒ2009

Notice the syntax for referring to an object’s method:

objectName.methodName(parameters)

The objectName is the name of a specific object, and methodName is the name of a

method defined for the object’s class. Because all class methods have been defined as public,

a statement such as b.setDate(12,25,2009) is valid inside the main() function and is a call

to the class’s setDate() method. This statement tells the setDate() method to operate on

the b object with the arguments 12, 25, and 2009. It’s important to understand that because all

class data members have been specified as private, a statement such as b.monthƒ=ƒ12 would

be invalid inside main(). Therefore, you’re forced to rely on member methods to access data

member values.

L_C7785_10.1c 447L_C7785_10.1c 447 1/18/11 10:53 AM1/18/11 10:53 AM

448 Introduction to Classes

The last three statements in main() call the showDate() method to operate on the a, b,

and c objects. The first call results in the display of a’s data values, the second call in the dis-

play of b’s data values, and the third call in the display of c’s data values. Therefore, the output

of Program 10.1 is the following:

Theƒdateƒisƒ07/04/12
Theƒdateƒisƒ12/25/09
Theƒdateƒisƒ04/01/00

Notice that a statement such as coutƒ<<ƒa; is invalid inside main() because cout

doesn’t know how to handle an object of class Date. Therefore, the Date class is supplied with

a method that can be used to access and display an object’s internal values.

Terminology
As there’s sometimes confusion about the terms classes, objects, and other object-oriented

programming terminology, taking a moment to clarify and review the terminology is helpful.

A class is a programmer-defined data type from which objects can be created. Objects are

created from classes; they have the same relationship to classes as variables do to C++’s built-in

data types. For example, in the declaration

intƒa;

a is said to be a variable, and in the Program 10.1 declaration

Dateƒa;

a is said to be an object. If it helps you to think of an object as a variable, do so.

Point of Information
Interfaces, Implementations, and Data Hiding

The terms “interface” and “implementation” are used extensively in object-oriented pro-
gramming literature and can be equated to specific parts of a class’s declaration and
implementation sections.

An interface consists of a class’s public member method declarations and any sup-
porting comments. The implementation consists of both the class implementation sec-
tion (containing private and public member definitions) and the class’s private data mem-
bers, which are defined in the class declaration section.

The implementation is the means of providing data hiding, which generally refers to
the principle that how a class is constructed internally isn’t relevant to programmers who
want to use the class. The implementation can and should be hidden from all class users
to ensure that the class isn’t altered or compromised in any way. All that a programmer
needs to know to use a class correctly should be provided by the interface.

L_C7785_10.1c 448L_C7785_10.1c 448 1/18/11 10:53 AM1/18/11 10:53 AM

449Chapter 10
Creating Your Own Classes

Objects are also referred to as instances of a class, and the process of creating a new object

is often referred to as an instantiation of the object. Each time a new object is instantiated (cre-

ated), a new set of data members belonging to the object is created.7 The values contained in

these data members determine the object’s state.

Seen in this way, a class can be thought of as a blueprint for creating particular instances

(objects). Each instance (object) of a class has its own set of values for the set of data members

specified in the class declaration section.

In addition to the data types allowed for an object, a class also defines behavior—that is,

the operations permitted to be performed on an object’s data members. Users of the object

need to know what these methods can do and how to activate them through method calls but

generally don’t need to know how the operation is done. The actual implementation details of

an object’s operations are in the class implementation, which can (and should) be hidden from

the user. Other names for the operations defined in a class implementation section are proce-

dures, functions, services, and methods. These terms are used interchangeably throughout the

remainder of the book.

 EXERCISES 10.2

1. (Review) Define the following terms:

a. Class b. Object

c. Declaration section d. Implementation section

e. Instance variable f. Member method

g. Data member h. Constructor

i. Class instance j. Services

k. Methods l. Interface

2. (Practice) Write a class declaration section for each of the following specifications. In each

case, include a prototype for a constructor and a member method named showData() that can

be used to display data member values.

a. A class named Time that has integer data members named secs, mins, and hours

b. A class named Complex that has double-precision data members named real and

imaginary

c. A class named Circle that has integer data members named xcenter and ycenter and a

double-precision data member named radius

d. A class named System that has character data members named computer, printer, and

screen, each capable of holding 30 characters (including the end-of-string NULL), and

double-precision data members named compPrice, printPrice, and scrnPrice

7Note that only one set of class methods is created. These methods are shared between objects.

L_C7785_10.1c 449L_C7785_10.1c 449 1/18/11 10:53 AM1/18/11 10:53 AM

450 Introduction to Classes

3. (Practice) a. Construct a class implementation section for the constructor and showData()

member methods corresponding to the class declaration created for Exercise 2a.

b. Construct a class implementation section for the constructor and showData() methods cor-

responding to the class declaration created for Exercise 2b.

c. Construct a class implementation section for the constructor and showData() methods

corresponding to the class declaration created for Exercise 2c.

d. Construct a class implementation section for the constructor and showData() methods cor-

responding to the class declaration created for Exercise 2d.

4. (Program) a. Include the class declaration and implementation sections prepared for

Exercises 2a and 3a in a complete working program.

b. Include the class declaration and implementation sections prepared for Exercises 2b and 3b

in a complete working program.

c. Include the class declaration and implementation sections prepared for Exercises 2c and 3c

in a complete working program.

d. Include the class declaration and implementation sections prepared for Exercises 2d and 3d

in a complete working program.

5. (Desk check) Determine the errors in the following class declaration section:

classƒEmployee
{
public:
ƒƒintƒempnum;
ƒƒcharƒcode;
private:
ƒƒclass(intƒ=ƒ0);
ƒƒvoidƒshowemp(int,ƒchar);
};

6. (Modify) a. Add another member method named convert() to Program 10.1 that does the

following: The method should access the month, year, and day data members and display and

then return an integer calculated as year × 10000 + month × 100 + day. For example, if the date

is 4/1/2014, the returned value is 20140401. (Dates in this form are useful when performing

sorts because placing the numbers in numerical order automatically places the corresponding

dates in chronological order.)

b. Include the modified Date class constructed for Exercise 6a in a complete C++ program.

7. (Modify) a. Add to Program 10.1’s class definition an additional member method named

leapyr() that returns a true if the year is a leap year and a false if it’s not a leap year. A leap

year is any year that’s evenly divisible by 4 but not by 100, with the exception that all years

evenly divisible by 400 are leap years. For example, the year 1996 is a leap year because it’s

evenly divisible by 4 and not evenly divisible by 100. The year 2000 is a leap year because

it’s evenly divisible by 400.

b. Include the class definition constructed for Exercise 7a in a complete C++ program. The

main() function should display the message Theƒyearƒisƒaƒleapƒyear or the message

Theƒyearƒisƒnotƒaƒleapƒyear (depending on the Date object’s year value).

L_C7785_10.1c 450L_C7785_10.1c 450 1/18/11 10:53 AM1/18/11 10:53 AM

451Chapter 10
Creating Your Own Classes

8. (Modify) a. Add a member method named dayOfWeek() to Program 10.1’s class definition

that determines the day of the week for any Date object. An algorithm for determining the day

of the week, known as Zeller’s algorithm, is the following:

If mm is less than 3
 mm = mm + 12 and yyyy = yyyy - 1
Endif
Set century = int(yyyy/100)
Set year = yyyy % 100
Set T = dd + int(26 * (mm + 1)/10) + year + int(year / 4)
 int(century / 4) - 2 * century
Set DayOfWeek = T % 7
If DayOfWeek is less than 0
 DayOfWeek = DayOfWeek + 7
Endif

 Using this algorithm, the variable DayOfWeek has a value of 0 if the date is a Saturday, 1 if a

Sunday, and so forth.

b. Include the class definition constructed for Exercise 8a in a complete C++ program. The

main() function should display the name of the day (Sun, Mon, Tue, and so on) for the

Date object being tested.

9. (Program) a. Construct a class named Rectangle that has double-precision data members

named length and width. The class should have member methods named perimeter() and

area() to calculate a rectangle’s perimeter and area, a member method named setData() to

set a rectangle’s length and width, and a member method named showData() that displays a

rectangle’s length, width, perimeter, and area.

b. Include the Rectangle class constructed in Exercise 9a in a working C++ program.

10. (Modify) a. Modify the Date class defined in Program 10.1 to include a nextDay() method

that increments a date by one day. Test your method to ensure that it increments days into a

new month and into a new year correctly.

b. Modify the Date class defined in Program 10.1 to include a priorDay() method that dec-

rements a date by one day. Test your method to ensure that it decrements days into a prior

month and into a prior year correctly.

11. (Modify) Modify the Date class in Program 10.1 to contain a method that compares two Date

objects and returns the larger of the two. The method should be written according to the fol-

lowing algorithm:

 Accept two Date values as parameters
 Determine the later date by using the following procedure:
 Convert each date into an integer value having the form yyyymmdd
 (This can be accomplished with the formula year * 10000 + month * 100 + day)
 Compare the corresponding integers for each date
 The larger integer corresponds to the later date
 Return the later date

L_C7785_10.1c 451L_C7785_10.1c 451 1/18/11 10:53 AM1/18/11 10:53 AM

452 Introduction to Classes

10.3 Constructors

As you learned in Section 10.2, a constructor method is any method with the same name as its

class. Multiple constructors can be defined for each class, as long as they can be distinguished

by the number and types of their parameters.

A constructor’s intended purpose is to initialize a new object’s data members. Depending

on the number and types of supplied arguments, one constructor method is called automati-

cally each time an object is created. If no constructor method is written, the compiler supplies

a default constructor. In addition to its initialization role, a constructor method can perform

other tasks when it’s called and be written in a variety of ways. This section explains possible

variations of constructor methods and introduces another method, the destructor, which is

called automatically whenever an object goes out of existence.

The following code example shows the general format of a constructor method:

className::className(parameterƒlist)
{
ƒƒ//ƒmethodƒbody
}

As this format shows, a constructor must have the following:

• The same name as the class to which it belongs

• No return type (not even void)

If you don’t include a constructor in your class definition, the compiler supplies a do-nothing

default one for you. For example, examine the following class declaration:

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth,ƒday,ƒyear;
ƒƒpublic:
ƒƒƒƒvoidƒsetDate(int,ƒint,ƒint);
ƒƒƒƒvoidƒshowDate(void);
};

Because no user-defined constructor has been declared, the compiler creates a default con-

structor. For the Date class, this default constructor is equivalent to Date::Date(void){}—

that is, the compiler-supplied default constructor expects no parameters and has an empty body.

Clearly, this default constructor isn’t very useful, but it does exist if no other constructor is

declared.

The term default constructor is used often in C++ and refers to any constructor that doesn’t

require arguments when it’s called. The reason it doesn’t require arguments is that no argu-

ments are declared, as with the compiler-supplied default, or all arguments have been given

default values. For example, Date(intƒmmƒ=ƒ7,ƒintƒddƒ=ƒ4,ƒintƒyyyyƒ=ƒ2012) is a

valid prototype for a default constructor. Each argument has been given a default value, and

an object can be declared as type Date without supplying any further arguments. Using this

L_C7785_10.1c 452L_C7785_10.1c 452 1/18/11 10:53 AM1/18/11 10:53 AM

453Chapter 10
Constructors

default constructor, the declaration Dateƒa; initializes the a object with the default values 7,

4, and 2012.

To verify that a constructor method is called automatically when a new object is created,

examine Program 10.2. Notice that in the implementation section, the constructor uses cout to

display the message Createdƒaƒnewƒdateƒobjectƒwithƒdataƒvalues. Therefore, when-

ever the constructor is called, this message is displayed. Because the main() function creates

three objects, the constructor is called three times, and the message is displayed three times.

The following output is produced when Program 10.2 runs:

Createdƒaƒnewƒdateƒobjectƒwithƒdataƒvaluesƒ7,ƒ4,ƒ2012
Createdƒaƒnewƒdateƒobjectƒwithƒdataƒvaluesƒ7,ƒ4,ƒ2012
Createdƒaƒnewƒdateƒobjectƒwithƒdataƒvaluesƒ4,ƒ1,ƒ2009

Although any legitimate C++ statement can be used in a constructor method, such as

the cout statement in Program 10.2, it’s best to keep constructors simple and use them only

for initializing purposes. One further point needs to be made about the constructor in

Program 10.2. According to C++ rules, object members are initialized in the order they’re

declared in the class declaration section, not in the order they might appear in the method’s

definition in the implementation section. Usually, this order isn’t an issue, unless one data

member is initialized by using another data member’s value.

Point of Information
Constructors

A constructor is any method with the same name as its class. Its main purpose is to ini-
tialize an object’s member variables when an object is created, so a constructor is called
automatically when an object is declared.

A class can have multiple constructors if each constructor can be distinguished by
having a different formal parameter list. A compiler error results when unique identifica-
tion of a constructor isn’t possible. If no constructor is provided, the compiler supplies a
do-nothing default constructor.

Every constructor method must be declared with no return type (not even void).
Because they’re methods, constructors can also be called in nondeclaration statements.
When used in this manner, the method call requires parentheses following the construc-
tor name, even if no parameters are used. However, when used in a declaration, paren-
theses must not be included for a constructor. For example, the declaration Dateƒa();
is incorrect. The correct declaration is Dateƒa;. When parameters are used, however,
they must be enclosed in parentheses in both declaration and nondeclaration state-
ments. Default parameter values should be included in the constructor’s prototype.

L_C7785_10.1c 453L_C7785_10.1c 453 1/18/11 10:53 AM1/18/11 10:53 AM

454 Introduction to Classes

 Program 10.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒƒ//ƒconstructor
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
ƒƒcoutƒ<<ƒ“Createdƒaƒnewƒdateƒobjectƒwithƒdataƒvaluesƒ“
ƒƒƒƒƒƒƒ<<ƒmonthƒ<<ƒ“,ƒ“ƒ<<ƒdayƒ<<ƒ“,ƒ“ƒ<<ƒyearƒ<<ƒendl;
}

intƒmain()
{
ƒƒDateƒa;ƒƒƒƒƒƒƒƒƒƒƒƒ//ƒdeclareƒanƒobject
ƒƒDateƒb;ƒƒƒƒƒƒƒƒƒƒƒƒ//ƒdeclareƒanƒobject
ƒƒDateƒc(4,1,2009);ƒƒ//ƒdeclareƒanƒobject
ƒƒreturnƒ0;
}

Calling Constructors
As you have seen, constructors are called whenever an object is created. The actual declaration,

however, can be made in a variety of ways. For example, the declaration

Dateƒc(4,1,2009);

used in Program 10.2 could also have been written as

Dateƒcƒ=ƒDate(4,1,2009);

This second form declares c as being of type Date and then makes a direct call to the

constructor with the arguments 4, 1, and 2009. This second form can be simplified when only

L_C7785_10.1c 454L_C7785_10.1c 454 1/18/11 10:53 AM1/18/11 10:53 AM

455Chapter 10
Constructors

one argument is passed to the constructor. For example, if only the month data member of the

c object needs to be initialized with the value 8 and the day and year members can use the

default values, the object can be created by using this declaration:

Dateƒcƒ=ƒ8;

Because the form using an equal sign resembles declarations in C, it’s referred to as the

C style of initialization. The declaration form in Program 10.2, referred to as the C++ style of
initialization, is the form used predominantly in the remainder of this book.

Regardless of which initialization form you use, an object should never be declared with

empty parentheses. For example, the declaration Dateƒa(); is not the same as the declaration

Dateƒa;. The second declaration uses the default constructor values, and the first declaration

results in no object being created.

Overloaded and Inline Constructors
The main difference between a constructor and other user-written methods is how the con-

structor is called: Constructors are called automatically each time an object is created, and

other methods must be called explicitly by name.8 As a method, however, a constructor must

still follow all the rules for user-written functions discussed in Chapter 6. Therefore, construc-

tors can have default arguments (as in Program 10.1), can be overloaded, and can be written as

inline functions.

Recall from Section 6.1 that function overloading permits using the same function name

with different argument lists. Based on the supplied argument types, the compiler determines

which function to use when the call is encountered. To see how overloading can be applied to

the Date class, take another look at the class declaration repeated here:

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒƒƒ//ƒconstructor
};

The constructor prototype specifies three integer parameters, which are used to initialize

the month, day, and year data members.

Another method of specifying a date is using a long integer in the form yearƒ*ƒ10000ƒ+ƒ
monthƒ*ƒ100ƒ+ƒday. With this form, the date 12/24/1998 is 19981224, and the date 2/5/2009

is 20090205.9 A suitable prototype for a constructor that uses dates in this form is shown here:

Date(long);ƒƒƒ//ƒanƒoverloadedƒconstructor

8This rule is true for all methods except destructors, described later in this section. A destructor method is called automatically each

time an object is destroyed.
9The reason for specifying dates in this manner is that only one number needs to be used per date, and sorting the numbers puts the

corresponding dates into chronological order automatically.

L_C7785_10.1c 455L_C7785_10.1c 455 1/18/11 10:53 AM1/18/11 10:53 AM

456 Introduction to Classes

The constructor is declared as receiving one long integer argument. The code for this new

Date() method must, of course, convert its single argument into a month, day, and year and is

included in the class implementation section. The actual code for this constructor is as follows:

Date::Date(longƒyyyymmdd)ƒƒƒ//ƒaƒsecondƒconstructor
{
ƒƒ//ƒextractƒtheƒyear
ƒƒyearƒ=ƒint(yyyymmdd/10000.0);
ƒƒ//ƒextractƒtheƒmonth
ƒƒmonthƒ=ƒint(ƒ(yyyymmddƒ-ƒyearƒ*ƒ10000.0)ƒ/ƒ100.00ƒ);
ƒƒ//ƒextractƒtheƒday
ƒƒdayƒ=ƒint(yyyymmddƒ-ƒyearƒ*ƒ10000.0ƒ-ƒmonthƒ*ƒ100.0);
}

Don’t be overly concerned with the conversion code used in the method body. The impor-

tant point is the concept of overloading the Date() method to provide two constructors.

Program 10.3 contains the complete class definition in the context of a working program.

 Program 10.3

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒ//ƒconstructor
ƒƒƒƒDate(long);ƒƒƒƒƒƒƒƒƒƒƒ//ƒanotherƒconstructor
ƒƒƒƒvoidƒshowDate();ƒƒƒƒƒƒ//ƒmemberƒmethodƒtoƒdisplayƒaƒdate
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

☞

L_C7785_10.1c 456L_C7785_10.1c 456 1/18/11 10:53 AM1/18/11 10:53 AM

457Chapter 10
Constructors

Date::Date(longƒyyyymmdd)
{
ƒƒyearƒ=ƒint(yyyymmdd/10000.0);ƒƒƒ//ƒextractƒtheƒyear
ƒƒmonthƒ=ƒint(ƒ(yyyymmddƒ-ƒyearƒ*ƒ10000.0)/100.00ƒ);ƒ//ƒextractƒtheƒmonth
ƒƒdayƒ=ƒint(yyyymmddƒ-ƒyearƒ*ƒ10000.0ƒ-ƒmonthƒ*ƒ100.0);ƒ//ƒextractƒtheƒday
}
voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒ“Theƒdateƒisƒ“;
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;ƒ//ƒextractƒtheƒlastƒ2ƒyearƒdigits
ƒƒcoutƒ<<ƒendl;
ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒa,ƒb(4,1,1998),ƒc(20090515L);ƒ//ƒdeclareƒthreeƒobjects
ƒƒa.showDate();ƒƒƒƒƒƒƒƒƒƒƒ//ƒdisplayƒobjectƒa'sƒvalues
ƒƒb.showDate();ƒƒƒƒƒƒƒƒƒƒƒ//ƒdisplayƒobjectƒb'sƒvalues
ƒƒc.showDate();ƒƒƒƒƒƒƒƒƒƒƒ//ƒdisplayƒobjectƒc'sƒvalues

ƒƒreturnƒ0;
}

The output of Program 10.3 is as follows:

Theƒdateƒisƒ07/04/12
Theƒdateƒisƒ04/01/98
Theƒdateƒisƒ05/15/09

Three objects are created in Program 10.3’s main() function. The first object, a, is initialized

with the default constructor, using its default arguments. Object b is also initialized with the

default constructor but uses the arguments 4, 1, and 1998. Finally, object c, which is initialized

with a long integer, uses the second constructor in the class implementation section. The com-

piler knows to use this second constructor because the specified argument, 20090515L, is des-

ignated as a long integer by the uppercase L. It’s worth pointing out that a compiler error would

occur if both Date constructors had default values. For example, a declaration such as Dateƒd;

would be ambiguous to the compiler because it couldn’t determine which constructor to use.

Therefore, in each implementation section, only one constructor can be written as the default.

L_C7785_10.1c 457L_C7785_10.1c 457 1/18/11 10:53 AM1/18/11 10:53 AM

458 Introduction to Classes

As mentioned, constructors can also be written as inline functions. Doing so simply means

defining the function in the class declaration section. For example, the following declaration

section makes both constructors in Program 10.3 inline:

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒmmƒ=ƒ7,ƒintƒddƒ=ƒ4,ƒintƒyyyyƒ=ƒ2012)
ƒƒƒƒ{
ƒƒƒƒƒƒmonthƒ=ƒmm;
ƒƒƒƒƒƒdayƒ=ƒdd;
ƒƒƒƒƒƒyearƒ=ƒyyyy;
ƒƒƒƒ}
ƒƒƒƒDate(longƒyyyymmdd)ƒƒƒ//ƒhereƒisƒtheƒoverloadedƒconstructor
ƒƒƒƒ{
ƒƒƒƒƒƒyearƒ=ƒint(yyyymmdd/10000.0);ƒƒƒƒ//ƒextractƒtheƒyear
ƒƒƒƒƒƒ//ƒextractƒtheƒmonth
ƒƒƒƒƒƒmonthƒ=ƒint(ƒ(yyyymmddƒ-ƒyearƒ*ƒ10000.0)/100.00ƒ);
ƒƒƒƒƒƒ//ƒextractƒtheƒday
ƒƒƒƒƒƒdayƒ=ƒint(yyyymmddƒ-ƒyearƒ*ƒ10000.0ƒ-ƒmonthƒ*ƒ100.0);
ƒƒƒƒ}
};

The keyword inline isn’t required in this declaration because member methods defined

in the class declaration are inline by default.

Generally, only methods that can be coded on a single line are good candidates for inline

functions. This guideline reinforces the convention that inline functions should be small.

Therefore, the first constructor is more conventionally written as follows:

Date(intƒmmƒ=ƒ7,ƒintƒddƒ=ƒ4,ƒintƒyyyyƒ=ƒ2012)
ƒƒ{ƒmonthƒ=ƒmm;ƒdayƒ=ƒdd;ƒyearƒ=ƒyyyy;ƒ}

The second constructor, which extends over three lines, should not be written as an inline

function.

Destructors
The counterpart to constructor methods are destructor methods. Destructors are methods with

the same class name as constructors but are preceded with a tilde (~). Therefore, for the Date

class, the destructor name is ~Date(). Like constructors, the C++ compiler provides a default

do-nothing destructor in the absence of an explicit destructor. Unlike constructors, however,

there can be only one destructor method per class because destructors take no parameters and

return no values.

L_C7785_10.1c 458L_C7785_10.1c 458 1/18/11 10:53 AM1/18/11 10:53 AM

459Chapter 10
Constructors

Destructors are called automatically when an object goes out of existence and are meant

to “clean up” any undesirable effects the object might leave. Generally, these effects occur

only when an object contains a pointer member.

Arrays of Objects10

The importance of default constructors becomes evident when arrays of objects are created.

Because a constructor is called each time an object is created, the default constructor provides

an efficient way of initializing all objects to the same state.

Declaring an array of objects is the same as declaring an array of any built-in type. For

example, the following declaration creates five objects named theDate[0] through

theDate[4]:

DateƒtheDate[5];

Member methods for each of these objects are called by listing the object name followed

by a dot (.) and the method. Program 10.4 shows using an array of objects, which includes

cout statements in both the constructor and destructor. As this program’s output shows, the

constructor is called for each declared object, followed by five member method calls to

showDate(), followed by five destructor calls. The destructor is called when the objects go

out of scope. In this case, the destructor is called when the main() function stops execution.

Point of Information
Accessor Methods

An accessor method is any non-constructor member method that accesses a class’s pri-
vate data members. For example, the showDate() method in the Date class is an
accessor method. These methods are extremely important because they provide a means
of displaying private data members’ stored values.

When you construct a class, make sure to provide a complete set of accessor meth-
ods. Each accessor method doesn’t have to return a data member’s exact value, but it
should return a useful representation of the value. For example, if the date 12/25/2012
is stored as a long integer member variable in the form 20122512, an accessor method
could display this value. A more useful representation, however, is 12/25/12 or
December 25, 2012.

10This topic can be omitted with no loss of subject continuity.

L_C7785_10.1c 459L_C7785_10.1c 459 1/18/11 10:53 AM1/18/11 10:53 AM

460 Introduction to Classes

 Program 10.4

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate();ƒƒƒƒ//ƒconstructor
ƒƒƒƒ~Date();ƒƒƒ//ƒdestructor
ƒƒƒƒvoidƒshowDate();
};
//ƒclassƒimplementationƒsection
Date::Date()ƒƒƒ//ƒuser-definedƒdefaultƒconstructor
{
ƒƒcoutƒ<<ƒ“***ƒAƒDateƒobjectƒisƒbeingƒinitializedƒ***\n”;
ƒƒmonthƒ=ƒ1;
ƒƒdayƒ=ƒ1;
ƒƒyearƒ=ƒ2015;
}
Date::~Date()ƒƒ//ƒuser-definedƒdefaultƒdestructor
{
ƒƒcoutƒ<<ƒ“***ƒAƒDateƒobjectƒisƒgoingƒoutƒofƒexistenceƒ***\n”;
}

☞

Point of Information
Mutator Methods

A mutator method, more commonly called a “mutator,” is any nonconstructor class
method that changes an object’s data values. Mutators are used to alter an object’s data
values after a constructor method has created and initialized the object automatically. A
class can contain multiple mutators, as long as each one has a unique name or parame-
ter list. For example, in the Date class, you could have a mutator for changing a Date
object’s month, day, and year values. Constructors, which have the main purpose of
initializing an object’s member variables when the object is created, aren’t considered
mutators.

L_C7785_10.1c 460L_C7785_10.1c 460 1/18/11 10:53 AM1/18/11 10:53 AM

461Chapter 10
Constructors

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒ“ƒƒƒƒƒƒƒƒTheƒdateƒisƒ“ƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;ƒ//ƒextractƒtheƒlastƒ2ƒyearƒdigits
ƒƒreturn;
}
intƒmain()
{
ƒƒconstƒintƒNUMDATESƒ=ƒ5;
ƒƒDateƒthedate[NUMDATES];
ƒƒfor(intƒiƒ=ƒ0;ƒiƒ<ƒNUMDATES;ƒi++)
ƒƒ{
ƒƒƒƒthedate[i].showDate();
ƒƒƒƒcoutƒ<<ƒendl;
ƒƒ}
ƒƒreturnƒ0;
}

Program 10.4 produces the following output:

ƒAƒDateƒobjectƒisƒbeingƒinitializedƒ
ƒAƒDateƒobjectƒisƒbeingƒinitializedƒ
ƒAƒDateƒobjectƒisƒbeingƒinitializedƒ
ƒAƒDateƒobjectƒisƒbeingƒinitializedƒ
ƒAƒDateƒobjectƒisƒbeingƒinitializedƒ
ƒƒƒƒƒƒƒƒTheƒdateƒisƒ01/01/2015
ƒƒƒƒƒƒƒƒTheƒdateƒisƒ01/01/2015
ƒƒƒƒƒƒƒƒTheƒdateƒisƒ01/01/2015
ƒƒƒƒƒƒƒƒTheƒdateƒisƒ01/01/2015
ƒƒƒƒƒƒƒƒTheƒdateƒisƒ01/01/2015
ƒAƒDateƒobjectƒisƒgoingƒoutƒofƒexistenceƒ
ƒAƒDateƒobjectƒisƒgoingƒoutƒofƒexistenceƒ
ƒAƒDateƒobjectƒisƒgoingƒoutƒofƒexistenceƒ
ƒAƒDateƒobjectƒisƒgoingƒoutƒofƒexistenceƒ
ƒAƒDateƒobjectƒisƒgoingƒoutƒofƒexistenceƒ

 EXERCISES 10.3

1. (Review) Determine whether the following statements are true or false:

a. A constructor method must have the same name as its class.

b. A class can have only one constructor method.

c. A class can have only one default constructor method.

L_C7785_10.1c 461L_C7785_10.1c 461 1/18/11 10:53 AM1/18/11 10:53 AM

462 Introduction to Classes

d. A default constructor can be supplied only by the compiler.

e. A default constructor can have no parameters or all parameters must have default values.

f. A constructor must be declared for each class.

g. A constructor must be declared with a return type.

h. A constructor is called automatically each time an object is created.

i. A class can have only one destructor method.

j. A destructor must have the same name as its class, preceded by a tilde (~).

k. A destructor can have default arguments.

l. A destructor must be declared for each class.

m. A destructor must be declared with a return type.

n. A destructor is called automatically each time an object goes out of existence.

o. Destructors aren’t useful when the class contains a pointer data member.

2. (Desk check) For Program 10.3, what date is initialized for object c if the declaration

Dateƒc(15); is used instead of the declaration Dateƒc(20090515L);?

3. (Modify) Modify Program 10.3 so that the only data member of the class is a long integer

named yyyymmdd. Do this by substituting the declaration longƒyyyymmdd; for these existing

declarations:

intƒmonth;
intƒday;
intƒyear;

 Using the same constructor prototypes currently declared in the class declaration section,

rewrite them so that the Date(long) method becomes the default constructor, and the

Date(int,ƒint,ƒint) method converts a month, day, and year into the correct form for the

class data members.

4. (Program) a. Construct a Time class containing integer data members seconds, minutes,

and hours. Have the class contain two constructors: The first should be a default constructor

having the prototype Time(int,ƒint,ƒint), which uses default values of 0 for each data

member. The second constructor should accept a long integer representing a total number of

seconds and disassemble the long integer into hours, minutes, and seconds. The final mem-

ber method should display the class data members.

 b. Include the class written for Exercise 4a in the context of a complete program.

5. (Program) a. Construct a class named Student consisting of an integer student ID number,

an array of five double-precision grades, and an integer representing the total number of grades

entered. The constructor for this class should initialize all Student data members to 0.

Included in the class should be member methods to 1) enter a student ID number, 2) enter a

single test grade and update the total number of grades entered, and 3) compute an average

grade and display the student ID followed by the average grade.

b. Include the class constructed in Exercise 5a in the context of a complete program. Your

program should declare two objects of type Student and accept and display data for the two

objects to verify operation of the member methods.

L_C7785_10.1c 462L_C7785_10.1c 462 1/18/11 10:53 AM1/18/11 10:53 AM

463Chapter 10
Examples

6. (Modify) a. In Exercise 4, you were asked to construct a Time class. For this class, include a

tick() method that increments the time by one second. Test your method to ensure that it

increments time into a new minute and a new hour correctly.

b. Modify the Time class written for Exercise 6a to include a detick() method that decre-

ments the time by one second. Test your method to ensure that it decrements time into a

prior hour and into a prior minute correctly.

7. (Program) a. Construct a class named Coord containing two double-precision data members

named xval and yval, used to store a point’s x and y values in Cartesian coordinates. The

member methods should include constructor and display methods and a method named

convToCartesian(). The convToCartesian() method should accept two double-precision

numbers named r and theta representing a point in polar coordinates and convert them into

Cartesian coordinates. For conversion from polar to Cartesian coordinates, use these formulas:

x = r cos (theta)
y = r sin (theta)
b. Include the program written for Exercise 7a in a working C++ program.

10.4 Examples

Now that you have an understanding of how classes are constructed and the terminology for

describing them, you can apply this knowledge to creating two examples with an object-

oriented approach. In the first example, you develop a class for determining the floor area of a

rectangular room. In the second example, you construct a single elevator object. Assume the

elevator can travel between the 1st and 15th floors of a building, and the elevator’s location

must be known at all times.

Example 1: Constructing a Room Object
In this example, you create a class from which room objects can be constructed and their floor

area calculated. For modeling purposes, assume that every room is rectangular, so the floor area

can be calculated as the room’s length times its width.

Solution In this application, you have one type of object, which is a rectangular room, so its

floor can be designated by the room’s length and width. After these values have been assigned

to a room, its floor area can be calculated easily as the room’s length times its width. Therefore,

a room can be represented by double-precision variables named length and width.

Additionally, you need a constructor that enables you to specify values for length and width

when a room object is instantiated.

In addition to the constructor, the services required are an accessor to display a room’s

length and width values, a mutator to change these values, and a method to calculate a room’s

floor area from its length and width values. To accomplish this, the following is a suitable

class declaration:

L_C7785_10.1c 463L_C7785_10.1c 463 1/18/11 10:53 AM1/18/11 10:53 AM

464 Introduction to Classes

//ƒclassƒdeclarationƒsection
classƒRoomType
{
ƒƒprivate:
ƒƒƒƒdoubleƒlength;ƒƒ//ƒdeclareƒlengthƒasƒaƒdoubleƒvariable
ƒƒƒƒdoubleƒwidth;ƒƒƒ//ƒdeclareƒwidthƒasƒaƒdoubleƒvariable
ƒƒpublic:
ƒƒƒƒRoomType(doubleƒ=ƒ0.0,ƒdoubleƒ=ƒ0.0);ƒ//ƒconstructorƒ
ƒƒƒƒvoidƒshowRoomValues();ƒƒƒƒ//ƒanƒaccessorƒmethod
ƒƒƒƒvoidƒsetNewRoomValues();ƒƒ//ƒaƒmutatorƒmethod
ƒƒƒƒdoubleƒcalculateRoomArea();ƒ//ƒaƒcalculationƒmethod
};

This code declares two data members, length and width, and four class methods. The

data members length and width store a room’s length and width. As private class data mem-

bers, they can be accessed only through the class’s member methods. These member methods

are used to define the external services available to each RoomType object. Specifically, the

RoomType() method, which has the same name as its class, becomes a constructor that’s called

automatically when an object of type RoomType is created. You use this method to initialize a

room’s length and width values. The showRoomValues() method is written as an accessor

method to display a room object’s length and width values, the setNewRoomValues()

method is written as a mutator method to change a room’s length and width values, and the

calculateRoomArea() method is written to calculate and display a room’s floor area.

To perform these services, the following class implementation section is suitable:

//ƒclassƒimplementationƒsection
RoomType::RoomType(doubleƒl,ƒdoubleƒw)ƒƒ//ƒthisƒisƒaƒconstructor
{
ƒƒlengthƒ=ƒl;
ƒƒwidthƒ=ƒw;
ƒƒcoutƒ<<ƒ“Createdƒaƒnewƒroomƒobjectƒusingƒtheƒdefaultƒconstructor.\n\n”;
}
voidƒRoomType::showRoomValues()ƒƒƒ//ƒthisƒisƒanƒaccessor
{
ƒƒcoutƒ<<ƒ“ƒƒlengthƒ=ƒ“ƒ<<ƒlength
ƒƒƒƒƒƒƒ<<ƒ“\nƒƒƒwidthƒ=ƒ“ƒ<<ƒwidthƒ<<ƒendl;
}
voidƒRoomType::setNewRoomValues(doubleƒl,ƒdoubleƒw)ƒƒ//ƒthisƒisƒaƒmutator
{ƒ
ƒƒlengthƒ=ƒl;
ƒƒwidthƒ=ƒw;
}
doubleƒRoomType::calculateRoomArea()ƒƒ//ƒthisƒperformsƒaƒcalculation
{ƒƒƒ
ƒƒreturnƒ(lengthƒ*ƒwidth);
}

L_C7785_10.1c 464L_C7785_10.1c 464 1/18/11 10:53 AM1/18/11 10:53 AM

465Chapter 10
Examples

These methods are straightforward. When a room object is declared, it’s initialized with a

length and width of 0, unless specific values are provided in the declaration. The accessor

method displays the values stored in length and width, and the mutator method allows reas-

signing values after a room object has been created. Finally, the calculation method displays a

room’s area by multiplying its length by its width. Program 10.5 includes this class in a working

program.

 Program 10.5

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒRoomType
{
ƒƒprivate:
ƒƒƒƒdoubleƒlength;ƒ//ƒdeclareƒlengthƒasƒaƒdoubleƒvariable
ƒƒƒƒdoubleƒwidth;ƒƒ//ƒdeclareƒwidthƒasƒaƒdoubleƒvariable

ƒƒpublic:
ƒƒƒƒRoomType(doubleƒ=ƒ0.0,ƒdoubleƒ=ƒ0.0);ƒ//ƒtheƒconstructor'sƒdeclaration
ƒƒƒƒvoidƒshowRoomValues();
ƒƒƒƒvoidƒsetNewRoomValues(double,ƒdouble);
ƒƒƒƒdoubleƒcalculateRoomArea();
};

//ƒclassƒimplementationƒsection
RoomType::RoomType(doubleƒl,ƒdoubleƒw)ƒƒ//ƒthisƒisƒaƒconstructor
{
ƒƒlengthƒ=ƒl;
ƒƒwidthƒ=ƒw;
ƒƒcoutƒ<<ƒ“Createdƒaƒnewƒroomƒobjectƒusingƒtheƒdefaultƒconstructor.\n\n”;
}
voidƒRoomType::showRoomValues()ƒƒ//ƒthisƒisƒanƒaccessor
{
ƒƒcoutƒ<<ƒ“ƒƒlengthƒ=ƒ“ƒ<<ƒlength
ƒƒƒƒƒƒƒ<<ƒ“\nƒƒƒwidthƒ=ƒ“ƒ<<ƒwidthƒ<<ƒendl;
}

voidƒRoomType::setNewRoomValues(doubleƒl,ƒdoubleƒw)ƒƒ//ƒthisƒisƒaƒmutator
{ƒ
ƒƒlengthƒ=ƒl;
ƒƒwidthƒ=ƒw;
}

☞

L_C7785_10.1c 465L_C7785_10.1c 465 1/18/11 10:53 AM1/18/11 10:53 AM

466 Introduction to Classes

doubleƒRoomType::calculateRoomArea()ƒƒ//ƒthisƒperformsƒaƒcalculation
{ƒƒƒ
ƒƒreturnƒ(lengthƒ*ƒwidth);ƒ
}

intƒmain()
{
ƒƒRoomTypeƒroomOne(12.5,ƒ18.2);ƒƒ//ƒdeclareƒaƒvariableƒofƒtypeƒRoomType

ƒƒcoutƒ<<ƒ“Theƒvaluesƒforƒthisƒroomƒare:\n”;
ƒƒroomOne.showRoomValues();ƒƒƒƒƒƒƒ//ƒuseƒaƒclassƒmethodƒonƒthisƒobject
ƒƒcoutƒ<<ƒ“\nTheƒfloorƒareaƒofƒthisƒroomƒis:ƒ“;
ƒƒroomOne.calculateRoomArea();ƒƒƒƒ//ƒuseƒanotherƒclassƒmethodƒonƒthisƒobject

ƒƒroomOne.setNewRoomValues(5.5,ƒ9.3);ƒƒƒ//ƒcallƒtheƒmutator

ƒƒcoutƒ<<ƒ“\n\nTheƒvaluesƒforƒthisƒroomƒhaveƒbeenƒchangedƒto:\n”;
ƒƒroomOne.showRoomValues();
ƒƒcoutƒ<<ƒ“\nTheƒfloorƒareaƒofƒthisƒroomƒis:ƒ“;
ƒƒroomOne.calculateRoomArea();
ƒƒ
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

The shaded portion of Program 10.5 defines the class. To see how this class is used, con-

centrate on the unshaded section containing the main() function. This function creates one

room object with a length of 12.5 and a width of 18.2. These room dimensions are displayed

by using the showRoomValues() method, and the area is calculated and displayed by using

the calculateRoomArea() method. The room’s dimensions are reset and displayed, and the

room’s area is recalculated. Program 10.5 produces the following output:

Createdƒaƒnewƒroomƒobjectƒusingƒtheƒdefaultƒconstructor.

Theƒvaluesƒforƒthisƒroomƒare:
ƒƒlengthƒ=ƒ12.5
ƒƒƒwidthƒ=ƒ18.2

Theƒfloorƒareaƒofƒthisƒroomƒis:ƒ227.5

Theƒvaluesƒforƒthisƒroomƒhaveƒbeenƒchangedƒto:
ƒƒlengthƒ=ƒ5.5
ƒƒƒwidthƒ=ƒ9.3

Theƒfloorƒareaƒofƒthisƒroomƒis:ƒ51.15

L_C7785_10.1c 466L_C7785_10.1c 466 1/18/11 10:53 AM1/18/11 10:53 AM

467Chapter 10
Examples

The basic requirements of object-oriented programming are evident even in as simple a

program as Program 10.5. Before the main() function can be written, a useful class must be

constructed, which is typical of programs using objects. For these programs, the design process

is front-loaded with the requirement to give careful consideration to the class—its declaration

and implementation. Code in the implementation section effectively removes code that would

otherwise be part of main()’s responsibility. Therefore, any program using the object doesn’t

have to repeat the implementation details in its main() function. Instead, the main() func-

tion and any function called by main() are concerned only with calling class methods to acti-

vate them correctly. How the object responds to the messages and how the object’s state is

retained are not main()’s concern—these details are hidden in the class construction.

Example 2: Constructing an Elevator Object
In this example, you see how to simulate an elevator’s operation. The required output

describes the current floor on which the elevator is stationed or passing by. Additionally, you

should provide an internal elevator button that’s pushed as a request to move to another floor.

The elevator is to be identified by a number, such as Elevator Number 1 (to allow placing

additional elevators into operation, if needed), and it can travel between the 1st and 15th floor

of the building in which it’s situated.

Solution For this application, the object under consideration is an elevator. The three attri-

butes of interest are the elevator’s number, its current location, and the highest floor it can

reach. The single requested service is the ability to request a change in the elevator’s position

(its state). Additionally, you must be able to establish the initial floor position when a new

elevator is put into service.

The elevator’s location, which corresponds to its current floor position, can be represented

by an integer member variable with a value ranging between 1 and the highest floor it can

reach. The value of this variable, named currentFloor, represents the elevator’s current

state. The services for changing the elevator’s state are a constructor to set the initial floor

position and the highest floor when a new elevator is put in service and a request method to

change the elevator’s position (state) to a new floor. Putting an elevator into service is accom-

plished by declaring a single class instance (declaring an object of type Elevator), and

requesting a new floor position is equivalent to pushing an elevator button. To perform these

services, the following class declaration is suitable:

//ƒclassƒdeclarationƒsection
classƒElevator
{
ƒƒprivate:
ƒƒƒƒintƒelNum;
ƒƒƒƒintƒcurrentFloor;
ƒƒƒƒintƒhighestFloor;
ƒƒpublic:
ƒƒƒƒElevator(intƒ=ƒ1,ƒintƒ=ƒ1,ƒintƒ=ƒ15);ƒƒƒ//ƒconstructor
ƒƒƒƒvoidƒrequest(int);
};

L_C7785_10.1c 467L_C7785_10.1c 467 1/18/11 10:53 AM1/18/11 10:53 AM

468 Introduction to Classes

This code declares three data members (elNum, currentFloor, and highestFloor) and

two class methods. The first data member, elNum, is used to store the elevator’s number. The

second data member, currentFloor, is used to store the elevator’s current floor position, and

the last data member, highestFloor, is used to store the highest floor the elevator can reach.

As private data members, they can be accessed only through member methods. The two

declared public member methods, Elevator() and request(), are used to define the exter-

nal services each Elevator object provides. The Elevator() method, which has the same

name as its class, becomes a constructor method that’s called automatically when an object of

type Elevator is created. You use this method to initialize the elevator’s number, starting floor

position, and highest floor. The request() method is used to alter the elevator’s position. To

perform these services, the following class implementation section is suitable:

//ƒclassƒimplementationƒsection
Elevator::Elevator(intƒidnum,ƒintƒcfloor,ƒintƒmaxfloor)ƒƒ//ƒconstructor
{
ƒƒintƒelNumƒ=ƒidnum;
ƒƒcurrentFloorƒ=ƒcfloor;
ƒƒhighestFloorƒ=ƒmaxfloor;
}

voidƒElevator::request(intƒnewfloor)ƒƒ//ƒaccessor
{
ƒƒifƒ(newfloorƒ<ƒ1||newfloorƒ>ƒhighestFloor||newfloorƒ==ƒcurrentFloor)
ƒƒƒƒ;ƒ//ƒdoƒnothing
ƒƒelseƒifƒ(newfloorƒ>ƒcurrentFloor)ƒƒ//ƒmoveƒelevatorƒup
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nStartingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒwhileƒ(newfloorƒ>ƒcurrentFloor)
ƒƒƒƒ{
ƒƒƒƒƒƒcurrentFloor++;ƒƒ//ƒaddƒoneƒtoƒcurrentƒfloor
ƒƒƒƒƒƒcoutƒ<<ƒ“ƒGoingƒUpƒ-ƒnowƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒ}
ƒƒƒƒcoutƒ<<ƒ“Stoppingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒ}
ƒƒelseƒ//ƒmoveƒelevatorƒdown
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nStartingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒwhileƒ(newfloorƒ<ƒcurrentFloor)
ƒƒƒƒ{
ƒƒƒƒƒƒcurrentFloor--;ƒƒ//ƒsubtractƒoneƒfromƒcurrentƒfloor
ƒƒƒƒƒƒcoutƒ<<ƒ“ƒGoingƒDownƒ-ƒnowƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒ}
ƒƒƒƒcoutƒ<<ƒ“Stoppingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒ}

ƒƒreturn;
}

L_C7785_10.1c 468L_C7785_10.1c 468 1/18/11 10:53 AM1/18/11 10:53 AM

469Chapter 10
Examples

The constructor is straightforward. When an Elevator object is created, its elevator num-

ber can be set, it can be initialized to a specified floor, and its highest floor can be specified; if

no values are supplied, it’s given a default elevator number of 1, its initial floor is set as the first

floor, and the highest floor is set to 15. For example, the declaration

Elevatorƒa;

uses all three default argument values provided by the constructor. The variable a.elNum is

set to 1, the variable a.currentFloor is set to 1, and the variable a.highestFloor is set to

15. The declaration

Elevatorƒa(2,ƒ4,ƒ20);

initializes an elevator to have the number 2, starts the elevator at the 4th floor, and designates

that the highest floor this elevator can reach is the 20th floor.

The request() method defined in the implementation section is more complicated and

provides the class’s primary service. Essentially, it consists of an if-else statement with three

parts: If an incorrect floor is requested, no action is taken; if a floor above the current position

is selected, the elevator is moved up; and if a floor below the current position is selected, the

elevator is moved down. For movement up or down, the method uses a while loop to incre-

ment the position one floor at a time and reports the elevator’s movement by using a cout

statement. Program 10.6 includes this class in a working program. To see how this class is used,

concentrate on the main() function.

 Program 10.6

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒElevator
{
ƒƒprivate:
ƒƒƒƒintƒelNum;
ƒƒƒƒintƒcurrentFloor;ƒ
ƒƒƒƒintƒhighestFloor;
ƒƒpublic:
ƒƒƒƒElevator(intƒ=ƒ1,ƒintƒ=ƒ1,ƒintƒ=ƒ15);ƒƒ//ƒconstructor
ƒƒƒƒvoidƒrequest(int);
};

//ƒclassƒimplementationƒsection
Elevator::Elevator(intƒidnum,ƒintƒcfloor,ƒintƒmaxfloor)

☞

L_C7785_10.1c 469L_C7785_10.1c 469 1/18/11 10:53 AM1/18/11 10:53 AM

470 Introduction to Classes

{
ƒƒelNumƒ=ƒidnum;
ƒƒcurrentFloorƒ=ƒcfloor;
ƒƒhighestFloorƒ=ƒmaxfloor;
}
voidƒElevator::request(intƒnewfloor)
{

ƒifƒ(newfloorƒ<ƒ1ƒ||ƒnewfloorƒ>ƒhighestFloorƒ||ƒnewfloorƒ==ƒcurrentFloor)
ƒƒƒƒ;ƒƒ//ƒdoƒnothing
ƒƒelseƒifƒ(newfloorƒ>ƒcurrentFloor)ƒ//ƒmoveƒelevatorƒup
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nElevatorƒ“ƒ<<ƒelNum
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒstartingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒwhileƒ(newfloorƒ>ƒcurrentFloor)
ƒƒƒƒ{
ƒƒƒƒƒƒcurrentFloor++;ƒ//ƒaddƒoneƒtoƒcurrentƒfloor
ƒƒƒƒƒƒcoutƒ<<ƒ“ƒGoingƒUpƒ-ƒnowƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒ}
ƒƒƒƒcoutƒ<<ƒ“Elevatorƒ“ƒ<<ƒelNum
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒstoppingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒ}
ƒƒelseƒ//ƒmoveƒelevatorƒdown
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nElevatorƒ“ƒ<<ƒelNum
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒstartingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒwhileƒ(newfloorƒ<ƒcurrentFloor)
ƒƒƒƒ{
ƒƒƒƒƒƒcurrentFloor--;ƒƒƒ//ƒsubtractƒoneƒfromƒcurrentƒfloor
ƒƒƒƒƒƒcoutƒ<<ƒ“ƒGoingƒDownƒ-ƒnowƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒƒƒ}
ƒƒƒƒcoutƒ<<ƒ“Elevatorƒ“<<ƒelNum
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒStoppingƒatƒfloorƒ“ƒ<<ƒcurrentFloorƒ<<ƒendl;
ƒƒ}
ƒƒreturn;
}

intƒmain()
{
ƒƒElevatorƒa;ƒƒƒ//ƒdeclareƒ1ƒobjectƒofƒtypeƒElevator

ƒƒa.request(6);
ƒƒa.request(3);

ƒƒreturnƒ0;
}

L_C7785_10.1c 470L_C7785_10.1c 470 1/18/11 10:53 AM1/18/11 10:53 AM

471Chapter 10
Examples

Three class method calls are included in the main() function. The first statement creates

an object named a of type Elevator. Because no floor has been given, the constructor’s

default arguments are used. This means the elevator is designated as elevator number 1, it

begins operation at floor 1, and can go up to only the 15th floor. A request is then made to move

the elevator to floor 6, which is followed by a request to move to floor 3. Program 10.6 pro-

duces the following output:

Elevatorƒ1ƒstartingƒatƒfloorƒ1
ƒƒGoingƒUpƒ-ƒnowƒatƒfloorƒ2
ƒƒGoingƒUpƒ-ƒnowƒatƒfloorƒ3
ƒƒGoingƒUpƒ-ƒnowƒatƒfloorƒ4
ƒƒGoingƒUpƒ-ƒnowƒatƒfloorƒ5
ƒƒGoingƒUpƒ-ƒnowƒatƒfloorƒ6
Elevatorƒ1ƒstoppingƒatƒfloorƒ6

Elevatorƒ1ƒstartingƒatƒfloorƒ6
ƒƒGoingƒDownƒ-ƒnowƒatƒfloorƒ5
ƒƒGoingƒDownƒ-ƒnowƒatƒfloorƒ4
ƒƒGoingƒDownƒ-ƒnowƒatƒfloorƒ3
Elevatorƒ1ƒstoppingƒatƒfloorƒ3

In Program 10.6, notice the control the main() function provides. This sequential control,

with two calls made to the same object operation and using different argument values, is suit-

able for testing purposes. However, by incorporating calls to request() inside a while loop

and using the random number function rand() to generate random floor requests, a continu-

ous simulation of the elevator’s operation is possible (see Exercise 6).

 EXERCISES 10.4

1. (Practice) Enter and run Program 10.5 on your computer.

2. (Modify) Modify the main() function in Program 10.5 to create a second room with a length

of 9 and a width of 12. Have the program calculate this new room’s area.

Point of Information
Encapsulation

The term encapsulation refers to packaging a number of items into a single unit. For
example, a function is used to encapsulate the details of an algorithm. Similarly, a class
encapsulates variables and methods together in a single package. Although “encapsula-
tion” is sometimes used to refer to the process of data hiding, this usage isn’t technically
accurate. The terms “information hiding” refers to encapsulating and hiding all imple-
mentation details.

L_C7785_10.1c 471L_C7785_10.1c 471 1/18/11 10:53 AM1/18/11 10:53 AM

472 Introduction to Classes

3. (Modify) a. Modify the main() function in Program 10.5 to create four rooms: hall, kitchen,

dining room, and living room. The dimensions for these rooms are as follows:

Hall: length = 12.40, width = 3.5
Kitchen: length = 14, width = 14
Living room: length = 12.4, width = 20
Dining room: length = 14, width = 10.5.

 Your program should display the area of each room and the total area of all four rooms combined.

4. (Practice) Enter and run Program 10.6 on your computer.

5. (Modify) a. Modify the main() function in Program 10.6 to put a second elevator in service

starting at the 5th floor and have a maximum floor of 20. Have this second elevator move to

the 1st floor and then move to the 12th floor.

b. Verify that the constructor is called by adding a message in it that’s displayed each time a

new object is created. Run your program to verify its operation.

6. (Modify) Modify the main() function in Program 10.6 to use a while loop that calls the

Elevator’s request() method with a random number between 1 and 15. If the random

number is the same as the elevator’s current floor, generate another request. The while loop

should terminate after five valid requests have been made and be satisfied by movement of

the elevator. (Hint: Review Section 6.8 about the use of random numbers.)

7. (Program) Construct a class named Light that simulates a traffic light. The class’s color

attribute should change from Green to Yellow to Red and then back to Green by using the

class’s change() method. When a new Light object is created, its initial color should be Red.

8. (Program) a. Construct a class definition to represent an employee of a company. Each

employee is defined by an integer ID number, a double-precision pay rate, and the maximum

number of hours the employee should work each week. The class should provide these ser-

vices: the capability to enter data for a new employee, the capability to change data for a new

employee, and the capability to display existing data for a new employee.

b. Include the class definition created for Exercise 8a in a working C++ program that asks the

user to enter data for three employees and then displays the entered data.

c. Modify the program written for Exercise 8b to include a menu that offers the user the fol-

lowing choices:

1. Add an employee

2. Modify employee data

3. Delete an employee

4. Exit this menu

 In response to the user’s choice, the program should initiate an action to implement the

choice.

L_C7785_10.1c 472L_C7785_10.1c 472 1/18/11 10:53 AM1/18/11 10:53 AM

473Chapter 10
Class Scope and Duration Categories

9. (Program) a. Construct a class definition to represent types of food. A type of food is classi-

fied as basic or prepared. Basic foods are further classified as Dairy, Meat, Fruit, Vegetable,

or Grain. The class should provide these services: the capability to enter data for a new food,

the capability to change data for a new food, and the capability to display existing data for a

new food.

b. Include the class definition created for Exercise 9a in a working C++ program that asks the

user to enter data for four food items and then displays the entered data.

c. Modify the program written for Exercise 9b to include a menu that offers the user the fol-

lowing choices:

1. Add a food item

2. Modify a food item

3. Delete a food item

4. Exit this menu

 In response to the user’s choice, the program should initiate an action to implement the

choice.

10.5 Class Scope and Duration Categories

As you learned in Section 6.4, the scope of an identifier defines the portion of a program where

the identifier is valid. There are two categories of scope: local and global. In addition, each

identifier has a duration, which refers to the length of time storage locations are reserved for

the variable or method the identifier names (see Section 6.5).

Just as a variable is local to the method that declares it, class data members are local to the

class in which they’re declared. This means class data members are known only within the class,

which includes the class methods. Similarly, just as a method’s local variable always takes pre-

cedence over a global variable having the same name, a class data member takes precedence

over a global variable of the same name. Additionally, class method names are local to the class

they’re declared in and can be used only by objects declared for the class. Figure 10.4 illustrates

these scope rules for the following declarations:

doubleƒrate;ƒƒƒƒ//ƒglobalƒscope
//ƒclassƒdeclarationƒsection
classƒTest
{
ƒƒprivate:
ƒƒƒƒdoubleƒamount,ƒprice,ƒtotal;ƒƒƒƒ//ƒclassƒscope
ƒƒpublic:
ƒƒƒƒdoubleƒextend(double,ƒdouble);ƒƒ//ƒclassƒscope
};

L_C7785_10.1c 473L_C7785_10.1c 473 1/18/11 10:53 AM1/18/11 10:53 AM

474 Introduction to Classes

double Test::extend(double amt, double pr)
{

amount= amt;
price = pr;
total = rate * amount * price;

}

Local (Block)
Scope

Class
scope

Local (block)
scope

Local (Block)
Scope
Class
scope

Local (Block)
Scope

Global (file)
scope

Local (Block)
Scope

Global (file)
scope

Local (Block)
Scope
Class
scope

Figure 10.4 Examples of scopes

Static Class Members
As each class object is created, it gets its own block of memory for its data members. In some

cases, however, it’s convenient for every created object to share the same memory location for

a specific variable. For example, in a class consisting of employee payment information, each

employee is subject to the same social security tax rate. Clearly, you could make the tax rate a

global variable, but this method isn’t very safe. As a global variable, the data could be modified

anywhere in the program or could conflict with an identical variable name of local scope, and

making it a global variable also violates C++’s principle of data hiding.

C++ handles this situation by declaring a class variable to be static. Static class variables

share the same storage space for all class objects; in this way, they act as global variables for the

class and provide a means of communication between objects. C++ requires declaring static class

variables in the class declaration section. Memory allocation for these variables is then allocated

(that is, the variables are actually created) outside the class declaration section. For example,

take a look at this class declaration, in which a static variable named taxRate is declared:

//classƒdeclarationƒsection
classƒEmployee
{
ƒƒprivate:
ƒƒƒƒstaticƒdoubleƒtaxRate;
ƒƒƒƒintƒidNum;
ƒƒpublic:
ƒƒƒƒEmployee(int);ƒƒƒ//constructor
ƒƒƒƒvoidƒdisplay();ƒƒ//ƒaccessorƒmethod
};

Having been declared in the class declaration section, the static variable taxRate must

then be defined (that is, created) outside the declaration section. A statement such as the fol-

lowing can be used to define taxRate:

doubleƒEmployee::taxRateƒ=ƒ0.07;ƒƒ//ƒdefinesƒandƒinitializesƒtaxRate

L_C7785_10.1c 474L_C7785_10.1c 474 1/18/11 10:53 AM1/18/11 10:53 AM

475Chapter 10
Class Scope and Duration Categories

In this statement, the scope resolution operator, ::, is used to identify taxRate as a data

member of the class Employee, and the static keyword isn’t included. In addition, the ini-

tialization of taxRate in this definition statement isn’t required. Assigning a value to taxRate

can be done anywhere after its definition statement. Program 10.7 uses this definition in the

context of a complete program.

 Program 10.7

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒEmployee
{
ƒƒprivate:
ƒƒƒƒstaticƒdoubleƒtaxRate;
ƒƒƒƒintƒidNum;
ƒƒpublic:
ƒƒƒƒEmployee(intƒ=ƒ0);ƒƒƒ//ƒconstructor
ƒƒƒƒvoidƒdisplay();ƒƒƒƒƒƒ//ƒaccessorƒmethod
};
//ƒstaticƒmemberƒdefinition
doubleƒEmployee::taxRateƒ=ƒ0.07;ƒƒƒ//ƒdefinesƒandƒinitializesƒtaxRate
//ƒclassƒimplementationƒsection
Employee::Employee(intƒnum)
{
ƒƒidNumƒ=ƒnum;
}
voidƒEmployee::display()
{
ƒƒcoutƒ<<ƒ“Employeeƒnumberƒ“ƒ<<ƒidNum
ƒƒƒƒƒƒƒ<<ƒ“ƒhasƒaƒtaxƒrateƒofƒ“ƒ<<ƒtaxRateƒ<<ƒendl;
ƒƒreturn;
}

intƒmain()
{
ƒƒEmployeeƒemp1(11122),ƒemp2(11133);

ƒƒemp1.display();
ƒƒemp2.display();

ƒƒreturnƒ0;
}

L_C7785_10.1c 475L_C7785_10.1c 475 1/18/11 10:53 AM1/18/11 10:53 AM

476 Introduction to Classes

The output produced by Program 10.7 is as follows:

Employeeƒnumberƒ11122ƒhasƒaƒtaxƒrateƒofƒ0.07
Employeeƒnumberƒ11133ƒhasƒaƒtaxƒrateƒofƒ0.07

After the definition for taxRate is made, any other definition results in an error. Therefore,

the actual definition of a static data member remains the responsibility of the class creator, and

a compiler error occurs if this definition is omitted.

Figure 10.5 illustrates the storage sharing produced by the static data member and the

objects created in Program 10.7.

Local (Block)
Scope
idNumLocal (Block)

Scope
idNum

Local (Block)
ScopetaxRate

emp1 emp2

(Local to object)(Local to object)

(Global to class)

Figure 10.5 Sharing the static data member taxRate

In addition to static data members, static member methods can be created. These meth-

ods apply to a class as a whole instead of to specific objects. Therefore, they’re not called by

an object and can access only static data members and other static member methods of the

class. Program 10.8 includes an example of a static member method. Notice that the call to

the static member method dispRate() inƒmain() is preceded by its class name, not an

object name.

 Program 10.8

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒEmployee
{
ƒƒprivate:
ƒƒƒƒstaticƒdoubleƒtaxRate;
ƒƒƒƒintƒidNum;

☞

L_C7785_10.1c 476L_C7785_10.1c 476 1/18/11 10:53 AM1/18/11 10:53 AM

477Chapter 10
Class Scope and Duration Categories

ƒƒpublic:
ƒƒƒƒEmployee(intƒ=ƒ0);ƒƒƒƒƒƒ//ƒconstructor
ƒƒƒƒvoidƒdisplay();ƒƒƒƒƒƒƒƒƒ//ƒaccessorƒmethod
ƒƒƒƒstaticƒvoidƒdispRate();ƒ//ƒstaticƒmemberƒmethod
};
//ƒstaticƒmemberƒdefinition
doubleƒEmployee::taxRateƒ=ƒ0.07;
//ƒclassƒimplementationƒsection
Employee::Employee(intƒnum)
{
ƒƒidNumƒ=ƒnum;
}
voidƒEmployee::display()
{
ƒƒcoutƒ<<ƒ“Employeeƒnumberƒ“ƒ<<ƒidNum
ƒƒƒƒƒƒƒ<<ƒ“ƒhasƒaƒtaxƒrateƒofƒ“ƒ<<ƒtaxRateƒ<<ƒendl;
ƒƒreturn;
}
voidƒEmployee::dispRate()
{
ƒƒcoutƒ<<ƒ“Theƒstaticƒtaxƒrateƒisƒ“ƒ<<ƒtaxRateƒ<<ƒendl;
ƒƒreturn;
}

intƒmain()
{
ƒƒEmployeeƒemp1(11122),ƒemp2(11133);

ƒƒEmployee::dispRate();ƒƒƒ//ƒcallƒtheƒstaticƒmemberƒmethods
ƒƒemp1.display();
ƒƒemp2.display();

ƒƒreturnƒ0;
}

Program 10.8 produces the following output:

Theƒstaticƒtaxƒrateƒisƒ0.07
Employeeƒnumberƒ11122ƒhasƒaƒtaxƒrateƒofƒ0.07
Employeeƒnumberƒ11133ƒhasƒaƒtaxƒrateƒofƒ0.07

L_C7785_10.1c 477L_C7785_10.1c 477 1/18/11 10:53 AM1/18/11 10:53 AM

478 Introduction to Classes

Friend Functions
The only method you currently have for accessing and manipulating a class’s private vari-

ables is through the class member methods. You can view this arrangement as illustrated in

Figure 10.6a. At times, however, providing access to selected nonmember methods is useful.

private class
data members

class
member methods

Figure 10.6a Direct access provided to member methods

The procedure for providing this external access is simple: The class maintains an

approved list of nonmember methods that are granted the same privileges as its member

methods. The nonmember methods in the list are called friend functions, and the list is

referred to as a friends list.
Figure 10.6b shows using a friends list for nonmember access. Any method attempting

access to an object’s private variables is first checked against the friends list: If the method is

on the list, access is approved; otherwise, access is denied.

private class
data members

friends
list

A nonmember
 function can gain

access if it’s
on the friends list

class
member
methods

Figure 10.6b Access provided to nonmember methods

From a coding standpoint, the friends list is simply a series of method prototype declara-

tions preceded with the keyword friend and included in the class declaration section. For

example, if the addreal() and addimag() methods are to be allowed access to private mem-

bers of the Complex class, the following prototypes must be included in Complex’s class dec-

laration section:

friendƒdoubleƒaddreal(Complex&,ƒComplex&);
friendƒdoubleƒaddimag(Complex&,ƒComplex&);

L_C7785_10.1c 478L_C7785_10.1c 478 1/18/11 10:53 AM1/18/11 10:53 AM

479Chapter 10
Class Scope and Duration Categories

This friends list consists of two declarations. The prototypes indicate that each method

returns a floating-point number and expects two references to objects of type Complex as argu-

ments. Program 10.9 includes these two friend declarations in a complete program.

 Program 10.9

#includeƒ<iostream>
#includeƒ<cmath>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒComplex
{
ƒƒ//ƒfriendsƒlist
ƒƒfriendƒdoubleƒaddreal(Complex&,ƒComplex&);
ƒƒfriendƒdoubleƒaddimag(Complex&,ƒComplex&);
ƒƒprivate:
ƒƒƒƒdoubleƒreal;
ƒƒƒƒdoubleƒimag;
ƒƒpublic:
ƒƒƒƒComplex(doubleƒ=ƒ0,ƒdoubleƒ=ƒ0);ƒƒ//ƒconstructor
ƒƒƒƒvoidƒdisplay();
};

//ƒclassƒimplementationƒsection
Complex::Complex(doubleƒrl,ƒdoubleƒim)
{
ƒƒrealƒ=ƒrl;
ƒƒimagƒ=ƒim;
}
voidƒComplex::display()
{
ƒƒcharƒsignƒ=ƒ'+';
ƒƒif(imagƒ<ƒ0)ƒsignƒ=ƒ'-';
ƒƒcoutƒ<<ƒrealƒ<<ƒsignƒ<<ƒabs(imag)ƒ<<ƒ'i';
ƒƒreturn;
}

//ƒfriendƒimplementations
doubleƒaddreal(Complexƒ&a,ƒComplexƒ&b)
{
ƒƒreturn(a.realƒ+ƒb.real);
}

☞

L_C7785_10.1c 479L_C7785_10.1c 479 1/18/11 10:53 AM1/18/11 10:53 AM

480 Introduction to Classes

doubleƒaddimag(Complexƒ&a,ƒComplexƒ&b)
{
ƒƒreturn(a.imagƒ+ƒb.imag);
}

intƒmain()
{
ƒƒComplexƒa(3.2,ƒ5.6),ƒb(1.1,ƒ-8.4);
ƒƒdoubleƒre,ƒim;

ƒƒcoutƒ<<ƒ“\nTheƒfirstƒcomplexƒnumberƒisƒ“;
ƒƒa.display();
ƒƒcoutƒ<<ƒ“\nTheƒsecondƒcomplexƒnumberƒisƒ“;
ƒƒb.display();

ƒƒreƒ=ƒaddreal(a,b);
ƒƒimƒ=ƒaddimag(a,b);
ƒƒComplexƒc(re,im);ƒƒ//ƒcreateƒaƒnewƒComplexƒobject
ƒƒcoutƒ<<ƒ“\n\nTheƒsumƒofƒtheseƒtwoƒcomplexƒnumbersƒisƒ“;
ƒƒc.display();

ƒƒreturnƒ0;
}

Program 10.9 produces the following output:

Theƒfirstƒcomplexƒnumberƒisƒ3.2+5.6i
Theƒsecondƒcomplexƒnumberƒisƒ1.1-8.4i
Theƒsumƒofƒtheseƒtwoƒcomplexƒnumbersƒisƒ4.3-2.8i

In reviewing Program 10.9, notice these four points:

• Because friends are not class members, they aren’t affected by the access section in

which they’re declared—they can be declared anywhere in the declaration section. The

convention Program 10.9 follows is to include all friend declarations immediately after

the class header.

• The keyword friend (like the keyword static) is used only in the class declaration,

not in the actual function definition.

• Because a friend function is intended to have access to an object’s private variables,

at least one of the friend’s arguments should be a reference to an object of the class

that made it a friend.

• As Program 10.9 shows, it’s the class that grants friend status to a method, not the

other way around. A method can never confer friend status on itself because doing so

violates the concepts of data hiding and access provided by a class.

L_C7785_10.1c 480L_C7785_10.1c 480 1/18/11 10:53 AM1/18/11 10:53 AM

481Chapter 10
Class Scope and Duration Categories

 EXERCISES 10.5

1. (Modify) a. Rewrite Program 10.8 to include an integer static variable named numemps. This

variable should act as a counter that’s initialized to 0 and incremented by the class constructor

each time a new object is declared. Rewrite the static method dispRate() to display this

counter’s value.

b. Test the program written for Exercise 1a. Have the main() function call dispRate() after

each Employee object is created.

2. (Program) a. Construct a class named Circle containing two integer variables named

xCenter and yCenter and a double-precision variable named radius. Additionally, the class

should contain a static data member named scaleFactor. The xCenter and yCenter values

represent a circle’s center point, radius represents the circle’s actual radius, and scaleFactor

represents a scale factor used to scale the circle to fit on a variety of display devices.

b. Include the class written for Exercise 2a in a working C++ program.

3. (Debug) a. State whether the following three statements in Program 10.9

reƒ=ƒaddreal(a,b);
imƒ=ƒaddimag(a,b);
Complexƒc(re,im);ƒƒ//ƒcreateƒaƒnewƒComplexƒobject

 could be replaced by this single statement:

Complexƒc(addreal(a,b),ƒaddimag(a,b));

b. Verify your answer to Exercise 3a by running Program 10.9 with the suggested replacement

statement.

4. (Modify) a. Rewrite the program written for Exercise 2a, but include a friend function that

multiples an object’s radius by a static scaleFactor and then displays the actual radius value

and the scaled value.

b. Test the program written for Exercise 4a.

5. (Modify) Rewrite Program 10.9 to have only one friend function named addComplex(). This

function should accept two Complex objects and return a Complex object. The real and

imaginary parts of the returned object should be the sum of the real and imaginary parts of the

two objects passed to addComplex().

6. (Program) a. Construct a class named Coord containing two double-precision variables

named xval and yval, used to store the x and y values of a point in rectangular coordinates.

The class methods should include constructor and display methods and a friend function

named convPol(). The convPol() function should accept two double-precision numbers, r

and theta, representing a point in polar coordinates and convert them into rectangular coor-

dinates. For conversion from polar to rectangular coordinates, use these formulas:

x = r cos(theta)
y = r sin(theta)

b. Include the class written for Exercise 6a in a working C++ program.

L_C7785_10.1c 481L_C7785_10.1c 481 1/18/11 10:53 AM1/18/11 10:53 AM

482 Introduction to Classes

10.6 Common Programming Errors

The common programming errors associated with constructing classes are as follows:

1. Failing to terminate the class declaration section with a semicolon.

2. Including a return type with the constructor’s prototype or failing to include a return

type with the other methods’ prototypes.

3. Using the same name for a data member as for a member method.

4. Defining more than one default constructor for a class.

5. Forgetting to include the class name and scope operator, ::, in the header of all mem-

ber methods defined in the class implementation section.

6. Using the static keyword when defining a static data member or member method.

It should be used only in the class declaration section.

7. Using the friend keyword when defining a friend function. It should be used only in

the class declaration section.

8. Failing to instantiate static data members before creating class objects that must access

these data members.

10.7 Chapter Summary
1. A class is a programmer-defined data type. Objects of a class can be defined and have the

same relationship to their class as variables do to C++’s built-in data types.

2. A class definition consists of declaration and implementation sections. The most common

form of a class definition is as follows:

//ƒclassƒdeclarationƒsection
classƒname
{
ƒƒprivate:
ƒƒƒƒ//ƒaƒlistƒofƒvariableƒdeclarations;
ƒƒpublic:
ƒƒƒƒ//ƒaƒlistƒofƒmethodƒprototypes;
};
//ƒclassƒimplementationƒsection
ƒƒƒƒ//ƒclassƒmethodƒdefinitions

 The variables and methods declared in the class declaration section are collectively called

class members. The variables are referred to as class data members, and the methods are

referred to as class member methods. The keywords private and public are access

specifiers. After an access specifier is listed, it remains in force until another access speci-

fier is given. The private keyword specifies that class members following it are private to

the class and can be accessed only by member methods. The public keyword specifies

that the class members following it can be accessed from outside the class. Generally, all

data members should be specified as private and all member methods as public.

L_C7785_10.1c 482L_C7785_10.1c 482 1/18/11 10:53 AM1/18/11 10:53 AM

483Chapter 10
Chapter Summary

3. Class methods listed in the declaration section can be written inline, or their definitions can

be included in the class implementation section. Except for constructor and destructor

methods, all class methods defined in the class implementation section use this form for the

header:

returnTypeƒclassName::methodName(parameterƒlist);

 Except for the addition of the class name and scope operator, ::, which are required to

identify the method name with the class, this header is identical to the one for any user-

written function.

4. A constructor is a special method that’s called automatically each time an object is declared.

It must have the same name as its class and can’t have any return type. Its purpose is to

initialize each declared object.

5. If no constructor is declared for a class, the compiler supplies a default constructor. It’s a

do-nothing method with the definition className::className(void){}.

6. The term “default constructor” refers to any constructor that doesn’t require arguments

when it’s called. The reason it doesn’t require arguments is that no parameters are declared

(as with the compiler-supplied default constructor) or all arguments have been given

default values.

7. Each class can only have one default constructor. If a user-defined constructor is defined,

the compiler doesn’t create a default constructor.

8. Objects are created by using a C++ or C style of declaration. The C++ style of declaration

has the form

classNameƒlist-of-objectNames(listƒofƒinitializers);

 where the listƒofƒinitializers is optional. An example of the C++ style, including

initializers, for a class named Date is as follows:

Dateƒa,ƒb,ƒc(12,25,2012);

 The objects a and b are declared to be of type Date and are initialized by using the default

constructor; the object c is initialized with the values 12, 25, and 2012.

 The equivalent C style of declaration, including the optional list of initializers, has this form:

classNameƒobjectNameƒ=ƒclassName(listƒofƒinitializers);

 An example of the C style for a class named Date is as follows:

Dateƒcƒ=ƒDate(12,25,2012)

 The object c is created and initialized with the values 12, 25, and 2012.

9. Constructors can be overloaded in the same manner as any other user-written C++ method.

10. If a constructor is defined for a class, a user-defined default constructor should also be writ-

ten, as the compiler doesn’t supply it.

L_C7785_10.1c 483L_C7785_10.1c 483 1/18/11 10:53 AM1/18/11 10:53 AM

484 Introduction to Classes

11. A destructor is called each time an object goes out of scope. Destructors must have the

same name as their class but are preceded with a tilde (~). There can be only one destruc-

tor per class.

12. A destructor takes no arguments and returns no value. If a user-defined destructor isn’t

included in a class, the compiler provides a do-nothing destructor.

13. Each class has an associated class scope, which is defined by the brace pair, {}, containing

the class declaration. Data members and member methods are local to the scope of their

class and can be used only by objects declared for the class. If a global variable name is

reused in a class, the global variable is hidden by the class variable. Within the scope of the

class variable, the global variable can be accessed by using the scope resolution operator, ::.

14. For each class object, a separate set of memory locations is reserved for all data members,

except those declared as static. A static data member is shared by all class objects and pro-

vides a means of communication between objects. Static data members must be declared in

the class declaration section and are defined outside the declaration section.

15. Static member methods apply to the class as a whole rather than to separate objects.

Therefore, a static member method can access only static data members and other static

member methods. Any static member methods must be declared in the class declaration

section and are defined outside the declaration section.

16. A nonmember method can access a class’s private data members if it’s granted friend status

by the class. This is done by declaring it as a friend in the class’s declaration section.

Therefore, the class always determines which nonmember methods are friends; a method

can never confer friend status on itself.

10.8 Chapter Supplement: Thinking in Terms of Objects

When solving any problem, often it’s helpful to start by creating a diagram or map or devising

a theoretical analogy for the problem you’re trying to solve. In other words, you need to create

some kind of model. Creating a model helps you see all parts of the problem and helps you

understand what you need to do to solve it.

The first step in constructing an object-based program is developing an object-based

model of the problem. Each class then becomes a description of the model written in C++. For

example, if you’re writing an object-oriented program to calculate the area of a room, the first

step is thinking about a room as an object. This step probably isn’t difficult, and assigning

attributes of length, width, and height to a room correspond to physical characteristics you’re

familiar with. To become a good object-oriented programmer, however, you need to be able to

analyze more complex situations so that you can think of and organize programming problems

as the interaction of different objects. In this section, you explore this object-based concept in

more detail. You also learn how to develop programs systematically by using object-based

models. Figure 10.7 illustrates the concepts discussed in this section.

L_C7785_10.1c 484L_C7785_10.1c 484 1/18/11 10:53 AM1/18/11 10:53 AM

485Chapter 10
Chapter Supplement: Thinking in Terms of
Objects

A
problem

or
item

Identify
objects

Define
attributes

and
behavior

Class
specifications

Construct
data and
method

specifications

Code

Create
a

C++
class

Object-based
class

Object
description

Figure 10.7 A class is a programming-language description of a model

Representing Problems with Models
Formally, a model is a representation of a problem. The first step in creating an object-based

model is to begin “thinking in objects.” For example, if you want to know the result of tossing

a coin 100 times, you can certainly do so by tossing a real coin. However, if a coin could be

modeled accurately, you could find the result by writing a program to simulate a coin toss.

Similarly, a game of solitaire could be simulated if a realistic model of a deck of cards could be

created and if methods such as shuffling the deck could be coded.

Objects, such as coins, cards, and more complicated graphical objects, are well suited to a

programming representation because they can be modeled by two basic characteristics: attri-

butes and behaviors. Attributes define the properties of interest, and behaviors define how the

object reacts to its environment. When designing and developing an object-oriented program,

you need to follow these two steps:

1. Identify the required objects.

2. For each object:

 a. Identify the attributes of interest.

 b. Identify the behaviors (operations) of interest.

To make this process more tangible, think about a coin-tossing experiment. Step 1 tells

you to identify the required objects. For this experiment, the object is a coin. Step 2 tells you

to identify the relevant attributes and behaviors. In terms of attributes, a coin has a denomina-

tion, size, weight, color, condition (tarnished, worn, proof), country of origin, and side (head or

tail). If you’re purchasing a coin for collectible purposes, you’re interested in all these attri-

butes but the side. For a coin toss, however, the only attribute that’s of interest is the side; it

doesn’t matter whether the coin is a penny or a quarter, copper or silver, or tarnished or not. In

terms of modeling a coin for a coin-tossing experiment, the only attribute you must consider

is what side is visible when the coin is tossed. It’s important to understand the significance of

the choice of attributes. Very few models include every aspect of the objects they represent; a

model should include only attributes that are relevant to the problem.

Having determined the attributes to use in modeling a coin, the next step requires iden-

tifying the behavior this object should exhibit. In this case, you must have a means of simulat-

ing a toss and determining the side that faces up when the toss is completed.

Figure 10.8 summarizes the initial results of the two steps in developing the object-oriented

coin toss program: It identifies the required object and lists its relevant attributes and behaviors.

This diagram is called an object description. It doesn’t tell you everything there is to know about

a coin, only what you need to know to create a coin toss program. For programming purposes,

this description must be translated into a programming language, whether it’s C++ or another

object-oriented language.

L_C7785_10.1c 485L_C7785_10.1c 485 1/18/11 10:53 AM1/18/11 10:53 AM

486 Introduction to Classes

Object: A coin

Attributes: Side (head or tail)

Behavior: Landing with heads up or tails up

Figure 10.8 An initial coin object description

As you expand your design for a program, often you have to refine and expand the object

description. Refinement, or improving and modifying the model, is almost always required for

all but extremely simple problems. In Section 12.6, you learn about a more structured approach

to modeling, based on a methodology known as the Unified Modeling Language (UML). This

methodology, like all object-oriented design and development techniques, requires identify-

ing the necessary objects and then identifying the objects’ attributes and behaviors. After you

build a model, you must then translate it into C++. The main point of this book is to teach you

how to do just that. Your job as a programmer, however, will be much easier if you take the time

first to master the techniques for modeling a program.

Modeling Classes
Identifying the objects to be used in a program is only the first step in the modeling process.

Attributes and behaviors actually define a category or type of object, out of which many objects

can then be designated. For example, suppose you want to display a geometric object, such as

a rectangle, onscreen. In its simplest representation, a rectangle has a shape and location,

which can be represented by the object description in Figure 10.9.

Object: Rectangle

Attributes: shape
 location

Figure 10.9 An initial rectangle object description

Now you can refine this model to define more accurately what’s meant by shape and loca-

tion. A rectangle’s shape attribute can actually be broken down into two more specific attri-

butes: length and width. As for the behavior listed in Figure 10.9 (location), you can also

break it down into more specific behaviors. For example, one approach might be listing the

position of the rectangle’s upper-left corner in relation to the screen’s upper-left corner, and

then do the same for the rectangle’s upper-right corner. These two positions, along with the

rectangle’s length and width, are enough information to allow the program to generate a rect-

angle. However, simply specifying one location for the rectangle might not be enough. For

example, you might want to give the rectangle the capability to move its position and change

its length or width. Figure 10.10 shows a refined object description that takes this additional

behavior into account.

L_C7785_10.1c 486L_C7785_10.1c 486 1/18/11 10:53 AM1/18/11 10:53 AM

487Chapter 10
Chapter Supplement: Thinking in Terms of
Objects

Object: Rectangle

Attributes: length
 width
 top-left corner
 opposite corner

Behavior: move
change length
change width

Figure 10.10 A refined rectangle object description

As you’ve seen, in object-based programming, the category of objects defined by a set of

attributes and behaviors is called a class. For example, the length and width attributes can

define a general type of shape, or class, called a rectangle. Only when specific values have been

assigned to these attributes have you represented a specific rectangle. This distinction carries

over into C++. The attributes and behaviors in an object description are used to define a gen-

eral class, or type, of object. An object comes into existence only when you assign specific

values to attributes. The term “state” is then used to refer to how the created object appears

at any one moment.

In practice, an object’s state is defined by the values assigned to its attributes. For exam-

ple, you can specify a rectangle’s state by saying that its width is 1 inch, its length is 2 inches,

its upper-left corner is positioned 4 inches from the top of the screen and 5 inches from the

screen’s left side, and its opposite corner is positioned 5 inches from the top of the screen and

7 inches from the screen’s left side. Figure 10.11 shows a rectangle with this state.

5"

Top of screen

4"
5"

7"

Figure 10.11 Defining a rectangle’s state

Finally, when each object is created, it must be given an identity—a name by which it can

be uniquely identified in a program. This is similar to giving each car a vehicle identification

number (VIN) when it’s assembled or giving a different name to each person in a family.

Objects are given names by declaration statements, which also create the object.

The fundamental difference between object-oriented and procedural programs is the

model on which they’re based, and as you program, you should be aware of this difference. The

essence of object-oriented design is constructing and testing classes that can be used by any

other class or program to create as many objects as needed and provide the methods that allow

manipulating these objects in a useful manner. Therefore, in object-oriented programming, the

L_C7785_10.1c 487L_C7785_10.1c 487 1/18/11 10:53 AM1/18/11 10:53 AM

488 Introduction to Classes

emphasis is on the attributes and behavior of objects. In procedure-oriented programming, no

objects are created or named. The emphasis is always on the operations to be performed, such

as add, multiply, and divide, and in creating methods to perform calculations by using these

operations.

Because procedural programs can be helpful when learning how to use C++ statements,

methods, or streams, such as cout, you use and create procedural programs in this book. In

fact, you have already used these programs—all the program listings in chapters are proce-

dural programs. You might also find these programs useful for constructing output quickly for

simple programming problems in your professional work. However, be aware that relying on

procedural programming too much can be detrimental for serious programmers, who eventu-

ally must address more complex programming situations. So even when creating a procedural

program is convenient, at least contemplate how you might construct a programming solution

with objects.

 EXERCISES 10.8

1. (Review) Define the following terms:

a. Attribute b. Behavior

c. Class d. Identity

e. Model f. Object

g. Object description h. State

i. Value j. Operation

2. (Practice) Classify each of the following as classes or objects:

a. Maple trees b. Ford cars

c. My collie dog d. The oak tree in your neighbor’s yard

e. Boeing 767 planes f. Your Ford Taurus

g. Kitchen tables h. Student desks

i. The chair you’re sitting on

3. (Practice) a. For each of the following, determine what attributes might be of interest to

someone buying the item:

 i. A book

 ii. A can of soda

 iii. A pen

 iv. An elevator

 v. A car

b. Do the attributes you used in Exercise 4a model an object or a class of objects?

L_C7785_10.1c 488L_C7785_10.1c 488 1/18/11 10:53 AM1/18/11 10:53 AM

489Chapter 10
Chapter Supplement: Thinking in Terms of
Objects

4. (Practice) For each of the following, determine what behavior might be of interest to some-

one buying the item.

a. A car

b. An elevator

5. (Practice) a. List five attributes for a character in a video game.

b. List five behaviors that a character in a video game should have.

[Add the following as the last exercise:]

6. (Practice) a. List the attributes and behaviors of interest in a program that simulates dealing

a hand of playing cards. For this exercise, use any card game you’re familiar with.

b. What attributes of cards wouldn’t be of interest for purposes of the simulation?

L_C7785_10.1c 489L_C7785_10.1c 489 1/18/11 10:53 AM1/18/11 10:53 AM

11 11.1 Creating Class Operators

 11.2 How Methods Are Shared

 11.3 Data Type Conversions

 11.4 Two Useful Alternatives:
operator() and operator[]

 11.5 Common Programming Errors

 11.6 Chapter Summary

 11.7 Chapter Supplement: Insides and
Outsides

Creating a class requires providing the capabilities to declare, initialize, assign, manipulate, and display
data members. In Chapter 10, you learned about declaring, initializing, and displaying objects. In this
chapter, you see how to create operator and conversion capabilities similar to those inherent in C++’s
built-in types. With these additions, your classes will have all the functionality of built-in types.

11.1 Creating Class Operators

C+ provides operators for its built-in data types, such as +, -, ==, >=, and so on, and you can

make these operators available to your constructed classes. To do this, you have to select a

suitable operator symbol, and then alter it to work with objects defined by your class. You must

select an operator symbol for class use from the built-in symbols listed in Table 11.1. These

symbols can be adopted for class use with no limitation in their meaning by creating a class

method or a friend function; both are discussed in this section.

Chapter

Adding Functionality
to Your Classes

M_C7785_11.1c 491M_C7785_11.1c 491 1/18/11 10:53 AM1/18/11 10:53 AM

492 Adding Functionality to Your Classes

Table 11.1 Operators Available for Class Use

Operator Description
() Function call (see Section 11.4)
[] Array element (see Section 11.4)
-> Structure member pointer reference
new Dynamic allocation of memory
delete Dynamic deallocation of memory
++ Increment
-- Decrement
- Unary minus
! Logical negation
~ Ones complement
* Indirection
* Multiplication
/ Division
% Modulus (remainder)
+ Addition
- Subtraction
<< Left shift
>> Right shift
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
!= Not equal to
&& Logical AND
|| Logical OR
& Bit-by-bit AND
^ Bit-by-bit exclusive OR
| Bit-by-bit inclusive OR
=
+=ƒƒ-=ƒƒ*=
/=ƒƒ%=ƒƒ&=
^=ƒƒ|=
<<=ƒƒ>>=

Assignment

, Comma

The first step in providing a class with operators from Table 11.1 is to decide which

operations make sense for the class and how they should be defined. As an example, you’ll

continue building on the Date class introduced in Chapter 10.

M_C7785_11.1c 492M_C7785_11.1c 492 1/18/11 10:53 AM1/18/11 10:53 AM

493Chapter 11
Creating Class Operators

Clearly, the addition of two dates isn’t meaningful. The addition of a date and an integer,

however, does make sense if the integer is taken as the number of days to be added to the date.

Likewise, subtracting an integer from a date makes sense. Also, the subtraction of two dates is

meaningful if you define the difference to mean the number of days between the two dates.

Similarly, it makes sense to compare two dates and determine whether the dates are equal or

one date occurs before or after another date. Now see how two of these operators, == and +,

can be adapted for use with the Date class.

Operations on class objects that use C++’s built-in operator symbols are referred to as

operator functions. Operator functions are declared and implemented in the same manner as

all member functions, with one exception: The function name must use the form

operator<symbol>, where <symbol> is an operator symbol in Table 11.1. For example, the

function name operator+ is the name of a class addition function, and the function name

operator== is the name of a class comparison function. It’s important to understand that an

operator function can be redefined to perform any operation. Good programming practice,

however, dictates writing a function to actually perform the operation implied by the func-

tion’s name.

After the function name is selected, the process of writing the function simply amounts to

having it accept inputs and produce the correct returned value. For example, to compare two

Date objects for equality, you select C++’s equality operator (==), and the function name

becomes operator==. For the Date class, this comparison operation should accept two Date

objects, compare them, and return a Boolean value indicating the result of the comparison: true

for equality and false for inequality. A suitable prototype for this operator function is as follows:

boolƒoperator==(constƒDate&);ƒƒ//passƒaƒreferenceƒtoƒaƒDateƒobject

This prototype indicates the function is named operator==, it returns a Boolean value,

and it accepts a reference to a Date object.1 The use of a reference parameter isn’t accidental.

One of the main reasons for references in C++ is to facilitate the construction of overloaded

operators. The reason is that references make notation in the function more natural than when

using pointers. Including the const keyword ensures that the passed reference can’t be altered

by the function. This prototype must be included in the Date class’s declaration section.

Now see how to write the function definition for the operator to include in the class imple-

mentation section. For the Date class, the following definition is suitable:

boolƒDate::operator==(constƒDate&ƒdate2)
{
ƒƒif(dayƒ==ƒdate2.dayƒ&&ƒmonthƒ==ƒdate2.monthƒ&&ƒyearƒ==ƒdate2.year)
ƒƒƒƒreturnƒtrue;
ƒƒelse
ƒƒƒƒreturnƒfalse;
}

1The prototype boolƒoperator==(Date) works, too. Passing a reference, however, is preferable to passing an object because it

reduces the function call’s overhead by giving the function access to the object whose address is passed. Overhead is reduced because

passing an address means a copy of the object isn’t made for the called function.

M_C7785_11.1c 493M_C7785_11.1c 493 1/18/11 10:53 AM1/18/11 10:53 AM

494 Adding Functionality to Your Classes

After this function has been defined, it can be called by using the relational expressions

aƒ==ƒb or a.operator==(b), assuming both a and b are Date objects. More typically, it’s

used in a conditional expression, such as ifƒ(aƒ==ƒb). Program 11.1 includes this if state-

ment and the operator function in the context of a complete program. The shaded lines indi-

cate statements pertaining to the operator function.

 Program 11.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒ//ƒconstructor
ƒƒƒƒboolƒoperator==(Date&);ƒƒ//ƒprototypeƒforƒtheƒoperator==ƒfunction
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

boolƒDate::operator==(Date&ƒdate2)
{
ƒƒif(dayƒ==ƒdate2.dayƒ&&ƒmonthƒ==ƒdate2.monthƒ&&ƒyearƒ==ƒdate2.year)
ƒƒƒƒreturnƒtrue;
ƒƒelse
ƒƒƒƒreturnƒfalse;
}

intƒmain()
{
ƒƒDateƒa(4,1,2012),ƒb(12,18,2010),ƒc(4,1,2012);ƒ//ƒdeclareƒ3ƒobjects

☞

M_C7785_11.1c 494M_C7785_11.1c 494 1/18/11 10:53 AM1/18/11 10:53 AM

495Chapter 11
Creating Class Operators

ƒƒifƒ(aƒ==ƒb)
ƒƒƒƒcoutƒ<<ƒ“Datesƒaƒandƒbƒareƒtheƒsame.”ƒ<<ƒendl;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“Datesƒaƒandƒbƒareƒnotƒtheƒsame.”ƒ<<ƒendl;
ƒƒifƒ(aƒ==ƒc)
ƒƒƒƒcoutƒ<<ƒ“Datesƒaƒandƒcƒareƒtheƒsame.”ƒ<<ƒendl;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“Datesƒaƒandƒcƒareƒnotƒtheƒsame.”ƒ<<ƒendl;
ƒreturnƒ0;
}

The following output is produced by Program 11.1:

Datesƒaƒandƒbƒareƒnotƒtheƒsame.
Datesƒaƒandƒcƒareƒtheƒsame.

The first new feature shown in Program 11.1 is the declaration and implementation of the

operator== function. Except for its name, this operator function is constructed in the same

manner as any other class method: It’s declared in the class declaration section and defined in

the class implementation section.

The second new feature is how the function is called. Operator functions can be called

by using their associated symbols. Because operator functions are true functions, however, the

traditional method of calling them can also be used—specifying the function name and

including appropriate arguments. Therefore, instead of being called by the expression aƒ==ƒb

in Program 11.1, the call a.operator==(b) could have been used.

Now see how to create another operator for the Date class—an addition operator. As

before, creating this operator requires specifying three items:

• The name of the operator function

• The processing the function is to perform

• The data type, if any, the function is to return

Clearly, for addition you would use the addition symbol with the operator function name:

operator+. Having selected the function’s name, you must then determine what you want this

function to do with Date objects. As noted, adding two dates makes no sense. Adding an integer

to a date is meaningful, however, when the integer represents the number of days before or

after a given date. The sum of an integer and a Date object is simply another Date object,

which should be returned by the addition operation. Therefore, the following prototype is suit-

able for the addition function:

Dateƒoperator+(int);

This prototype, included in the class declaration section, specifies adding an integer to a

class object and returning a Date object. Therefore, if a is a Date object, the function call

a.operator+(284), or its more common alternative, aƒ+ƒ284, should cause the number 284

to be added to a’s date value correctly.

Next, you must construct the function to accomplish this task, which requires selecting a

calendar convention first. For simplicity, adopt the financial date convention of each month

M_C7785_11.1c 495M_C7785_11.1c 495 1/18/11 10:53 AM1/18/11 10:53 AM

496 Adding Functionality to Your Classes

consisting of 30 days and each year consisting of 360 days. Using this convention, the function

adds an integer number of days to the Date object’s day value, and then adjusts the resulting

day value to fall in the range 1 to 30 and the month value to fall in the range 1 to 12. The fol-

lowing function accomplishes these tasks:

DateƒDate::operator+(intƒdays)
{
ƒƒDateƒtemp;ƒƒ//ƒaƒtemporaryƒDateƒtoƒstoreƒtheƒresult

ƒƒtemp.dayƒ=ƒdayƒ+ƒdays;ƒƒƒ//ƒaddƒtheƒdays
ƒƒtemp.monthƒ=ƒmonth;
ƒƒtemp.yearƒ=ƒyear;

ƒƒwhileƒ(temp.dayƒ>ƒ30)ƒƒƒƒ//ƒadjustƒtheƒmonths
ƒƒ{
ƒƒƒƒtemp.month++;
ƒƒƒƒtemp.dayƒ-=ƒ30;
ƒƒ}
ƒƒwhileƒ(temp.monthƒ>ƒ12)ƒƒ//ƒadjustƒtheƒyears
ƒƒ{
ƒƒƒƒtemp.year++;
ƒƒƒƒtemp.monthƒ-=ƒ12;
ƒƒ}

ƒƒreturnƒtemp;ƒƒƒƒƒ//ƒtheƒvaluesƒinƒtempƒareƒreturned
}

The important feature to notice is the use of the temp object. Its purpose is to ensure that

the function doesn’t alter the object on the right side of the assignment statement. To under-

stand this point, consider a statement such as newDateƒ=ƒoldDateƒ+ƒ284; that uses this

operator function; newDate and oldDate are Date objects. This statement should never

modify oldDate’s value, which the function has access to.2 Rather, the expression

oldDateƒ+ƒ284 should yield a new date value that’s then assigned to newDate. This new

Date object is named temp in the operator function and becomes the Date object returned by

the operator+() function, which is then assigned to newDate. Program 11.2 uses this func-

tion in the context of a complete program. Statements relating to the operator function have

been shaded.

2Another way of looking at this is that the expression oldDateƒ+ƒ284 is the same as the expression oldDate.operator+(284).

Therefore, the day, month, and year variables in the operator function are oldDate’s data members. Any changes to these variables

are changes to oldDate.

M_C7785_11.1c 496M_C7785_11.1c 496 1/18/11 10:53 AM1/18/11 10:53 AM

497Chapter 11
Creating Class Operators

 Program 11.2

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒƒƒ//ƒconstructor
ƒƒƒƒDateƒoperator+(int);ƒ//ƒprototypeƒforƒtheƒ+ƒoperatorƒfunction
ƒƒƒƒvoidƒshowDate();ƒƒƒƒƒ//ƒmemberƒfunctionƒtoƒdisplayƒaƒdate
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

DateƒDate::operator+(intƒdays)
{
ƒƒDateƒtemp;ƒƒ//ƒaƒtemporaryƒdateƒtoƒstoreƒtheƒresult

ƒƒtemp.dayƒ=ƒdayƒ+ƒdays;ƒƒƒ//ƒaddƒtheƒdays
ƒƒtemp.monthƒ=ƒmonth;
ƒƒtemp.yearƒ=ƒyear;

ƒƒwhileƒ(temp.dayƒ>ƒ30)ƒƒƒƒ//ƒadjustƒtheƒmonths
ƒƒ{
ƒƒƒƒtemp.month++;
ƒƒƒƒtemp.dayƒ-=ƒ30;
ƒƒ}
ƒƒwhileƒ(temp.monthƒ>ƒ12)ƒƒ//ƒadjustƒtheƒyears

☞

M_C7785_11.1c 497M_C7785_11.1c 497 1/18/11 10:53 AM1/18/11 10:53 AM

498 Adding Functionality to Your Classes

ƒƒ{
ƒƒƒƒtemp.year++;
ƒƒƒƒtemp.monthƒ-=ƒ12;
ƒƒ}
ƒƒreturnƒtemp;ƒƒƒƒƒ//ƒtheƒvaluesƒinƒtempƒareƒreturned
}

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒoldDate(4,1,2011),ƒnewDate;ƒ//ƒdeclareƒtwoƒobjects

ƒƒcoutƒ<<ƒ“Theƒinitialƒdateƒisƒ“;
ƒƒoldDate.showDate();
ƒƒcoutƒ<<ƒendl;
ƒƒnewDateƒ=ƒoldDateƒ+ƒ284;ƒƒƒ//ƒaddƒinƒ284ƒdaysƒ=ƒ9ƒmonthsƒandƒ14ƒdays
ƒƒcoutƒ<<ƒ“Theƒnewƒdateƒisƒ“;
ƒƒnewDate.showDate();
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 11.2 produces the following output:

Theƒinitialƒdateƒisƒ04/01/11
Theƒnewƒdateƒisƒ01/15/12

In constructing your own operator functions, the only restrictions on selecting and using

the operator symbols in Table 11.1 are the following:3

• An operator’s syntax can’t be changed, so a binary operator must remain binary, and a

unary operator must remain unary.

• Symbols not in Table 11.1 can’t be used. For example, the ., ::, and ?: symbols can’t

be used as operator functions.

3Note that an operator symbol can be used to produce any operation, whether or not the operation is consistent with the symbol’s

accepted use. For example, you could redefine the addition symbol to provide multiplication. Clearly, this redefinition violates the

intent of making these symbols available, so care must be taken to redefine each symbol in a manner consistent with its accepted use.

M_C7785_11.1c 498M_C7785_11.1c 498 1/18/11 10:53 AM1/18/11 10:53 AM

499Chapter 11
Creating Class Operators

• New operator symbols can’t be created. For example, because %% is not an operator in

C++, it can’t be defined as a class operator.

• Neither the precedence nor the associativity of C++’s operators can be modified.

Therefore, you can’t give the addition operator a higher precedence than the multi-

plication operator.

• Operators can’t be redefined for C++’s built-in types.

• The operator must be a class member or friend function and must be defined to take

at least one class member as an operand.

Assignment Operator
The assignment operator, =, is the one operator that works with all classes without requiring an

operator function. For example, if a and b are objects constructed from the Date class, the

statement aƒ=ƒb; sets a’s data members equal to their equivalent b members. Therefore, if

b’s month, day, and year members are 12, 25, 2014, the expression aƒ=ƒb sets a’s month vari-

able to 12, its day variable to 25, and its year variable to 2014. This type of assignment is

referred to as memberwise assignment.
In the absence of a user-written assignment operator, the C++ compiler builds a member-

wise assignment operator as the default assignment operator for each class, which is generally

adequate for most classes. However, if the class contains any pointer data members, this

default assignment operator usually has to be created explicitly (see Section 12.4). Creating an

assignment function is the same as creating any other operator function, such as == and +:

declaring it in the class declaration section and then defining it in the class implementation

section. A simple assignment operator declaration has this form:

voidƒoperator=(constƒClassName&);

As in all functions, the keyword void indicates that the assignment operator returns no

value. The class name and ampersand in parentheses indicate that the argument passed to the

operator is a class reference, and the const keyword ensures that the function can’t change

the reference.

The following definition in the class implementation section creates an explicit assign-

ment that corresponds to this operator’s prototype. It mimics the operation of the default

assignment operator:

voidƒDate::operator=(Date&ƒolddate)
{
ƒƒdayƒ=ƒolddate.day;ƒƒƒƒƒƒ//ƒassignƒtheƒday
ƒƒmonthƒ=ƒolddate.month;ƒƒ//ƒassignƒtheƒmonth
ƒƒyearƒ=ƒolddate.year;ƒƒƒƒ//ƒassignƒtheƒyear
}

In this definition, olddate is defined as a reference to a Date class and refers to the object

passed to the function when it’s called. The call can be made by using an expression such as

a.operator=(b) or aƒ=ƒb, with a and b replaced by the names of the Date objects you’re

using. In the called function, the day, month, and year data members referenced internally by

olddate (which correspond to b’s data members) are assigned to the equivalent data members

M_C7785_11.1c 499M_C7785_11.1c 499 1/18/11 10:53 AM1/18/11 10:53 AM

500 Adding Functionality to Your Classes

in a. (You can see that b is the reference argument passed to olddate in the function call

a.operator=(b);, where b is the argument inside the function’s parentheses.)

One useful modification concerns the operation’s return value. As constructed, your sim-

ple assignment operator returns no value, which precludes you from using it in multiple assign-

ments, such as aƒ=ƒbƒ=ƒc. The reason is that operator functions retain the same precedence

and associativity as their built-in counterparts. Therefore, an expression such as aƒ=ƒbƒ=ƒc is

evaluated in the order aƒ=ƒ(bƒ=ƒc). Because of the way assignment has been defined by the

operator function, unfortunately, the expression bƒ=ƒc returns no value, making subsequent

assignment to a an error because it results in the invalid expression aƒ=ƒvoid. To allow mul-

tiple assignments, a more complete assignment operation would return a Date type. Returning

the correct date requires a special class pointer, which is discussed in Section 11.2.

Copy Constructors4

Although assignment looks similar to initialization, they’re entirely different operations. In

C++, an initialization occurs every time a new object is created. In an assignment, no new

object is created—the value of an existing object is simply changed. Figure 11.1 shows this

difference.

c = a;

Date c = a;Type definition Initialization

Assignment

Figure 11.1 Initialization and assignment

One type of initialization that closely resembles assignment occurs in C++ when one

object is initialized by using another object of the same class. For example, in the declaration

Dateƒbƒ=ƒa;

or its equivalent form

Dateƒb(a);

the b object is initialized to the previously declared a object. The constructor performing this

type of initialization is called a copy constructor, and if you don’t declare one, the compiler

creates it for you. The compiler’s default copy constructor performs similarly to the default

assignment operator by doing a memberwise assignment between objects. Therefore, for the

declaration Dateƒbƒ=ƒa;, the default copy constructor sets b’s month, day, and year values

to their counterparts in a.

As with default assignment operators, default copy constructors work just fine unless the

class contains pointer data members. Before considering the possible complications with

pointer data members and how to handle them, seeing how to construct your own copy con-

structor is helpful.

4The material in this section is included for completeness and can be omitted without loss of subject continuity.

M_C7785_11.1c 500M_C7785_11.1c 500 1/18/11 10:53 AM1/18/11 10:53 AM

501Chapter 11
Creating Class Operators

Copy constructors, like all operator functions, are declared in the class declaration section

and defined in the class implementation section. The declaration of a copy constructor has this

syntax:

ClassName(constƒClassName&);

As with all constructors, the function name must be the class name. Also, the argument is

a reference to the class, which is a characteristic of all copy constructors.5 To ensure that the

argument isn’t altered inadvertently, it’s always specified as a constant. Applying this general

form to the Date class, a copy constructor can be declared as follows:

Date(constƒDate&);

The actual implementation of this constructor, if it were to perform the same memberwise

assignment as the default copy constructor, would take this form:

Date::ƒDate(constƒDate&ƒolddate)
{
ƒƒmonthƒ=ƒolddate.month;
ƒƒdayƒ=ƒolddate.day;
ƒƒyearƒ=ƒolddate.year;
}

A comparison of this copy constructor with the assignment operator defined previously

shows them to be the same function. The difference is that the copy constructor, like all con-

structors, creates an object’s data members before using assignment to specify member values.

Therefore, the copy constructor doesn’t perform a true initialization, but a creation followed by

assignment. Program 11.3 contains this copy constructor in the context of a complete program.

 Program 11.3

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;

5A copy constructor is often defined as a constructor whose first argument is a reference to its class type, with any additional arguments

being defaults.

☞

M_C7785_11.1c 501M_C7785_11.1c 501 1/18/11 10:53 AM1/18/11 10:53 AM

502 Adding Functionality to Your Classes

ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒ//ƒconstructor
ƒƒƒƒDate(constƒDate&);ƒƒƒ//ƒcopyƒconstructor
ƒƒƒƒvoidƒshowDate();ƒƒƒ//ƒmemberƒfunctionƒtoƒdisplayƒaƒdate
};
//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

Date::Date(constƒDate&ƒolddate)
{
ƒƒmonthƒ=ƒolddate.month;
ƒƒdayƒ=ƒolddate.day;
ƒƒyearƒ=ƒolddate.year;
}
voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒa(4,1,2011),ƒb(12,18,2012);ƒ//ƒuseƒtheƒconstructor
ƒƒDateƒc(a);ƒƒƒ//ƒuseƒtheƒcopyƒconstructor
ƒƒDateƒdƒ=ƒb;ƒƒ//ƒuseƒtheƒcopyƒconstructor

ƒƒcoutƒ<<ƒ“\nTheƒdateƒstoredƒinƒaƒisƒ“;
ƒƒa.showDate();
ƒƒcoutƒ<<ƒ“\nTheƒdateƒstoredƒinƒbƒisƒ“;
ƒƒb.showDate();
ƒƒcoutƒ<<ƒ“\nTheƒdateƒstoredƒinƒcƒisƒ“;
ƒƒc.showDate();
ƒƒcoutƒ<<ƒ“\nTheƒdateƒstoredƒinƒdƒisƒ“;
ƒƒd.showDate();
ƒƒcoutƒ<<ƒendl;
ƒƒreturnƒ0;
}

M_C7785_11.1c 502M_C7785_11.1c 502 1/18/11 10:53 AM1/18/11 10:53 AM

503Chapter 11
Creating Class Operators

Program 11.3 produces the following output:

Theƒdateƒstoredƒinƒaƒisƒ04/01/11
Theƒdateƒstoredƒinƒbƒisƒ12/18/12
Theƒdateƒstoredƒinƒcƒisƒ04/01/11
Theƒdateƒstoredƒinƒdƒisƒ12/18/12

As this output shows, the copy constructor has initialized c’s and d’s data members to a’s

and b’s values. Although the copy constructor in Program 11.3 adds nothing to the functional-

ity of the compiler’s default copy constructor, it does give you the fundamentals of defining

your own copy constructors.

Base/Member Initialization6

A true initialization has no reliance on assignment and is possible in C++ by using a base/
member initialization list. This list can be applied only to constructor functions and can be writ-

ten in two ways. The first way is inside a class’s declaration section in this form:

ClassName(argumentƒlist):listƒofƒdataƒmembers(initializingƒvalues)ƒ{}

Here’s an example of a default constructor performing true initialization in this form:

//ƒclassƒdeclarationƒsection
public:
ƒƒDate(intƒmo=4,ƒintƒda=1,ƒintƒyr=2012):month(mo),ƒday(da),ƒyear(yr)ƒ{}

The second way is to declare a function prototype with defaults in the class declaration

section followed by the initialization list in the class implementation section. For the Date

constructor, it takes this form:

//ƒclassƒdeclarationƒsection
public:
ƒƒDate(intƒ=ƒ4,ƒintƒ=ƒ1,ƒintƒ=ƒ2012);ƒƒ//ƒprototypeƒwithƒdefaults

//ƒclassƒimplementationƒsection
Date::Date(intƒmo,ƒintƒda,ƒintƒyr)ƒ:ƒmonth(mo),ƒday(da),ƒyear(yr)ƒ{}

Notice that in both forms, the body of the constructor function is empty. This isn’t a

requirement, and the body can include any subsequent operations you want the constructor to

perform. The interesting feature of this type of constructor is that it clearly differentiates

between the initialization tasks performed in the member initialization list (between the colon

and the braces) and any subsequent assignments in the function’s body. Although you won’t

be using this type of initialization in this book, it’s required whenever a const class instance

variable is used.

6The material in this section is included for completeness and can be omitted without loss of subject continuity.

M_C7785_11.1c 503M_C7785_11.1c 503 1/18/11 10:53 AM1/18/11 10:53 AM

504 Adding Functionality to Your Classes

Operator Functions as Friends7

The operator functions shown previously have been constructed as class functions. An interest-

ing feature of operator functions is that except for the operator functions =, (), [], and ->, they

can also be written as friend functions. For example, if the operator+() function used in

Program 11.2 is written as a friend, the following is a suitable class declaration section prototype:

friendƒDateƒoperator+(Date&ƒ,ƒint);

Notice that the friend version contains a reference to a Date object that isn’t in the mem-

ber function version. In all cases, the friend version of a member operator function must contain

an additional class reference that the member function doesn’t require.8 Table 11.2 lists this

equivalence for both unary and binary operators.

Table 11.2 Operator Function Argument Requirements

Operator Member Function Friend Function
Unary 1 implicit 1 explicit
Binary 1 implicit and 1 explicit 2 explicit

7The material in this section is included for completeness and can be omitted without loss of subject continuity.
8The extra argument is needed to identify the correct object. This argument isn’t necessary with a member function because the

member function “knows” which object it’s operating on. The mechanism of this “knowing” is supplied by an implied member func-

tion argument, explained in Section 11.2.

Point of Information
Values and Identities

Apart from object behaviors, a characteristic feature that objects share with variables is
they always have a unique identity. An object’s identity is what permits distinguishing
one object from another. This feature isn’t true of a value, such as the number 5,
because all occurrences of 5 are indistinguishable from one another. Therefore, values
aren’t considered objects in object-oriented programming languages, such as C++.

Another difference between an object and a value is that a value can never be a con-
tainer whose value can change, but an object clearly can. A value is simply an entity that
stands for itself.

Now consider a string such as “Chicago”. As a string, it’s a value. However, because
Chicago could also be a specific and identifiable object of the class City, the context in
which the name is used is important.

M_C7785_11.1c 504M_C7785_11.1c 504 1/18/11 10:53 AM1/18/11 10:53 AM

505Chapter 11
Creating Class Operators

Program 11.2’s operator+() function, written as a friend function, is as follows:

Dateƒoperator+(Date&ƒop1,ƒintƒdays)
{
ƒƒDateƒtemp;ƒƒ//ƒaƒtemporaryƒDateƒtoƒstoreƒtheƒresult

ƒƒtemp.dayƒ=ƒop1.dayƒ+ƒdays;ƒƒ//ƒaddƒtheƒdays
ƒƒtemp.monthƒ=ƒop1.month;
ƒƒtemp.yearƒ=ƒop1.year;
ƒƒwhileƒ(temp.dayƒ>ƒ30)ƒƒƒƒ//ƒadjustƒtheƒmonths
ƒƒ{
ƒƒƒƒtemp.month++;
ƒƒƒƒtemp.dayƒ-=ƒ30;
ƒƒ}
ƒƒwhileƒ(temp.monthƒ>ƒ12)ƒƒ//ƒadjustƒtheƒyears
ƒƒ{
ƒƒƒƒtemp.year++;
ƒƒƒƒtemp.monthƒ-=ƒ12;
ƒƒ}
ƒƒreturnƒtemp;ƒƒƒƒƒ//ƒtheƒvaluesƒinƒtempƒareƒreturned
}

The only difference between this version and the member function version is the explicit

use of a Date argument named op1 (an arbitrary name choice) in the friend version. Therefore,

in the friend function’s body, the first three assignment statements reference op1’s data mem-

bers as op1.day, op1.month, and op1.year, whereas the member function simply refers to its

arguments as day, month, and year.

In determining whether to overload a binary operator as a friend or member operator func-

tion, follow this guideline: Friend functions are more appropriate for binary functions that don’t

modify either of their operands (such as ==, +, -, and so forth), and member functions are more

appropriate for binary functions that modify operands (such as =, +=, and -=, and so forth).

 EXERCISES 11.1

1. (Practice) Enter and run Program 11.1 on your computer.

2. (Program) a. Define a greater than relational operator function named operator>() that can

be used with the Date class declared in Program 11.1.

b. Define a less than relational operator function named operator<() that can be used with

the Date class declared in Program 11.1.

c. Include the operator function written for Exercises 2a and 2b in a working C++ program.

M_C7785_11.1c 505M_C7785_11.1c 505 1/18/11 10:53 AM1/18/11 10:53 AM

506 Adding Functionality to Your Classes

3. (Debug) a. Determine whether the following addition operator function produces the same

result as the function in Program 11.2:

DateƒDate::operator+(intƒdays)ƒƒƒ//ƒreturnƒaƒDateƒobject
{
ƒƒDateƒtemp;

ƒƒtemp.dayƒ=ƒdayƒ+ƒdays;ƒƒƒ//ƒaddƒtheƒdaysƒin
ƒƒtemp.monthƒ=ƒmonthƒ+ƒint(day/30);ƒƒƒƒƒƒƒ//ƒdetermineƒtotalƒmonths
ƒƒtemp.dayƒ=ƒtemp.dayƒ%ƒ30;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒdetermineƒactualƒday
ƒƒtemp.yearƒ=ƒyearƒ+ƒint(temp.month/12);ƒƒ//ƒdetermineƒtotalƒyears
ƒƒtemp.monthƒ=ƒtemp.monthƒ%ƒ12;ƒƒƒƒƒƒƒƒƒƒƒ//ƒdetermineƒactualƒmonth
ƒƒreturnƒtemp;
}

b. Verify your answer to Exercise 3a by including the function in a working C++ program.

4. (Program) a. Construct a class named Cartesian containing two double-precision data

members named x and y, used to store a point’s x and y values in rectangular coordinates. The

member functions should include a constructor that initializes an object’s x and y values to 0

and functions to input and display an object’s x and y values. Additionally, include an assign-

ment function that performs a memberwise assignment between two Cartesian objects.

b. Include the class written for Exercise 4a in a working C++ program that creates and displays

the values of two Cartesian objects; the second object is assigned the values of the first

object.

5. (Program) a. Construct a class named Time containing three integer data members named

hrs, mins, and secs used to store hours, minutes, and seconds. The member functions should

include a constructor that provides default values of 0 for each data member, a display function

that prints an object’s data values, and an assignment operator that performs a memberwise

assignment between two Time objects.

b. Include the Time class developed in Exercise 5a in a working C++ program that creates and

displays two Time objects; the second object is assigned the values of the first object.

6. (Program) a. Construct a class named Complex containing two double-precision data mem-

bers named real and imag, used to store the real and imaginary parts of a complex number.

The member functions should include a constructor that provides default values of 0 for each

data member, a display function that prints an object’s data values, and an assignment operator

that performs a memberwise assignment between two Complex objects.

b. Include the class written for Exercise 6a in a working C++ program that creates and displays

the values of two Complex objects; the second object is assigned the values of the first

object.

7. (Program) a. Construct a class named Car containing these three data members: a double-

precision variable named engineSize, a character variable named bodyStyle, and an integer

variable named colorCode. The member functions should include a constructor that provides

default values of 0 for each numeric data member and an X for each character variable; a display

function that prints the engine size, body style, and color code; and an assignment operator

that performs a memberwise assignment between two Car objects for each instance variable.

M_C7785_11.1c 506M_C7785_11.1c 506 1/18/11 10:53 AM1/18/11 10:53 AM

507Chapter 11
Creating Class Operators

b. Include the class written for Exercise 7a in a working C++ program that creates and displays

two Car objects; the second object is assigned the values of the first object.

8. (Program) a. Create a class named String and include an addition operator function that

concatenates two strings. The function should return a string.

b. Include the overloaded operator written for Exercise 8a in a working C++ program.

9. (Program) a. Define a subtraction operator function that can be used with the Date class

declared in Program 11.1. The subtraction should accept a long integer argument representing

the number of days to be subtracted from an object’s date and return a Date. In doing the

subtraction, assume all months consist of 30 days and all years consist of 360 days. Additionally,

an end-of-month adjustment should be made, if necessary, that converts any resulting day of

31 to a day of 30, unless the month is February. If the resulting month is February and the day

is 29, 30, or 31, it should be changed to 28.

b. Define another subtraction operator function named operator-() that can be used with

the Date class defined in Program 11.1. The subtraction should yield a long integer repre-

senting the difference in days between two dates. In calculating the day difference, use the

financial assumption that all months have 30 days and all years have 360 days.

c. Include the overloaded operators written for Exercise 9a and 9b in a working C++ program.

10. (Modify) a. Rewrite the addition operator function in Program 11.2 to account for the actual

days in a month, omitting leap years. (Note: This function requires an array to store the days in

each month.)

b. Verify the operation of the operator function written for Exercise 10a by including it in a

working C++ program.

11. (Program) a. Construct a class named Fractions containing two integer data members

named num and denom, used to store the numerator and denominator of a fraction having the

form num/denom. Your class should include a default constructor that initializes num and denom

to 1 and four operator functions for adding, subtracting, multiplying, and dividing the two frac-

tions, as follows:

Addition: a/bƒ+ƒc/dƒ=ƒ(aƒ*ƒdƒ+ƒbƒ*ƒc)ƒ/ƒ(bƒ*ƒd)
Subtraction: a/bƒ-ƒc/dƒ=ƒ(aƒ*ƒdƒ-ƒbƒ*ƒc)ƒ/ƒ(bƒ*ƒd)
Multiplication: a/bƒ*ƒc/dƒ=ƒ(a*ƒc)ƒ/ƒ(bƒ*ƒd)
Division: (a/b)ƒ/ƒ(c/d)ƒ=ƒ(aƒ*ƒd)ƒ/ƒ(bƒ*ƒc)

 Your class should have input and output functions for entering and displaying a fraction.

b. Include the class written for Exercise 11a by including it in a working C++ program that can

be used to test each of the class’s member methods.

12. (Modify) a. Rewrite the comparison operator function in Program 11.1 as a friend function.

b. Verify the operation of the friend operator function written for Exercise 12a by including it

in a working C++ program.

M_C7785_11.1c 507M_C7785_11.1c 507 1/18/11 10:53 AM1/18/11 10:53 AM

508 Adding Functionality to Your Classes

11.2 How Methods Are Shared

Each time an object is created from a class, a distinct area of memory is set aside for its data

members. For example, if two objects named a and b are created from the Date class you’ve

been using in this chapter, the memory storage for these objects is as shown in Figure 11.2.

Note that each set of data members has its own starting address in memory, which corresponds

to the address of the object’s first data member.

a.month a.day a.year

month day year

b.month b.day b.year

month

Starting address
of a object

Starting address
of b object

day year

Figure 11.2 Storing two Date objects in memory

This replication of data storage isn’t implemented for member methods. In fact, for each

class, only one copy of the member methods is retained in memory, and each object uses these

same methods.

Sharing member methods requires providing a means of identifying which specific object

a member method should be operating on. This is accomplished by the name of the object

preceding the method call, as shown in Figure 11.3.

newDate.showDate()

This identifies the object

This calls the method

Arguments, if any, are placed in here

Figure 11.3 Calling a class method

In reviewing Figure 11.3, note that the actual method call and passing data to the method

are made in the same manner as all C++ function calls—by providing the method name and

placing all passed data in the parentheses following the method’s name. The called method

receives a copy of any arguments passed to it through the parentheses. However, the method

gets direct access to the object used in calling it. This is accomplished as follows: The object

name preceding the method’s name sends its address to the method. This address tells the

L_C7785_11.1c 508L_C7785_11.1c 508 1/19/11 10:23 AM1/19/11 10:23 AM

509Chapter 11
How Methods Are Shared

method where in memory the object it’s to operate on is located. In this way, it enables the

method to access the object and its data members directly. For example, the statement

oldDate.showDate() passes the oldDate object’s address to the showDate() member

method.

Two questions at this point are as follows:

• How is this address passed to showDate()?

• Where is this address stored?

The answer to the first question is that the address is passed to the called function as a

hidden argument. Therefore, the call oldDate.showDate() passes &oldDate to showDate().

Recall from Section 8.1 that placing the address operator, &, in front of an identifier means “the

address of,” so the expression &oldDate should be read as “the address of oldDate.” In effect,

then, the call oldDate.showDate() corresponds to showDate(&oldDate). Although this call

is invalid because it violates the syntax rules for calling a member method, it clearly illustrates

that an address is passed. The question then is how is the passed address saved and accessed

by showDate()?

It’s saved in the same manner as any passed address must be saved—by using a pointer.

This special pointer is created automatically as a hidden argument for each nonstatic class

method, when the method is defined. The name of this special pointer is this, described next.

The this Pointer
The this pointer is added automatically to each nonstatic class method as a hidden argument.

When a method is called, the calling object’s address is passed to it and stored in the method’s

this pointer. Therefore, each member method actually receives an extra argument that’s the

address of an object.

Although it’s not usually necessary to do so, the address in the this pointer can be used

explicitly in the called method. For example, when showDate() is called by the expression

oldDate.showDate(), the this pointer in showDate() can be used to access any data mem-

ber in the oldDate object by using the following syntax:

(*this).month accesses oldDate’s month member.
(*this).day accesses oldDate’s day member.
(*this).year accesses oldDate’s year member.

These relationships are shown in Figure 11.4. As shown, the starting address of the

oldDate object is also the address of the object’s first data member. Except for the dot nota-

tion to locate the correct member item, it’s the same technique for passing addresses that you

saw in Section 8.4.

L_C7785_11.1c 509L_C7785_11.1c 509 1/19/11 10:23 AM1/19/11 10:23 AM

510 Adding Functionality to Your Classes

Starting
address
of emp

(*this).hours
(*this).payRate
(*this).idNum=*this

emp

this:

:

idNum payRate hours

Figure 11.4 A pointer can be used to access object members

The parentheses around the *this shown in Figure 11.4 are necessary to initially access

“the object whose address is in the this pointer.” The dot operator, ., is then followed by the

data member’s name. The parentheses are needed to override the dot operator’s precedence

over the indirection operator, *.

Without the parentheses, the expression becomes *this.hours, which is equivalent to

*(this.hours). In both expressions, the dot operator is applied before the * operator, and

both expressions refer to “the data member whose address is in the this.hours variable.”

This reference clearly makes no sense because there’s no object named this, and hours

doesn’t contain an address.

The use of pointers in this manner is so common that a special notation exists for it.

The general expression (*pointer).member can always be replaced with the notation

pointer->member. The -> operator is constructed with a hyphen followed by the greater-

than symbol. Either notation can be used to locate a data member. Therefore, the following

expressions are equivalent:

(*this).day can be replaced by this->day
(*this).month can be replaced by this->month
(*this).year can be replaced by this->year

For example, by using the this pointer, the Date class’s showDate() method, repeated

here for convenience,

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

M_C7785_11.1c 510M_C7785_11.1c 510 1/18/11 10:53 AM1/18/11 10:53 AM

511Chapter 11
How Methods Are Shared

can be written as follows:

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒthis->monthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒthis->dayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒthis->yearƒ%ƒ100;
ƒƒreturn;
}

Clearly, using the this pointer in this manner is unnecessary and simply clutters up

showDate()’s code. At times, however, an object must be returned from a method. In many of

these situations, one of which is discussed in the next section, the address stored in the this

pointer must be used.

The Assignment Operator Revisited
Section 11.1 showed a simple assignment operator method that has the following prototype:

voidƒoperator=(constƒDateƒ&);

The drawback of the method this prototype declares is that it returns no value.

Consequently, multiple assignments, such as aƒ=ƒbƒ=ƒc, aren’t possible. The reason is that

the right-to-left association of the = operator causes the assignment bƒ=ƒc to be made first.

This assignment results in a void being returned from this expression. Attempting to assign

this data type to the Date object a results in an error.

Point of Information
Pointers Versus References

The distinguishing characteristic of a pointer, as a formal parameter or variable, is that
every pointer contains a value that’s an address. Whereas a pointer is a variable or argu-
ment with an address as its content, a reference is an address. Therefore, a reference can
be thought of as a named constant, with the constant being a valid memory address.

From an advanced programming viewpoint, pointers are more flexible than references
because a pointer’s contents can be manipulated in much the same manner as any other
variable’s value. The disadvantage of pointers is that their flexibility makes them more
complicated to understand and use than references. Because references (as both vari-
ables and arguments) can be used only as named addresses, they’re easier to use.
Therefore, when the compiler encounters a reference, it dereferences the address auto-
matically to obtain the contents of the address. This isn’t the case with pointers. If you
use a pointer’s name, as noted previously, you access the pointer’s contents. To derefer-
ence the address stored in a pointer correctly, you must use C++’s indirection operator,
*, in front of the pointer name. This operator informs the compiler that what you want
is the item whose address stored in the pointer variable.

M_C7785_11.1c 511M_C7785_11.1c 511 1/18/11 10:53 AM1/18/11 10:53 AM

512 Adding Functionality to Your Classes

To fix this problem, you need the method to return a Date object that has the same data

members as those assigned to b. A suitable prototype for this method is as follows:

Dateƒoperator=(constƒDate&);

Returning the assigned Date object is now possible by using the this pointer. Following

is a suitable method definition, with the return statement shaded to indicate the this

pointer:

DateƒDate::operator=(constƒDateƒ&newdate)
{
ƒƒdayƒ=ƒnewdate.day;ƒƒƒƒƒƒƒƒ//ƒassignƒtheƒday
ƒƒmonthƒ=ƒnewdate.month;ƒƒƒƒ//ƒassignƒtheƒmonth
ƒƒyearƒ=ƒnewdate.year;ƒƒƒƒƒƒ//ƒassignƒtheƒyear
ƒƒreturnƒ*this;
}

Because a Date object is now returned by this method, an assignment such as aƒ=ƒbƒ=ƒc

or its equivalent form, a.operator(b.operator=(c)), can be made. In both expressions,

the assignment method first alters b’s member values. It then returns the object pointed to by

this, which is the b object. This Date object is then assigned to a. Program 11.4 shows using

this method in the context of a complete program.

 Program 11.4

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒƒ//ƒconstructor
ƒƒƒƒDateƒoperator=(constƒDateƒ&);ƒƒ//ƒassignmentƒoperatorƒprototype
ƒƒƒƒvoidƒshowDate();ƒƒƒƒƒƒƒƒ//ƒmemberƒmethodƒtoƒdisplayƒaƒdate
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{

☞

M_C7785_11.1c 512M_C7785_11.1c 512 1/18/11 10:53 AM1/18/11 10:53 AM

513Chapter 11
How Methods Are Shared

ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

//TheƒnewƒassignmentƒoperatorƒreturnsƒanƒobjectƒofƒtypeƒDate
DateƒDate::operator=(constƒDate&ƒnewdate)
{
ƒƒdayƒ=ƒnewdate.day;ƒƒƒƒƒƒƒƒ//ƒassignƒtheƒday
ƒƒmonthƒ=ƒnewdate.month;ƒƒƒƒ//ƒassignƒtheƒmonth
ƒƒyearƒ=ƒnewdate.year;ƒƒƒƒƒƒ//ƒassignƒtheƒyear
ƒƒreturnƒ*this;
}

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒa(4,1,1999),ƒb(14,18,2012),ƒc(1,1,2014);ƒ//ƒdeclareƒthreeƒobjects

ƒƒcoutƒ<<ƒ“Beforeƒassignmentƒa'sƒdateƒvalueƒisƒ“;
ƒƒa.showDate();
ƒƒcoutƒ<<ƒ“\nBeforeƒassignmentƒb'sƒdateƒvalueƒisƒ“;
ƒƒb.showDate();
ƒƒcoutƒ<<ƒ“\nBeforeƒassignmentƒc'sƒdateƒvalueƒisƒ“;
ƒƒc.showDate();

ƒƒaƒ=ƒbƒ=ƒc;ƒƒƒƒ//ƒmultipleƒassignment

ƒƒcoutƒ<<ƒ“\n\nAfterƒassignmentƒa'sƒdateƒvalueƒisƒ“;
ƒƒa.showDate();
ƒƒcoutƒ<<ƒ“\nAfterƒassignmentƒb'sƒdateƒvalueƒisƒ“;
ƒƒb.showDate();
ƒƒcoutƒ<<ƒ“\nAfterƒassignmentƒc'sƒdateƒvalueƒisƒ“;
ƒƒc.showDate();
ƒƒcoutƒ<<ƒendl;
ƒƒreturnƒ0;
}

M_C7785_11.1c 513M_C7785_11.1c 513 1/18/11 10:53 AM1/18/11 10:53 AM

514 Adding Functionality to Your Classes

This is the output produced by Program 11.4, which verifies that the multiple assignment

was successful:

Beforeƒassignmentƒa'sƒdateƒvalueƒisƒ04/01/99
Beforeƒassignmentƒb'sƒdateƒvalueƒisƒ14/18/12
Beforeƒassignmentƒc'sƒdateƒvalueƒisƒ01/01/14

Afterƒassignmentƒa'sƒdateƒvalueƒisƒ01/01/14
Afterƒassignmentƒb'sƒdateƒvalueƒisƒ01/01/14
Afterƒassignmentƒc'sƒdateƒvalueƒisƒ01/01/14

The only restriction on the assignment operator method is that it must be a member

method. It can’t be overloaded as a friend.

Objects as Arguments
As you have seen, an object’s address is passed implicitly to a called member method and

stored in its this pointer. An object identifies itself to the called method by this means. For

completeness, this section shows how an object can be passed to a member method explicitly.

Specifically, there are three different ways of providing a method with an object argument: by

name, as a reference, or with a pointer. Table 11.3 shows an example of each way; both newDate

and oldDate have been declared as Date objects.

Table 11.3 Examples of Object Arguments

Passing an Object Passing a Reference Passing an Address
Method
call

newDate.swap(oldDate) newDate.swap(oldDate) newDate.swap(&oldDate)

Method
prototype

voidƒswap(Date) voidƒswap(Date&) voidƒswap(Dateƒ*)

Method
header

voidƒswap(Dateƒtemp) voidƒswap(Date&ƒtemp) voidƒswap(Dateƒ*temp)

Comments A copy of oldDate
is passed; temp is an
object, and newDate
is passed to the this
pointer.

The address of
oldDate is passed;
temp is a reference, and
newDate is passed to
the this pointer.

The address of oldDate
is passed; temp is a
pointer, and newDate
is passed to the this
pointer.

When an object is passed to a method, the method receives a copy of it. This means any

changes made to the object in the method are lost after the method has finished operating.

Passing a reference or an address, however, permits the called method to make changes

directly to the addressed object. These changes are retained after the called method has com-

pleted its operation.

M_C7785_11.1c 514M_C7785_11.1c 514 1/18/11 10:53 AM1/18/11 10:53 AM

515Chapter 11
How Methods Are Shared

Notation
In using a reference or pointer, you must pay attention to using the passed address correctly.

For pointers, the notation is the same as that used for the this pointer. For example, if the call

newDate.swap(&oldDate) is made, and the passed address is stored in a pointer named temp

(see the last column in Table 11.3), the correct notations are as follows:

Both (*temp).month and temp->day access oldDate’s month member.
Both (*temp).day and temp->month access oldDate’s day member.
Both (*temp).year and temp->year access oldDate’s year member.

Program 11.5 shows passing an object’s address and using a pointer to access and swap two

objects’ data members. The name of the pointer parameter declared in Program 11.5 is, of

course, selected by the programmer. When swap() is called, oldDate’s starting address is

passed to the method. Using this address as a starting point, object members are accessed by

including their names with the correct pointer notation.

 Program 11.5

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒ//ƒconstructor
ƒƒƒƒvoidƒshowDate();ƒƒƒƒƒƒ//ƒmethodƒtoƒdisplayƒaƒdate
ƒƒƒƒvoidƒswap(Dateƒ*);ƒƒƒƒ//ƒmethodƒtoƒswapƒtwoƒdates
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

☞

M_C7785_11.1c 515M_C7785_11.1c 515 1/18/11 10:53 AM1/18/11 10:53 AM

516 Adding Functionality to Your Classes

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

voidƒDate::swap(Dateƒ*temp)ƒ//ƒmethodƒtoƒswapƒtwoƒdates
{
ƒƒintƒtempstore;

ƒƒ//ƒswapƒtheƒdayƒmember
ƒƒtempstoreƒ=ƒtemp->day;
ƒƒtemp->dayƒ=ƒday;
ƒƒdayƒ=ƒtempstore;

ƒƒ//ƒswapƒtheƒmonthƒmember
ƒƒtempstoreƒ=ƒtemp->month;
ƒƒtemp->monthƒ=ƒmonth;
ƒƒmonthƒ=ƒtempstore;

ƒƒ//ƒswapƒtheƒyearƒmember
ƒƒtempstoreƒ=ƒtemp->year;
ƒƒtemp->yearƒ=ƒyear;
ƒƒyearƒ=ƒtempstore;

ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒoldDate(4,3,1999);
ƒƒDateƒnewDate(12,18,2012);
ƒ
ƒƒcoutƒ<<ƒ“TheƒdateƒstoredƒinƒoldDateƒisƒ“;
ƒƒoldDate.showDate();
ƒƒcoutƒ<<ƒ“\nTheƒdateƒstoredƒinƒnewDateƒisƒ“;
ƒƒnewDate.showDate();

ƒƒnewDate.swap(&oldDate);ƒƒ//ƒswapƒdatesƒbyƒpassingƒanƒaddress

ƒƒcoutƒ<<ƒ“\n\nAfterƒtheƒswap:\n”ƒ<<endl;
ƒƒ

☞

M_C7785_11.1c 516M_C7785_11.1c 516 1/18/11 10:53 AM1/18/11 10:53 AM

517Chapter 11
How Methods Are Shared

ƒƒcoutƒ<<ƒ“TheƒdateƒstoredƒinƒoldDateƒisƒ“;
ƒƒoldDate.showDate();
ƒƒcoutƒ<<ƒ“\nTheƒdateƒstoredƒinƒnewDateƒisƒ“;
ƒƒnewDate.showDate();
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

As this output of Program 11.5 shows, date values have been swapped successfully:

TheƒdateƒstoredƒinƒoldDateƒisƒ04/03/99
TheƒdateƒstoredƒinƒnewDateƒisƒ12/18/12

Afterƒtheƒswap:

TheƒdateƒstoredƒinƒoldDateƒisƒ12/18/12
TheƒdateƒstoredƒinƒnewDateƒisƒ04/03/99

This same output is produced by the following swap() method, which uses a reference

argument instead of a pointer:

voidƒDate::swap(Date&ƒtemp)ƒ//ƒmethodƒtoƒswapƒtwoƒdates
{
ƒƒintƒtempstore;

ƒƒ//ƒswapƒtheƒdayƒmember
ƒƒtempstoreƒ=ƒtemp.day;
ƒƒtemp.dayƒ=ƒday;
ƒƒdayƒ=ƒtempstore;

ƒƒ//ƒswapƒtheƒmonthƒmember
ƒƒtempstoreƒ=ƒtemp.month;
ƒƒtemp.monthƒ=ƒmonth;
ƒƒmonthƒ=ƒtempstore;

ƒƒ//ƒswapƒtheƒyearƒmember
ƒƒtempstoreƒ=ƒtemp.year;
ƒƒtemp.yearƒ=ƒyear;
ƒƒyearƒ=ƒtempstore;

ƒƒreturn;
}

Clearly, the reference version of swap() is easier to read than the pointer version. In fact,

one of the main reasons for including references in C++ is for their use as function arguments.

However, in some applications, pointers must be used.

M_C7785_11.1c 517M_C7785_11.1c 517 1/18/11 10:53 AM1/18/11 10:53 AM

518 Adding Functionality to Your Classes

One application requiring pointers was discussed previously: returning a Date object by

using the this pointer. Another application is dynamically creating arrays (see Section 8.2) and

objects (see Section 12.3). Professional programmers are quite at ease using pointers and often

prefer them over references. The reason is that pointers indicate clearly that an address is

being used, and references appear the same as nonreference variables. Also, pointers are more

flexible than references because addresses can be manipulated in a pointer. For these reasons,

as you develop as a programmer, you should strive to understand pointer notation and become

comfortable using it.

 EXERCISES 11.2

1. (Practice) Enter and run Program 11.4.

2. (Modify) a. Modify all the member methods in Program 11.4 to use the this pointer. For

example, the expression monthƒ=ƒmm should be replaced by this->monthƒ=ƒmm.

b. Run the program written for Exercise 2a to verify that your modified program produces the

same output as Program 11.4.

3. (Practice) Enter and run Program 11.5.

4. (Modify) a. Modify Program 11.5 to use the last version of swap() shown in this section.

Make sure to modify the method prototype for swap() and the call statement.

b. Run the program written for Exercise 4a to verify that the swap() method using a reference

argument produces the same result as Program 11.5.

5. (Desk check) In place of the prototype and method header for swap() used in Program 11.5,

a student used the following:

voidƒswap(Date);ƒƒƒ//ƒmethodƒprototype
voidƒDate::swap(Dateƒtemp)ƒƒ//ƒmethodƒheader

a. Determine what Program 11.5 will produce if these two changes are made.

b. Verify your answer to Exercise 5a by making the changes and running the modified program.

6. (Desk check) a. Determine what the following method does when called by the statement

newDate.addSixMonths(&oldDate);:

voidƒDate::addSixMonths(Dateƒ*pt)ƒƒ//methodƒtoƒaddƒ6ƒmonths
{
ƒƒpt->monthƒ=ƒpt->monthƒ+ƒ6;ƒƒƒƒƒƒƒ//ƒaddƒ6ƒmonthsƒtoƒtheƒdate

ƒƒ//adjustƒtheƒ“pointedƒto”ƒdate'sƒmonthƒandƒyear
ƒƒif(pt->monthƒ>ƒ12)ƒ//ƒadjustƒtheƒmonthƒandƒyear
ƒƒ{
ƒƒƒƒpt->monthƒ=ƒpt->monthƒ-ƒ12;
ƒƒƒƒpt->year++;ƒƒ//addƒ1ƒtoƒtheƒyear
ƒƒ}

☞

M_C7785_11.1c 518M_C7785_11.1c 518 1/18/11 10:53 AM1/18/11 10:53 AM

519Chapter 11
Data Type Conversions

ƒƒdayƒ=ƒpt->day;
ƒƒmonth=pt->month;
ƒƒyearƒ=ƒpt->year;

ƒƒreturn;
}

b. Include the addSixMonths() method given in Exercise 6a in Program 11.5 and verify your

answer to Exercise 6a.

7. (Modify) a. Modify the addSixMonths() method given in Exercise 6a to use a reference

argument rather than a pointer.

b. Include the addSixMonths() method written for Exercise 7a in Program 11.5 and verify

that this method works as expected.

8. (Modify) a. Modify the addSixMonths() method given in Exercise 6a so that it doesn’t alter

the data values in the passed object. Do this by passing a copy of oldDate (rather than a

pointer or a reference) to the method.

b. Include the addSixMonths() method written for Exercise 8a in Program 11.5 and verify

that this method works as expected.

11.3 Data Type Conversions

You have already seen the conversion from one built-in data type to another (see Sections 3.1

and 3.3). With the introduction of classes, there are now three new conversion possibilities:

• Conversion from a class type to a built-in type

• Conversion from a built-in type to a class type

• Conversion from a class type to a class type

Clearly, a conversion makes sense only when there’s a meaningful relationship between

data types. The Date class is used in this section to explain these conversions because a useful

relationship does exist between a Date object consisting of day, month, and year variables

and an integer in the form yyyymmdd. For example, a date such as 9/15/2012 can be repre-

sented by the integer 20120915. Dates represented in this manner, as integers, are useful for

sorting and comparing dates. Because integers representing dates can exceed the size of a

normal integer, long integers are used, as shown in Figure 11.5.

M_C7785_11.1c 519M_C7785_11.1c 519 1/18/11 10:53 AM1/18/11 10:53 AM

520 Adding Functionality to Your Classes

Date object: day
month
year

15
09

2012

= day
= month
= year

long integer: yyyymmdd

20120915 Example

Figure 11.5 Two date representations

Conversions between a class and a built-in data type and between a class and a class can

be made with methods almost identical in form to the operator functions shown in Section 11.1.

A conversion from a built-in data type to a class is made by using constructor methods. All three

new conversion possibilities are shown by using the Date class and the long integer relationship

shown in Figure 11.5. For completeness, the conversion from a built-in data type to a built-in

data type is included.

Built-in to Built-in Conversion
A built-in to built-in conversion is handled by C++’s implicit conversion rules or its explicit

cast operator. To review briefly, this type of conversion is implicit or explicit. An implicit con-

version can occur by assignment. For example, when a floating-point value is assigned to an

integer variable, only the integer portion of the value is stored. Implied conversions are per-

formed automatically by the compiler.

An explicit conversion occurs when a cast is used. In C++, two cast notations exist. The

older C notation has the form (dataType)expression, and the newer C++ notation has the

function-like form dataType(expression). For example, both the expressions (int)24.32

and int(24.32) cause the double-precision value 24.32 to be truncated to the integer value 24.

Class to Built-in Conversion
Conversion from a user-defined data type to a built-in data type is accomplished by using a

conversion operator function. These conversions are also referred to as “casts.” Creating a con-

version operator or cast is identical to creating an operator function (discussed in Section 11.1)

with one exception: A built-in data type name is used instead of a built-in symbol in the func-

tion’s header. Therefore, a conversion operator function for casting a Date object to a long

integer must be named operatorƒlong(). Program 11.6 defines this function and uses it to

convert a Date object to a long integer. The function’s prototype, definition, and call are

shaded in the program.

M_C7785_11.1c 520M_C7785_11.1c 520 1/18/11 10:53 AM1/18/11 10:53 AM

521Chapter 11
Data Type Conversions

 Program 11.6

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth,ƒday,ƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒƒ//ƒconstructor
ƒƒƒƒoperatorƒlong();ƒƒƒƒƒ//ƒconversionƒoperatorƒprototype
ƒƒƒƒvoidƒshowDate();
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)ƒ//ƒconstructor
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

//ƒconversionƒoperatorƒdefinitionƒforƒconvertingƒaƒDateƒtoƒaƒlongƒint
Date::operatorƒlong()ƒƒƒ//ƒmustƒreturnƒaƒlong,ƒasƒitsƒnameƒimplies
{
ƒƒlongƒyyyymmdd;
ƒƒyyyymmddƒ=ƒyearƒ*ƒ10000ƒ+ƒmonthƒ*ƒ100ƒ+ƒday;
ƒƒreturn(yyyymmdd);
}

//ƒmemberƒfunctionƒtoƒdisplayƒaƒdate
voidƒDate::showDate()
{
ƒƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒƒreturn;
}

☞

M_C7785_11.1c 521M_C7785_11.1c 521 1/18/11 10:53 AM1/18/11 10:53 AM

522 Adding Functionality to Your Classes

intƒmain()
{
ƒƒDateƒa(4,1,2012);ƒƒ//ƒdeclareƒandƒinitializeƒoneƒobjectƒofƒtypeƒDate
ƒƒlongƒb;ƒƒƒƒƒƒƒƒƒƒƒƒ//ƒdeclareƒanƒobjectƒofƒtypeƒlong

ƒƒbƒ=ƒlong(a);ƒƒƒƒƒƒƒ//ƒcallƒtheƒconversionƒfunction

ƒƒcoutƒ<<ƒ“a'sƒdateƒisƒ“;
ƒƒa.showDate();
ƒƒcoutƒ<<ƒ“\nThisƒdate,ƒasƒaƒlongƒinteger,ƒisƒ“ƒ<<ƒbƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 11.6 produces the following output:

a'sƒdateƒisƒ04/01/12
Thisƒdate,ƒasƒaƒlongƒinteger,ƒisƒ20120401

As this output shows, the change in a’s date value to a long integer is produced by the

assignment expression bƒ=ƒlong(a). This assignment could also have been written as bƒ=ƒa.

In this case, the conversion to long is implicit. Because the explicit conversion statement in

Program 11.6 clearly documents what conversion is taking place, its use is preferable.

Notice that the conversion operator was declared with no explicit argument or return type,

which is true of all conversion operators. This is because the data type of the object being

converted is an implied argument that must be an object of the declared class, and the return

type is provided by the function’s name.

Built-in to Class Conversion
A user-defined function for converting a built-in type to a class type is created as a constructor

function. For converting a long integer date to a date stored as a month, day, and year, the fol-

lowing is a suitable constructor:

//ƒconstructorƒforƒconvertingƒfromƒlongƒtoƒDate
Date::Date(longƒfindate)
{
ƒƒyearƒ=ƒint(findate/10000.0);
ƒƒmonthƒ=ƒint((findateƒ-ƒyearƒ*ƒ10000.0)/100.0);
ƒƒdayƒ=ƒint(findateƒ-ƒyearƒ*ƒ10000.0ƒ-ƒmonthƒ*ƒ100.0);
}

Program 11.7 uses this constructor in two ways. First, it’s used as a constructor to initialize

a Date object when it’s declared. Second, it’s used to cast a long integer to a Date object

explicitly. All statements pertaining to the conversion function are shaded in the program.

M_C7785_11.1c 522M_C7785_11.1c 522 1/18/11 10:53 AM1/18/11 10:53 AM

523Chapter 11
Data Type Conversions

 Program 11.7

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth,ƒday,ƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒ//ƒconstructor
ƒƒƒƒ//ƒconstructorƒforƒconvertingƒfromƒlongƒtoƒDate
ƒƒƒƒDate(long);
ƒƒƒƒvoidƒshowDate();
};
//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)ƒƒ//ƒconstructor
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

//ƒconstructorƒforƒconvertingƒfromƒlongƒtoƒDate
Date::Date(longƒfindate)
{
ƒƒyearƒ=ƒint(findate/10000.0);
ƒƒmonthƒ=ƒint((findateƒ-ƒyearƒ*ƒ10000.0)/100.0);
ƒƒdayƒ=ƒint(findateƒ-ƒyearƒ*ƒ10000.0ƒ-ƒmonthƒ*ƒ100.0);
}

//ƒmemberƒfunctionƒtoƒdisplayƒaƒdate
voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

☞

M_C7785_11.1c 523M_C7785_11.1c 523 1/18/11 10:53 AM1/18/11 10:53 AM

524 Adding Functionality to Your Classes

intƒmain()
{
ƒƒDateƒa;ƒƒƒ//ƒinitializedƒbyƒtheƒdefaultƒconstructor
ƒƒDateƒb(20061225L);ƒƒ//ƒinitializeƒwithƒaƒlongƒinteger
ƒƒDateƒc(4,1,2007);ƒƒƒ//ƒinitializeƒwithƒtheƒspecifiedƒvalues

ƒƒcoutƒ<<ƒ“Datesƒa,ƒb,ƒandƒcƒareƒ“;
ƒƒa.showDate();
ƒƒcoutƒ<<ƒ“,ƒ“;
ƒƒb.showDate();
ƒƒcoutƒ<<ƒ“,ƒandƒ“;
ƒƒc.showDate();
ƒƒcoutƒ<<ƒ“.\n”;

ƒƒaƒ=ƒDate(20150103L);ƒƒ//ƒconvertƒaƒlongƒtoƒaƒDate

ƒƒcoutƒ<<ƒ“Dateƒaƒisƒnowƒ“;
ƒƒa.showDate();
ƒƒcoutƒ<<ƒ“.\n”;

ƒƒreturnƒ0;
}

Program 11.7 produces the following output:

Datesƒa,ƒb,ƒandƒcƒareƒ07/04/12,ƒ12/25/06,ƒandƒ04/01/07.
Dateƒaƒisƒnowƒ01/03/15.

In reviewing Program 11.7, notice that the constructor function for converting changes b’s

long integer value to conform to the structure of a Date object. The conversion is made by the

constructor function when b is declared. (For clarity, each object was declared separately.)

Subsequently, a’s date value is changed by calling the constructor function explicitly in the

assignment statement aƒ=ƒDate(20080103L);.

Formally, the constructor function defined in Program 11.7 is known as a type conversion
constructor. This name is given to any constructor whose first argument is not a member of its

class and whose remaining arguments, if any, have default values. If the first argument’s data

type is a built-in data type, as in Program 11.7, the constructor can be used to convert this

built-in data type to a class object. In this case, because the first argument’s data type is long,

the constructor is used to convert a long to a Date object when the object is declared.

Additionally, because a constructor function can be called explicitly after all objects have

been declared, it can be used as a cast independent of its initialization purpose. It’s used in this

manner in the following statement:

aƒ=ƒDate(20150103L);ƒƒ//ƒconvertƒaƒlongƒtoƒaƒDate

M_C7785_11.1c 524M_C7785_11.1c 524 1/18/11 10:53 AM1/18/11 10:53 AM

525Chapter 11
Data Type Conversions

Class to Class Conversion
Converting from a class data type to a class data type is done in the same manner as a conver-

sion from a class to a built-in data type—by using a conversion operator function. In this case,

however, the operator function uses the class name being converted to instead of a built-in

data name. For example, if you have two classes named Date and Intdate, the operator func-

tion operatorƒIntdate() can be placed in the Date class to convert from a Date object to

an Intdate object. Similarly, the operator function Date() can be placed in the Intdate class

to convert from an Intdate to a Date. Notice that as before, in converting from a class data

type to a built-in data type, the operator function’s name determines the result of the conver-

sion; the class containing the operator function determines the data type being converted from.

Before seeing an example of a class to class conversion, you should note one additional

point. Converting between classes clearly implies having two classes: One is always defined

first, and one is defined second. Having a conversion operator function in the second class with

the same name as the first class poses no problem because the compiler knows of the first

class’s existence. However, including a conversion operator function with the second class’s

name in the first class does pose a problem because the second class hasn’t been defined yet.

To remedy this problem, a declaration for the second class must be made before the first class’s

definition. This declaration, formally called a forward declaration, is shown in Program 11.8,

which also includes conversion operators between the two defined classes. The relevant state-

ments for this conversion have been shaded.

 Program 11.8

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒforwardƒdeclarationƒofƒclassƒIntdate
classƒIntdate;

//ƒclassƒdeclarationƒsectionƒforƒDate
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth,ƒday,ƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒ//ƒconstructor
ƒƒƒƒoperatorƒIntdate();ƒƒ//ƒconversionƒoperatorƒfromƒDateƒtoƒIntdate
ƒƒƒƒvoidƒshowDate();
};

//ƒclassƒdeclarationƒsectionƒforƒIntdate
classƒIntdate

☞

M_C7785_11.1c 525M_C7785_11.1c 525 1/18/11 10:53 AM1/18/11 10:53 AM

526 Adding Functionality to Your Classes

{
ƒƒprivate:
ƒƒƒƒlongƒyyyymmdd;
ƒƒpublic:
ƒƒƒƒIntdate(longƒ=ƒ0);ƒƒƒƒ//ƒconstructor
ƒƒƒƒoperatorƒDate();ƒƒ//ƒconversionƒoperatorƒfromƒIntdateƒtoƒDate
ƒƒƒƒvoidƒshowint();
};

//ƒclassƒimplementationƒsectionƒforƒDate
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)ƒƒ//ƒconstructor
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

//ƒconversionƒoperatorƒfunctionƒconvertingƒfromƒDateƒtoƒIntdateƒclass
Date::operatorƒIntdate()ƒƒƒ//ƒmustƒreturnƒanƒIntdateƒobject
{
ƒƒlongƒtemp;
ƒƒtempƒ=ƒyearƒ*ƒ10000ƒ+ƒmonthƒ*ƒ100ƒ+ƒday;
ƒƒreturn(Intdate(temp));
}

//ƒmemberƒfunctionƒtoƒdisplayƒaƒDate
voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

//ƒclassƒimplementationƒsectionƒforƒIntdate
Intdate::Intdate(longƒymd)ƒƒ//ƒconstructor
{
ƒƒyyyymmddƒ=ƒymd;
}

//ƒconversionƒoperatorƒfunctionƒconvertingƒfromƒIntdateƒtoƒDateƒclass
Intdate::operatorƒDate()ƒƒƒ//ƒmustƒreturnƒaƒDateƒobject

☞

M_C7785_11.1c 526M_C7785_11.1c 526 1/18/11 10:53 AM1/18/11 10:53 AM

527Chapter 11
Data Type Conversions

{
ƒƒintƒmo,ƒda,ƒyr;
ƒƒyrƒ=ƒint(yyyymmdd/10000.0);
ƒƒmoƒ=ƒint((yyyymmddƒ-ƒyrƒ*ƒ10000.0)/100.0);
ƒƒdaƒ=ƒint(yyyymmddƒ-ƒyrƒ*ƒ10000.0ƒ-ƒmoƒ*ƒ100.0);
ƒƒreturn(Date(mo,da,yr));
}

//ƒmemberƒfunctionƒtoƒdisplayƒanƒIntdate
voidƒIntdate::showint()
{
ƒƒcoutƒ<<ƒyyyymmdd;
ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒa(4,1,2011),ƒb;ƒƒƒƒƒƒ//ƒdeclareƒtwoƒDateƒobjects
ƒƒIntdateƒc(20121215L),ƒd;ƒƒ//ƒdeclareƒtwoƒIntdateƒobjects
ƒƒbƒ=ƒDate(c);ƒƒƒƒƒƒ//ƒcastƒcƒintoƒaƒDateƒobject
ƒƒdƒ=ƒIntdate(a);ƒƒƒ//ƒcastƒaƒintoƒanƒIntdateƒobject

ƒƒcoutƒ<<ƒ“ƒa'sƒdateƒisƒ“;
ƒƒa.showDate();
ƒƒcoutƒ<<ƒ“\nƒƒƒasƒanƒIntdateƒobjectƒthisƒdateƒisƒ“;
ƒƒd.showint();

ƒƒcoutƒ<<ƒ“\nƒc'sƒdateƒisƒ“;
ƒƒc.showint();
ƒƒcoutƒ<<ƒ“\nƒƒƒasƒaƒDateƒobjectƒthisƒdateƒisƒ“;
ƒƒb.showDate();
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 11.8 produces the following output:

a'sƒdateƒisƒ04/01/11
ƒƒasƒanƒIntdateƒobjectƒthisƒdateƒisƒ20110401
c'sƒdateƒisƒ20121215
ƒƒasƒaƒDateƒobjectƒthisƒdateƒisƒ12/15/12

As Program 11.8 shows, the cast from Date to Intdate is produced by the assignment

bƒ=ƒDate(c), and the cast from Intdate to Date is produced by the assignment

dƒ=ƒIntdate(a). Alternatively, the assignments bƒ=ƒc and dƒ=ƒa would produce the same

M_C7785_11.1c 527M_C7785_11.1c 527 1/18/11 10:53 AM1/18/11 10:53 AM

528 Adding Functionality to Your Classes

results. Notice, too, the forward declaration of the Intdate class before the Date class’s dec-

laration. It’s required so that the Date class can reference Intdate in its conversion operator

function.

 EXERCISES 11.3

1. (For review) a. Define the three new data type conversions introduced in this section and

the method of performing each conversion.

b. Define the terms “type conversion constructor” and “conversion operator function” and

describe how they’re used in user-defined conversions.

2. (Program) Write a C++ program that declares a class named Time having integer data mem-

bers named hours, minutes, and seconds. Include a type conversion constructor that converts

a long integer, representing the elapsed seconds from midnight, into an equivalent representa-

tion as hours:minutes:seconds. For example, the long integer 30336 should convert to the time

8:25:36. Use military time—for example, 2:30 p.m. is represented as 14:30:00. The relationship

between time representations is as follows:

elapsed seconds = hours × 3600 + minutes × 60 + seconds

3. (Program) A Julian date is represented as the number of days from a known base date. The

following pseudocode shows one algorithm for converting from a Gregorian date, in the form

month/day/year, to a Julian date with a base date of 00/00/0000. All calculations in this algorithm

use integer arithmetic, which means the fractional part of all divisions must be discarded. In

this algorithm, M = month, D = day, and Y = year.

If M is less than or equal to 2
 Set the variable MP = 0 and YP = Y - 1
Else
 Set MP = int(0.4 × M + 2.3) and YP = Y
EndIf
T = int(YP / 4) - int(YP / 100) + int(YP / 400)
Julian date = 365 × Y + 31 × (M - 1) + D + T - MP

 Using this algorithm, modify Program 11.7 to cast from a Gregorian Date object to its corre-

sponding Julian representation as a long integer. Test your program by using the Gregorian

dates 1/31/2011 and 3/16/2012, which correspond to the Julian dates 734533 and 734943.

4. (Modify) Modify the program written for Exercise 2 to include a conversion operator function

that converts an object of type Time into a long integer representing the number of seconds

from midnight.

5. (Program) Write a C++ program that has a Date class and a Julian class. The Date class

should be the same Date class used in Program 11.6, and the Julian class should represent a

date as a long integer. For this program, include a conversion operator function in the Date

class that converts a Date object to a Julian object, using the algorithm shown in Exercise 3.

M_C7785_11.1c 528M_C7785_11.1c 528 1/18/11 10:53 AM1/18/11 10:53 AM

529Chapter 11
Two Useful Alternatives: operator() and
operator[]

Test your program by converting 1/31/2011 and 3/16/2012, which correspond to the Julian

dates 734533 and 734943.

6. (Program) Write a C++ program that has a Time class and an Ltime class. The Time class

should have integer data members named hours, minutes, and seconds, and the Ltime class

should have a long integer data member named elsecs, which represents the number of

elapsed seconds since midnight. For the Time class, include a conversion operator function

named Ltime() that converts a Time object to an Ltime object. For the Ltime class, include

a conversion operator function named Time() that converts an Ltime object to a Time object.

11.4 Two Useful Alternatives: operator() and operator[]

At times, it’s convenient to define an operation having more than two arguments, which is the

limit imposed on all binary operator functions. For example, each Date object contains three

integer data members: month, day, and year. For this object, you might want to add an integer

value to one of the other members instead of just the day member, as was done in Program 11.2.

C++ makes this possible by supplying the parentheses operator function, operator(), which

has no limits on the number of arguments that can be passed to it.

Additionally, the case used in Program 11.2—in which only a single non-object argument

is required—occurs so frequently that C++ provides an alternative means of achieving it: For

this case, C++ supplies the subscript operator function, operator[], which permits a maxi-

mum of one argument. The only restriction C++ imposes on the operator() and operator[]

functions is that they must be defined as member (not friend) functions.

For simplicity, the operator[] function is discussed first. It’s declared and defined in the

same manner as any other operator function, but it’s called differently from the normal func-

tion and operator call. For example, if you want to use the operator[] function to accept an

integer argument and return a Date object, the following prototype is valid:

Dateƒoperator[](int);ƒƒ//ƒdeclareƒtheƒsubscriptƒoperator

Except for the operator function’s name, it’s similar in construction to any other operator

function prototype. Assuming you want this function to add its integer argument to a Date

object, a suitable function implementation is as follows:

DateƒDate::operator[](intƒdays)
{
ƒƒDateƒtemp;ƒƒƒƒ//ƒaƒtemporaryƒDateƒtoƒstoreƒtheƒresult

ƒƒtemp.dayƒ=ƒdayƒ+ƒdays;ƒƒƒ//ƒaddƒtheƒdays
ƒƒtemp.monthƒ=ƒmonth;
ƒƒtemp.yearƒ=ƒyear;

☞

M_C7785_11.1c 529M_C7785_11.1c 529 1/18/11 10:53 AM1/18/11 10:53 AM

530 Adding Functionality to Your Classes

ƒƒwhileƒ(temp.dayƒ>ƒ30)ƒƒƒƒ//ƒnowƒadjustƒtheƒmonths
ƒƒ{
ƒƒƒƒtemp.month++;
ƒƒƒƒtemp.dayƒ-=ƒ30;
ƒƒ}
ƒƒwhileƒ(temp.monthƒ>ƒ12)ƒƒ//ƒadjustƒtheƒyears
ƒƒ{
ƒƒƒƒtemp.year++;
ƒƒƒƒtemp.monthƒ-=ƒ12;
ƒƒ}
ƒƒreturnƒtemp;ƒƒƒƒ//ƒtheƒvaluesƒinƒtempƒareƒreturned
}

Again, except for the function header, it’s similar in construction to the operator function

definitions covered in Section 11.1. After the function is created, however, it can be called only

by passing the required argument through the subscript brackets. For example, if oldDate is

a Date object, the function call oldDate[284] calls the subscript operator function and causes

the function to operate on the a object with the integer value 284. This function’s prototype,

definition, and call are shaded in Program 11.9.

 Program 11.9

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒDate
{
ƒƒprivate:
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒpublic:
ƒƒƒƒDate(intƒ=ƒ7,ƒintƒ=ƒ4,ƒintƒ=ƒ2012);ƒƒƒƒ//ƒconstructor
ƒƒƒƒDateƒoperator[](int);ƒƒƒ//ƒfunctionƒprototype
ƒƒƒƒvoidƒshowDate();ƒƒƒƒƒƒƒƒ//ƒmemberƒfunctionƒtoƒdisplayƒaƒDate
};

//ƒclassƒimplementationƒsection
Date::Date(intƒmm,ƒintƒdd,ƒintƒyyyy)
{
ƒƒmonthƒ=ƒmm;
ƒƒdayƒ=ƒdd;
ƒƒyearƒ=ƒyyyy;
}

☞

M_C7785_11.1c 530M_C7785_11.1c 530 1/18/11 10:53 AM1/18/11 10:53 AM

531Chapter 11
Two Useful Alternatives: operator() and
operator[]

DateƒDate::operator[](intƒdays)
{
ƒƒDateƒtemp;ƒƒƒƒ//ƒaƒtemporaryƒDateƒtoƒstoreƒtheƒresult

ƒƒtemp.dayƒ=ƒdayƒ+ƒdays;ƒƒƒƒ//ƒaddƒtheƒdays
ƒƒtemp.monthƒ=ƒmonth;
ƒƒtemp.yearƒ=ƒyear;
ƒƒwhileƒ(temp.dayƒ>ƒ30)ƒƒƒƒƒ//ƒnowƒadjustƒtheƒmonths
ƒƒ{
ƒƒƒƒtemp.month++;
ƒƒƒƒtemp.dayƒ-=ƒ30;
ƒƒ}
ƒƒwhileƒ(temp.monthƒ>ƒ12)ƒƒƒ//ƒadjustƒtheƒyears
ƒƒ{
ƒƒƒƒtemp.year++;
ƒƒƒƒtemp.monthƒ-=ƒ12;
ƒƒ}
ƒƒreturnƒtemp;ƒƒƒƒ//ƒtheƒvaluesƒinƒtempƒareƒreturned
}

voidƒDate::showDate()
{
ƒƒcoutƒ<<ƒsetfill('0')
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒmonthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒdayƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒsetw(2)ƒ<<ƒyearƒ%ƒ100;
ƒƒreturn;
}

intƒmain()
{
ƒƒDateƒoldDate(7,4,2011),ƒnewDate;ƒ//ƒdeclareƒtwoƒobjects

ƒƒcoutƒ<<ƒ“TheƒinitialƒDateƒisƒ“;
ƒƒoldDate.showDate();

ƒƒnewDateƒ=ƒoldDate[284];ƒ//ƒaddƒinƒ284ƒdaysƒ=ƒ9ƒmonthsƒandƒ14ƒdays

ƒƒcoutƒ<<ƒ“\nTheƒnewƒDateƒisƒ“;
ƒƒnewDate.showDate();
ƒƒcoutƒ<<ƒendl;

ƒƒreturnƒ0;
}

M_C7785_11.1c 531M_C7785_11.1c 531 1/18/11 10:53 AM1/18/11 10:53 AM

532 Adding Functionality to Your Classes

Program 11.9 is almost identical to Program 11.2, except that a subscript operator function

is used in place of an overloaded addition operator function. Both programs produce the same

output. In general, the overloaded operator used in Program 11.2 is preferable because the

operator’s name documents what operation is being performed. Although Program 11.9 shows

how a subscript operator is created, in practice these operators are used for more complicated

operations that other operator functions don’t handle suitably. Therefore, subscript operators

must be commented carefully to indicate their intended purpose.

Although the expression oldDate[284] used in Program 11.9 appears to indicate that

oldDate is an array, it’s not. It’s simply the notation required to call an overloaded subscript

function.

The parentheses operator function, operator(), is almost identical in construction and

calling to the subscript function, operator[], with the substitution of parentheses, (), for

brackets, []. The difference between these two operator functions is in the number of allow-

able arguments. The subscript operator function permits passing zero or one argument, but the

parentheses operator function has no limit on the number of its arguments. For example, a

suitable parentheses operator function prototype to add an integer number of months, days, or

years to a Date object is as follows:

Dateƒoperator()(int,ƒint,ƒint);

After this function is implemented (which you do in Exercises 11.4), a call such as

a(2,3,4) can be used to add 2 months, 4 days, and 3 years to the Date object named a.

These two extra functions offer a lot of programming flexibility. When only one argument

is needed, they permit writing two different functions, both with the same argument type. For

example, you could use operator[] to add an integer number of days to a Date object and

operator() to add an integer number of months. Because both functions have the same argu-

ment type, one function name can’t be overloaded for both cases. These two functions also

give you the flexibility to restrict all other operator functions to class member arguments and

then use these two functions for operations using nonclass arguments.

 EXERCISES 11.4

1. (Modify) a. Replace the operator[] function in Program 11.9 with the operator() function.

b. Include the operator() function written for Exercise 1a in a working C++ program and

verify its operation.

2. (Modify) a. Replace the operator[] function in Program 11.9 with a member operator()

function that accepts an integer month, day, and year count. Have the function add the input

days, months, and years to the object’s date and return the resulting date. For example, if the

input is 3, 2, 1 and the object’s date is 7/16/2011, the function should return the date 10/18/2012.

Make sure your function correctly handles an input such as 37 days and 15 months and adjusts

the calculated day to be within the range 1 to 30 and the month to be within the range 1 to 12.

Therefore, if the input is 37, 15, 1 and the object’s date is 7/16/2011, the function should return

the date 9/1/2015.

b. Include the operator() function written for Exercise 2a in a working C++ program and

verify its operation.

M_C7785_11.1c 532M_C7785_11.1c 532 1/18/11 10:53 AM1/18/11 10:53 AM

533Chapter 11
Chapter Summary

3. (Program) a. Construct a class named Student consisting of these private data members: an

integer ID number, an integer count, and an array of four double-precision grades. The con-

structor for this class should set all data member values to 0. The class should also include a

member function that displays all valid member grades, as determined by the grade count, and

calculates and displays the average of the grades. Include the class in a working C++ program

that declares three class objects named a, b, and c.

b. Modify the class constructed for Exercise 3a to include a member operator[] function

that has a double-precision grade count argument. The function should check the grade

count data member and, if fewer than four grades have been entered, store its argument in

the grade array, using the count as an index value. If four grades have already been entered,

the function should return an error message indicating that the new grade can’t be accepted.

Additionally, a new grade should force an increment to the count data member.

c. Modify the class constructed for Exercise 3a to include a member operator() function

that has a grade index and grade value as arguments. The function should force a change to

the grade corresponding to the index value and update the count, if necessary. For example,

an argument list of 4, 98.5 should change the fourth test grade value to 98.5.

4. (Modify) a. Modify Program 10.9 to include a member operator[] function that multiplies

an object’s complex number (both the real and the imaginary parts) by a real number and

returns a complex number. For example, if the real number is 2 and the complex number is

3 + 4i, the result is 6 + 8i.

b. Verify the operation of the operator[] function written for Exercise 4a by including it in

a working C++ program.

11.5 Common Programming Errors
1. Attempting to redefine an operator’s meaning as it applies to C++’s built-in data types.

2. Redefining an overloaded operator to perform a function not indicated by its conven-

tional meaning. Although this method works, it’s an example of bad programming

practices.

3. Using a user-defined assignment operator in a multiple assignment expression when

the operator hasn’t been defined to return an object.

4. Attempting to make a conversion operator function a friend rather than a member

function.

5. Attempting to specify a return type for a conversion operator function.

6. Forgetting that this is a pointer that must be dereferenced by using *this or this->.

11.6 Chapter Summary
1. User-defined operators can be constructed for classes by using operator functions. An opera-

tor function has the form operator<symbol>, where <symbol> is one of the following:

()ƒƒ[]ƒƒ->ƒƒnewƒƒdeleteƒƒ++ƒƒ--ƒƒ!ƒƒ~ƒƒ*ƒƒ/ƒƒ%ƒƒ+ƒƒ-
<<ƒƒ>>ƒƒ<ƒƒ<=ƒƒ>ƒƒ>=ƒƒ++ƒ!=ƒƒ&&ƒ||ƒƒ&ƒƒ^ƒƒ|ƒƒ=ƒƒ+=
-=ƒƒ*=ƒƒ/=ƒƒ%=ƒƒ&=ƒƒ^=ƒƒ|=ƒƒ<<=ƒ>>=ƒƒ,

M_C7785_11.1c 533M_C7785_11.1c 533 1/18/11 10:53 AM1/18/11 10:53 AM

534 Adding Functionality to Your Classes

 For example, the function prototype Dateƒoperator+(int); declares that the addition

operator is defined to accept an integer and return a Date object.

2. User-defined operators can be called in one of two ways—as a conventional function with

arguments or as an operator function. For example, for an operator function having the func-

tion header

DateƒDate::operator+(int)

 if dte is an object of type Date, these two calls produce the same effect:

dte.operator+(284)
dteƒ+ƒ284

3. Operator functions can also be written as friend functions. The friend version of an operator

function always contains an additional class reference that isn’t required by the member

function.

4. With the introduction of classes, three new categories of data type conversions exist (in

addition to the built-in to built-in data type conversion):

• Built-in types to class types

• Class types to built-in types

• Class types to class types

 Built-in to class type conversions are done by using type constructor functions. Conversions

from class types to built-in types or from class types to class types are done by using conver-

sion operator functions.

5. A type conversion constructor is a constructor whose first argument is not a member of its

class and whose remaining arguments, if any, have default values.

6. A conversion operator function is a member operator function having the name of a class. It

has no explicit arguments or return type; rather, the return type is the name of the function.

7. An object can be used as a method’s argument, in which case the called method receives a

copy of the object.

8. The address of an object can also be passed as an argument, either as a reference or as a

pointer, which gives the called method direct access to the object’s members.

9. For each class object, a separate set of memory locations is reserved for all data members,

except those declared as static.

10. For each class, only one copy of the member methods is retained in memory, and each

object uses the same function. The address of the object’s data members is provided to the

member method by passing a hidden argument, corresponding to the selected object’s

memory address, to the member method. The address is passed in a special pointer argu-

ment named this. The this pointer can be used explicitly by a member method to access

a data member.

M_C7785_11.1c 534M_C7785_11.1c 534 1/18/11 10:53 AM1/18/11 10:53 AM

535Chapter 11
Chapter Supplement: Insides and Outsides

11. The subscript operator function, operator[], permits a maximum of one nonclass argu-

ment. This function can be defined only as a member function.

12. The parentheses operator function, operator(), has no limits on the number of argu-

ments. This function can be defined only as a member function.

11.7 Chapter Supplement: Insides and Outsides

Just as the concept of an algorithm is central to procedures, the concept of encapsulation is

central to objects. This section explains the encapsulation concept by using an inside-outside

analogy, which should help you understand what object-oriented programming is all about.

In programming terms, an object’s attributes are described by data, such as the length and

width of a rectangle, and operations that can be applied to the attributes are described by

methods. As a practical example, say you’re writing a program that can deal a hand of cards.

From an object-oriented approach, one object you must model is a deck of cards. For this

program, the attributes of interest for the card deck is that it contains 52 cards divided into 4

suits (hearts, diamonds, spades, and clubs), with each suit consisting of 13 values (ace to ten,

jack, queen, and king).

The behavior of the deck of cards consists of operations that can be applied to the deck.

At a minimum, you want the ability to shuffle the deck and to deal single cards. Take a look

at how this simple example illustrates encapsulation by using an inside-outside analogy. A use-

ful visualization is comparing an object with a boiled egg (see Figure 11.6). The egg consists

of three parts: a very inside yolk, a less inside white surrounding the yolk, and an outside shell,

which is the only part of the egg visible to the outside world.

Yolk = attributes

White = behavior

Shell = interface

Figure 11.6 The boiled egg object model

M_C7785_11.1c 535M_C7785_11.1c 535 1/18/11 10:53 AM1/18/11 10:53 AM

536 Adding Functionality to Your Classes

In the boiled egg model, an object’s attributes correspond to the yolk (the egg’s innermost

protected area), and its behavior corresponds to the white. In other words, surrounding the data

attributes, much as an egg’s white surrounds its yolk, are the operations you choose to incor-

porate in an object. Finally, the shell represents the interface to the outside world—the means

by which a user calls the object’s internal methods.

The boiled egg model, with its egg shell interface separating the egg’s inside from the

outside, is useful because it clearly depicts the separation between what should be contained

in an object and what should be seen from the outside. This separation is an essential element

in object-oriented programming. From an inside-outside perspective, an object’s data attri-

butes, the selected algorithms for the object’s operations, and how these algorithms are actu-

ally implemented are always “inside” issues hidden from the user’s view. How a user or

another object can actually activate an inside procedure is an “outside” issue.

Now apply this concept to the deck of cards. First, think about attributes you might use

to represent cards in the deck. You could use any of the following attributes (and others are

possible):

• Two integer variables, one representing a suit (a number from 1 to 4) and one repre-

senting a value (a number from 1 to 13)

• One character variable representing a card’s suit, and one integer variable represent-

ing a card’s value

• One integer variable having a value from 0 to 51; the expression

int(numberƒ/ƒ13ƒ+ƒ1) provides a number from 1 to 4 to represent the suit, and the

expression (numberƒ%ƒ13ƒ+ƒ1) represents a card value from 1 to 13

Which attributes you select, however, isn’t relevant to the outside. The way you choose to

represent a card is an inside issue for the object designer to decide. From the outside, the only

concern is having access to a deck consisting of 52 cards that have the necessary suits and values.

The same is true for operations you decide to provide as part of the card deck object. Start

with the shuffling operation. A number of algorithms can be used to produce a shuffled deck.

For example, you could use C++’s random number function, rand(), or create your own ran-

dom number generator. Again, the selection of an algorithm is an inside issue for the class

designer to determine. The algorithm that’s selected and how it’s applied to the attributes you

have chosen for cards aren’t relevant from the object’s outside. For this example’s purposes,

assume you decide to use C++’s rand() function to produce a randomly shuffled deck.

If you use the first attribute set (two integer variables), each card in a shuffled deck is

produced by using rand() at least twice: once to create a random number from 1 to 4 for the

suit and again to create a random number from 1 to 13 for the card’s value. This sequence must

be carried out to construct 52 different attribute sets, with no duplicates allowed.

If you use the second attribute set (one character variable and one integer variable), a

shuffled deck can be produced in the same fashion, with one modification: The first random

number (from 1 to 4) must be changed into a character to represent the suit.

M_C7785_11.1c 536M_C7785_11.1c 536 1/18/11 10:53 AM1/18/11 10:53 AM

537Chapter 11
Chapter Supplement: Insides and Outsides

Finally, if you use the third attribute set, you need to use rand() once for each card to

produce 52 random numbers from 0 to 51, with no duplicates allowed.

The important point is that selecting an algorithm and deciding how it’s applied to an

object’s attributes are implementation issues, and implementation issues are always inside

issues. A user of the card deck, who is outside, doesn’t need to know how the shuffling is done.

All the user must know is how to produce a shuffled deck. In practice, this means the user is

supplied with enough information to call the shuffle function correctly. This information cor-

responds to the interface, or the egg’s outer shell.

Abstraction and Encapsulation
The distinction between insides and outsides is related to the concepts of abstraction and

encapsulation. Abstraction means concentrating on what an object is and does before making

any decisions about how to implement the object. Therefore, you define a deck and the

operations you want to provide abstractly. (Remember that if your abstraction is to be useful,

it should capture the attributes and operations of a real-world deck.) After deciding on the

attributes and operations, you can actually implement—that is, code—them.

Encapsulation generally means separating the implementation details of the abstract attri-

butes and behavior and hiding them from the object’s outside users. An object’s external side

should give users only the interface needed to activate internal procedures. Imposing a strict

inside-outside discipline when creating classes is really another way of saying that the class

encapsulates all implementation details. In the card deck example, encapsulation means users

never need to know how you have modeled the deck internally or how an operation, such as

shuffling, is performed; they just need to know how to activate an operation.

Code Extensibility
An advantage of the inside-outside object approach is that it encourages extending existing

code without needing to completely rewrite it. This advantage is possible because all interac-

tions between objects are centered on the outside interface and all implementation details are

hidden in the object’s inside. For example, in Figure 11.7, the object’s two operations can be

activated by calling the circle or square on the outside, which in practice is simply a method

call. The circle and square emphasize that two methods are provided for outside use. In the

card deck example, activating one method might produce a shuffled deck, and activating

another method might result in a card suit and value being returned from the object.

Now say you want to alter the implementation of an existing operation or add more func-

tionality to the class. As long as the existing outside interface is maintained, the internal implemen-

tation of any operations can be changed without the user being aware that a change took place.

This is a result of encapsulating the attribute data and operations in the class from which an

object is created.

M_C7785_11.1c 537M_C7785_11.1c 537 1/18/11 10:53 AM1/18/11 10:53 AM

538 Adding Functionality to Your Classes

The interface

Figure 11.7 Using an object’s interface

Furthermore, as long as the interface to existing operations isn’t changed, new operations

can be added as needed. Essentially, from the outside world’s perspective, all that’s being added

is another method call that accesses the inside attributes and modifies them in a new way.

M_C7785_11.1c 538M_C7785_11.1c 538 1/18/11 10:53 AM1/18/11 10:53 AM

12 12.1 Class Inheritance

 12.2 Polymorphism

 12.3 Dynamic Object Creation and
Deletion

 12.4 Pointers as Class Members

 12.5 Common Programming Errors

 12.6 Chapter Summary

 12.7 Chapter Supplement: UML Class
and Object Diagrams

The ability to create new classes from existing ones is the underlying motivation and power behind class-
and object-oriented programming techniques. Doing so makes it possible to reuse existing code in new ways
without the need for retesting and validation. With this ability, designers of a class can make it available
to other programmers without relinquishing control over existing class features yet allow other program-
mers to make additions and extensions.

For a programming language to be classified as an object-oriented language, it must include the
features of classes, inheritance, and polymorphism. In this chapter, you learn about the central object-
oriented capabilities of inheritance and polymorphism. Additionally, you learn how to create and delete
objects dynamically—that is, while a program is running.

Chapter

Extending Your
Classes

N_C7785_12.1c 539N_C7785_12.1c 539 1/18/11 10:52 AM1/18/11 10:52 AM

540 Extending Your Classes

12.1 Class Inheritance

Constructing one class from another is accomplished by using inheritance, which is the capabil-

ity of deriving one class from another class. An equally important and related feature called

polymorphism allows redefining how member functions of the same name operate, based on an

object’s class. This section describes C++’s inheritance features, and polymorphism is dis-

cussed in Section 12.2.

The class used as the basis for a derived class is referred to as the base class, parent class,

or superclass. The derived class, also referred to as the child class or subclass, is a new class incor-

porating all data members and member functions of its base class. However, it can, and usu-

ally does, add its own new data members and member functions and can override any base

class function.

As an example of inheritance, consider three geometric shapes: a circle, a cylinder, and a

sphere. All these shapes share a common characteristic—a radius. Therefore, you can make the

circle a base type for the other two shapes, as shown in Figure 12.1. By convention, arrows

always point from the derived class to the base class. In this example, the circle is the base

class, and the cylinder and sphere are the derived classes.

Sphere Cylinder

Circle

Figure 12.1 Relating object types

The relationships shown in Figure 12.1 are examples of simple inheritance, in which each

derived type has only one base type. The complement to simple inheritance is multiple
inheritance, in which a derived type has two or more base types. Figure 12.2 shows an example

of multiple inheritance, but only simple inheritance is discussed in this section.

mini van

car truck

Figure 12.2 An example of multiple inheritance

N_C7785_12.1c 540N_C7785_12.1c 540 1/18/11 10:52 AM1/18/11 10:52 AM

541Chapter 12
Class Inheritance

The class derivations in Figures 12.1 and 12.2 are formally called class hierarchies because

they illustrate the hierarchy, or order, in which one class is derived from another. With this

information as background, now you can see how to derive one class from another.

A derived class has the same form as any other class: It consists of both declaration and

implementations. The only difference is in the first line of the declaration section. For a

derived class, this line is extended to include an access specifier and a base class name in

this form:

classƒderivedClassNameƒ:ƒclassAccessƒbaseClassName

For example, if Circle is the name of an existing class, a new class named Cylinder can

be derived as follows:

classƒCylinderƒ:ƒpublicƒCircle
{
ƒƒƒƒ//ƒplaceƒanyƒadditionalƒdataƒmembersƒand
ƒƒƒƒ//ƒmemberƒfunctionsƒinƒhere
};ƒƒ//ƒendƒofƒCylinderƒclassƒdeclaration

Except for the class access specifier after the colon and the base class’s name, there’s noth-

ing new or complicated about constructing the Cylinder class. Before providing a description

of the Circle class and adding data and function members to the derived Cylinder class, you

need to reexamine access specifiers and how they relate to derived classes.

Access Specifications
Until now, you have used only private and public access specifiers in a class. Giving all data

members private status ensures that they can be accessed only by class member functions or

friends. This restricted access prevents access by any nonclass functions (except friends) but

also precludes access by any derived class functions. This restriction is sensible because with-

out it, anyone could bypass the private restriction by simply deriving a class.

Point of Information
Object-Based Versus Object-Oriented Languages

In an object-based language, data and operations can be incorporated in such a way
that data values can be isolated and accessed through the specified class functions. The
capability to bind data members with operations in a single unit is referred to as “encap-
sulation.” In C++, encapsulation is provided by the class capability.

For a language to be classified as object-oriented, it must also include inheritance
and polymorphism. As discussed, inheritance is the capability to derive one class from
another. A derived class incorporates all data members and member functions of the
parent class and can add its own data and function members. The class used as the basis
for the derived class is the base or parent class, and the derived class is also called the
subclass or child class. Polymorphism allows using the same function name to use one
operation in a parent class’s objects and a different operation in a derived class’s objects.

N_C7785_12.1c 541N_C7785_12.1c 541 1/18/11 10:52 AM1/18/11 10:52 AM

542 Extending Your Classes

To retain restricted access across derived classes, C++ provides a third access specification—

protected. Protected access behaves the same as private access, in that it permits access only to

member or friend functions, but it allows any derived class to inherit this restriction. The

derived class then defines the type of inheritance it’s willing to take on, subject to the base

class’s access restrictions. This definition is done by the class access specifier, which is listed

after the colon at the start of the class declaration section. Table 12.1 lists the derived class

member access resulting from the base class’s member specifications and the derived class

access specifier.

The shaded rows in Table 12.1 show that if the base class member has a protected access

and the derived class access specifier is public, the derived class member is protected to its

class. Similarly, if the base class has a public access and the derived class access specifier is

public, the derived class member is public. These specifications for base class data members

and member functions are the most commonly used, so they’re the ones used in this section.

So for all classes intended for use as a base class, a protected data member access is used

instead of a private designation.

Table 12.1 Inherited Access Restrictions

Base Class Member Derived Class Access
Specifier

Derived Class Member

private :ƒprivate inaccessible
protected :ƒprivate private
public :ƒprivate private
private :ƒpublic inaccessible
protected :ƒpublic protected
public :ƒpublic public
private :ƒprotected inaccessible
protected :ƒprotected protected
public :ƒprotected protected

An Example To understand how to derive one class from another, examine the process of

deriving the Cylinder class from the base class Circle. The definition of the Circle class is

as follows:

//ƒclassƒdeclarationƒsection
classƒCircle
{
ƒƒprotected:
ƒƒƒƒdoubleƒradius;
ƒƒpublic:
ƒƒƒƒCircle(doubleƒ=ƒ1.0);ƒƒ//ƒconstructor
ƒƒƒƒdoubleƒcalcval();
};

☞

N_C7785_12.1c 542N_C7785_12.1c 542 1/18/11 10:52 AM1/18/11 10:52 AM

543Chapter 12
Class Inheritance

//ƒclassƒimplementationƒsection
Circle::Circle(doubleƒr)ƒƒ//ƒconstructor
{
ƒƒradiusƒ=ƒr;
}

//ƒcalculateƒtheƒareaƒofƒaƒcircle
doubleƒCircle::calcval()
{
ƒƒreturn(PIƒ*ƒradiusƒ*ƒradius);
}

Except for substituting the access specifier protected in place of the usual private

specifier for the data member, this code is a standard class definition. The only variable not

defined is PI, which is used in the calcval() function. It’s defined as follows:

constƒdoubleƒPIƒ=ƒ2.0ƒ*ƒasin(1.0);

This definition is simply a “trick” that forces the computer to return the value of PI accu-

rate to as many decimal places as your computer allows. This value is obtained by taking the

arcsine of 1.0, which is π/2, and multiplying the result by 2.

Having defined the base class, you can now extend it to a derived class, which has this

definition:

//ƒclassƒdeclarationƒsectionƒwhereƒCylinderƒisƒderivedƒfromƒCircle
classƒCylinderƒ:ƒpublicƒCircle
{
ƒƒprotected:
ƒƒƒƒdoubleƒlength;ƒƒ//ƒaddƒoneƒdataƒmemberƒand
ƒƒpublic:ƒƒƒƒƒƒƒƒƒƒƒ//ƒtwoƒmemberƒfunctions
ƒƒCylinder(doubleƒrƒ=ƒ1.0,ƒdoubleƒlƒ=ƒ1.0)ƒ:ƒCircle(r),ƒlength(l)ƒ{}
ƒƒdoubleƒcalcval();
};

//ƒclassƒimplementationƒsection
doubleƒCylinder::calcval()ƒƒƒ//ƒcalculatesƒaƒvolume
{
ƒƒreturnƒ(lengthƒ*ƒCircle::calcval());ƒ//ƒnoteƒtheƒbaseƒfunctionƒcall
}

This definition encompasses several important concepts related to derived classes. First,

as a derived class, Cylinder contains all the data members and member functions of its base

class, Circle, plus any of its own members it might add. In this case, the Cylinder class

consists of a radius data member, inherited from the Circle class, plus a length data mem-

ber. Therefore, each Cylinder object contains two data members, as shown in Figure 12.3.

N_C7785_12.1c 543N_C7785_12.1c 543 1/18/11 10:52 AM1/18/11 10:52 AM

544 Extending Your Classes

length

radius radius

Circle Cylinder

new member

derived member

Figure 12.3 Relationship between Circle and Cylinder data members

In addition, the Cylinder class inherits Circle’s member functions. This inheritance

is shown in the Cylinder constructor, which uses a base/member initialization list (see

Section 11.1) that calls the Circle constructor. It’s also shown in Cylinder’s calcval()

function, which makes a call to Circle::calcval().

In both classes, the same function name, calcval(), has been used to illustrate overrid-

ing a base function with a derived function. When a Cylinder object calls calcval(), it’s a

request to use the Cylinder version of the function; a Circle object call to calcval() is a

request to use the Circle version. In this case, the Cylinder class can access only the class

version of calcval() by using the scope resolution operator, as in the call Circle::calcval().

Program 12.1 uses these two classes in the context of a complete program.

 Program 12.1

#includeƒ<iostream>
#includeƒ<cmath>
usingƒnamespaceƒstd;

constƒdoubleƒPIƒ=ƒ2.0ƒ*ƒasin(1.0);

//ƒclassƒdeclarationƒsection
classƒCircle
{
ƒƒprotected:
ƒƒƒƒdoubleƒradius;
ƒƒpublic:
ƒƒƒƒCircle(doubleƒ=ƒ1.0);ƒƒ//ƒconstructor
ƒƒƒƒdoubleƒcalcval();
};

//ƒclassƒimplementationƒsectionƒforƒCircle
Circle::Circle(doubleƒr)ƒƒ//ƒconstructor
{
ƒƒradiusƒ=ƒr;
}

☞

N_C7785_12.1c 544N_C7785_12.1c 544 1/18/11 10:52 AM1/18/11 10:52 AM

545Chapter 12
Class Inheritance

//ƒcalculateƒtheƒareaƒofƒaƒCircle
doubleƒCircle::calcval()
{
ƒƒreturn(PIƒ*ƒradiusƒ*ƒradius);
}

//ƒclassƒdeclarationƒsectionƒwhereƒCylinderƒisƒderivedƒfromƒCircle
classƒCylinderƒ:ƒpublicƒCircle
{
ƒƒprotected:
ƒƒƒƒdoubleƒlength;ƒƒ//ƒaddƒoneƒdataƒmemberƒand
ƒƒpublic:ƒƒƒƒƒƒƒƒƒƒƒ//ƒtwoƒmemberƒfunctions
ƒƒƒƒCylinder(doubleƒrƒ=ƒ1.0,ƒdoubleƒlƒ=ƒ1.0)ƒ:ƒCircle(r),ƒlength(l)ƒ{}
ƒƒƒƒdoubleƒcalcval();
};

//ƒclassƒimplementationƒsectionƒforƒCylinder
doubleƒCylinder::calcval()ƒƒƒ//ƒcalculatesƒaƒvolume
{
ƒƒreturnƒ(lengthƒ*ƒCircle::calcval());ƒ//ƒnoteƒtheƒbaseƒfunctionƒcall
}

intƒmain()
{
ƒƒCircleƒCircle_1,ƒCircle_2(2);ƒƒ//ƒcreateƒtwoƒCircleƒobjects
ƒƒCylinderƒCylinder_1(3,4);ƒƒƒƒƒƒ//ƒcreateƒoneƒCylinderƒobject

ƒƒcoutƒ<<ƒ“TheƒareaƒofƒCircle_1ƒisƒ“ƒ<<ƒCircle_1.calcval()ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“TheƒareaƒofƒCircle_2ƒisƒ“ƒ<<ƒCircle_2.calcval()ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“TheƒvolumeƒofƒCylinder_1ƒisƒ“ƒ<<ƒCylinder_1.calcval()ƒ<<ƒendl;

ƒƒCircle_1ƒ=ƒCylinder_1;ƒƒ//ƒassignƒaƒCylinderƒtoƒaƒCircle

ƒƒcoutƒ<<ƒ“\nTheƒareaƒofƒCircle_1ƒisƒnowƒ“ƒ<<ƒCircle_1.calcval()ƒ<<ƒendl;
ƒƒreturnƒ0;
}

Program 12.1 produces the following output:

TheƒareaƒofƒCircle_1ƒisƒ3.14159
TheƒareaƒofƒCircle_2ƒisƒ12.5664
TheƒvolumeƒofƒCylinder_1ƒisƒ113.097

TheƒareaƒofƒCircle_1ƒisƒnowƒ28.2743

N_C7785_12.1c 545N_C7785_12.1c 545 1/18/11 10:52 AM1/18/11 10:52 AM

546 Extending Your Classes

The first three output lines are straightforward and are produced by the first three cout

statements in the program. As the output shows, a call to calcval() with a Circle object

activates the Circle version of this function, and a call to calcval() with a Cylinder object

activates the Cylinder version.

The assignment statement Circle_1ƒ=ƒCylinder_1; introduces another important

relationship between a base and derived class: A derived class object can be assigned to a base class
object. This relationship shouldn’t be surprising because base and derived classes share a com-

mon set of data member types. In this type of assignment, only this set of data members, which

consists of all the base class data members, is assigned. Therefore, as shown in Figure 12.4, the

Cylinder to Circle assignment results in the following memberwise assignment:

Circle_1.radiusƒ=ƒCylinder_1.radius;

Circle = Cylinder

derived classbase class

Figure 12.4 An assignment from derived to base class

The length data member of the Cylinder object isn’t used in the assignment because it

has no equivalent variable in the Circle class. The reverse cast, from base to derived class,

isn’t as simple and requires a constructor to initialize the derived class members that aren’t in

the base class.

Before leaving Program 12.1, one other point should be made. Although the Circle con-

structor was called explicitly by using a base/member initialization list for the Cylinder con-

structor, an implicit call could have been made. In the absence of an explicit derived class

constructor, the compiler automatically calls the default base class constructor first, before the

derived class constructor is called. This order of calling works because the derived class con-

tains all the base class’s data members. In a similar fashion, destructor methods are called in

the reverse order—first derived class and then base class.

 EXERCISES 12.1

1. (Review) Define the following terms:

a. inheritance d. simple inheritance

b. base class e. multiple inheritance

c. derived class f. class hierarchy

2. (Review) Describe the difference between private and protected class members.

3. (Review) What three features must a programming language include to be classified as an

object-oriented language?

N_C7785_12.1c 546N_C7785_12.1c 546 1/18/11 10:52 AM1/18/11 10:52 AM

547Chapter 12
Polymorphism

4. (Modify) a. Modify Program 12.1 to include a derived class named Sphere from the base

Circle class. The only additional class members of Sphere should be a constructor and a

calcval() function that returns the sphere’s volume. (Note: Volume = 4 / 3 πr3.)

b. Include the class constructed for Exercise 4a in a working C++ program. Have your program

call all the member functions in the Sphere class.

5. (Program) a. Create a base class named Point consisting of x and y data members represent-

ing point coordinates. From this class, derive a class named Circle with another data member

named radius. For this derived class, the x and y data members represent a circle’s center

coordinates. The member functions of the Point class should consist of a constructor, an

area() function that returns 0, and a distance() function that returns the distance between

two points, (x1, y1) and (x2, y2), where

distance x x y y= -() + -()2 1

2

2 1

2

 Additionally, the derived class should have a constructor and an override function named

area() that returns a circle’s area.

b. Include the classes constructed for Exercise 5a in a working C++ program. Have your pro-

gram call all the member functions in each class. In addition, call the base class’s

distance() function with two Circle objects and explain the result this function returns.

6. (Modify) a. Using the classes constructed for Exercise 5a, derive a class named Cylinder

from the Circle class. The Cylinder class should have a constructor and a member function

named area() that determines a cylinder’s surface area. For this function, use the algorithm

surface area = 2 π r (l + r), where r is the radius of the cylinder and l is the length.

b. Include the classes constructed for Exercise 6a in a working C++ program. Have your pro-

gram call all the member functions in the Cylinder class.

c. What do you think the result might be if the Point (base) class’s distance() function is

called with two Cylinder objects?

7. (Program) a. Create a base class named Rectangle containing length and width data mem-

bers. From this class, derive a class named Box with another data member named depth. The

member functions of the base Rectangle class should consist of a constructor and an area()

function. The derived Box class should have a constructor, a volume() function, and an over-

ride function named area() that returns the surface area of the box.

b. Include the classes constructed for Exercise 7a in a working C++ program. Have your pro-

gram call all the member functions in each class, and verify the results manually.

12.2 Polymorphism

As defined previously, polymorphism allows using the same function name to invoke one

response in a base class’s objects and another response in a derived class’s objects. Overriding

a base member function by using an overloaded derived member function, as shown with the

calcval() function in Program 12.1, is an example of polymorphism. In some situations,

however, this method of overriding doesn’t work the way you might want. To understand why,

take a look at Program 12.2.

N_C7785_12.1c 547N_C7785_12.1c 547 1/18/11 10:52 AM1/18/11 10:52 AM

548 Extending Your Classes

 Program 12.2

#includeƒ<iostream>
#includeƒ<cmath>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsectionƒforƒtheƒbaseƒclass
classƒOne
{
ƒƒprotected:
ƒƒƒƒdoubleƒa;
ƒƒpublic:
ƒƒƒƒOne(doubleƒ=ƒ2.0);ƒƒƒ//ƒconstructor
ƒƒƒƒdoubleƒf1(double);ƒƒƒ//ƒaƒmemberƒfunction
ƒƒƒƒdoubleƒf2(double);ƒƒƒ//ƒanotherƒmemberƒfunction
};

//ƒclassƒimplementationƒsectionƒforƒOne
One::One(doubleƒval)ƒƒƒ//ƒconstructor
{
ƒƒaƒ=ƒval;
}

doubleƒOne::f1(doubleƒnum)ƒƒ//ƒaƒmemberƒfunction
{
ƒƒreturn(num/2);
}

doubleƒOne::f2(doubleƒnum)ƒƒ//ƒanotherƒmemberƒfunction
{
ƒƒreturn(ƒpow(f1(num),2)ƒ);ƒƒ//ƒsquareƒtheƒresultƒofƒf1()
}

//ƒclassƒdeclarationƒsectionƒforƒtheƒderivedƒclass
classƒTwoƒ:ƒpublicƒOne
{
ƒƒpublic:
ƒƒƒƒdoubleƒf1(double);ƒƒƒƒ//ƒthisƒoverridesƒclassƒOne'sƒf1()
};

//ƒclassƒimplementationƒsectionƒforƒTwo
doubleƒTwo::f1(doubleƒnum)
{
ƒƒreturn(num/3);
}

☞

N_C7785_12.1c 548N_C7785_12.1c 548 1/18/11 10:52 AM1/18/11 10:52 AM

549Chapter 12
Polymorphism

intƒmain()
{
ƒƒOneƒobject_1;ƒƒ//ƒobject_1ƒisƒanƒobjectƒofƒtheƒbaseƒclass
ƒƒTwoƒobject_2;ƒƒ//ƒobject_2ƒisƒanƒobjectƒofƒtheƒderivedƒclass

ƒƒ//ƒcallƒf2()ƒusingƒaƒbaseƒclassƒobjectƒcall
ƒƒcoutƒ<<ƒ“Theƒcomputedƒvalueƒusingƒaƒbaseƒclassƒobjectƒcallƒisƒ“
ƒƒƒƒƒƒƒ<<ƒobject_1.f2(12)ƒ<<ƒendl;

ƒƒ//ƒcallƒf2()ƒusingƒaƒderivedƒclassƒobjectƒcall
ƒƒcoutƒ<<ƒ“Theƒcomputedƒvalueƒusingƒaƒderivedƒclassƒobjectƒcallƒisƒ“
ƒƒƒƒƒƒƒ<<ƒobject_2.f2(12)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

The following output is produced by Program 12.2:

Theƒcomputedƒvalueƒusingƒaƒbaseƒclassƒobjectƒcallƒisƒ36
Theƒcomputedƒvalueƒusingƒaƒderivedƒclassƒobjectƒcallƒisƒ36

As this output shows, the same result is obtained, no matter which object type calls the

f2() function, because the derived class doesn’t have an override of the base class’s f2()

function. Therefore, both calls to f2() result in the base class’s f2() function being called.

After the base class’s f2() function is called, it always calls the base class’s version of f1()

rather than the derived class’s override version. This behavior is caused by a process referred

to as function binding. In normal function calls, static binding is used, meaning the determina-

tion of which function is called is made at compile time. Therefore, when the compiler first

encounters the f1() function in the base class, it makes the determination that whenever

f2() is called, from either a base or derived class object, it subsequently calls the base class’s

f1() function.

In place of static binding, say you want to use a binding method capable of determining

which function should be called at runtime, based on the object type making the call. This

type of binding, referred to as dynamic binding, is achieved in C++ with virtual functions. A

virtual function tells the compiler to create a pointer to a function, but not fill in the pointer’s

value until the function is actually called. Then at runtime, based on the object making the call, the

appropriate function address is used.

Creating a virtual function is easy—simply place the keyword virtual before the func-

tion’s return type in the class declaration section. For example, examine Program 12.3, which

is identical to Program 12.2, except for the virtual declaration of the f1() function.

N_C7785_12.1c 549N_C7785_12.1c 549 1/18/11 10:52 AM1/18/11 10:52 AM

550 Extending Your Classes

 Program 12.3

#includeƒ<iostream>
#includeƒ<cmath>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsectionƒforƒtheƒbaseƒclass
classƒOne
{
ƒƒprotected:
ƒƒƒƒdoubleƒa;
ƒƒƒƒpublic:
ƒƒƒƒOne(doubleƒ=ƒ2.0);ƒƒƒƒƒƒƒƒƒƒƒ//ƒconstructor
ƒƒƒƒvirtualƒdoubleƒf1(double);ƒƒƒ//ƒaƒmemberƒfunction
ƒƒƒƒdoubleƒf2(double);ƒƒƒƒƒƒƒƒƒƒƒ//ƒanotherƒmemberƒfunction
};

//ƒclassƒimplementationƒsectionƒforƒOne
One::One(doubleƒval)ƒƒƒ//ƒconstructor
{
ƒƒaƒ=ƒval;
}

doubleƒOne::f1(doubleƒnum)ƒƒƒ//ƒaƒmemberƒfunction
{
ƒƒreturn(num/2);
}

doubleƒOne::f2(doubleƒnum)ƒƒƒ//ƒanotherƒmemberƒfunction
{
ƒƒreturn(ƒpow(f1(num),2)ƒ);ƒƒ//ƒsquareƒtheƒresultƒofƒf1()
}

//ƒclassƒdeclarationƒsectionƒforƒtheƒderivedƒclass
classƒTwoƒ:ƒpublicƒOne
{
ƒƒpublic:
ƒƒƒƒvirtualƒdoubleƒf1(double);ƒƒƒƒ//ƒoverridesƒclassƒOne'sƒf1()
};

//ƒclassƒimplementationƒsectionƒforƒTwo
doubleƒTwo::f1(doubleƒnum)
{
ƒƒreturn(num/3);
}

☞

N_C7785_12.1c 550N_C7785_12.1c 550 1/18/11 10:52 AM1/18/11 10:52 AM

551Chapter 12
Polymorphism

intƒmain()
{
ƒƒOneƒobject_1;ƒƒ//ƒobject_1ƒisƒanƒobjectƒofƒtheƒbaseƒclass
ƒƒTwoƒobject_2;ƒƒ//ƒobject_2ƒisƒanƒobjectƒofƒtheƒderivedƒclass

ƒƒ//ƒcallƒf2()ƒusingƒaƒbaseƒclassƒobjectƒcall
ƒƒcoutƒ<<ƒ“Theƒcomputedƒvalueƒusingƒaƒbaseƒclassƒobjectƒcallƒisƒ“
ƒƒƒƒƒƒƒ<<ƒobject_1.f2(12)ƒ<<ƒendl;

ƒƒ//ƒcallƒf2()ƒusingƒaƒderivedƒclassƒobjectƒcall
ƒƒcoutƒ<<ƒ“Theƒcomputedƒvalueƒusingƒaƒderivedƒclassƒobjectƒcallƒisƒ“
ƒƒƒƒƒƒƒ<<ƒobject_2.f2(12)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 12.3 produces the following output:

Theƒcomputedƒvalueƒusingƒaƒbaseƒclassƒobjectƒcallƒisƒ36
Theƒcomputedƒvalueƒusingƒaƒderivedƒclassƒobjectƒcallƒisƒ16

As this output shows, the f2() function now calls different versions of the overloaded

f1() function based on the object type making the call. Basing the selection on the object

making the call is the classic definition of polymorphic behavior and is caused by the dynamic

binding imposed on f1() because it’s a virtual function.

After a function is declared as virtual, it remains virtual for the next derived class, with or

without a virtual declaration in the derived class. Therefore, the second virtual declaration in

the derived class isn’t strictly necessary but should be included for clarity and to make sure

any subsequently derived classes inherit the function correctly.

In the inheritance diagram in Figure 12.5, class C is derived from class B and class B is

derived from class A.1 In this situation, if the f1() function is virtual in class A but not declared

in class B, it isn’t virtual in class C. The only other requirement is that after a function has been

declared as virtual, the return type and parameter list of all subsequent derived class override

versions must be the same.

class C

class B

class A

Figure 12.5 An inheritance diagram

1By convention, as noted in Section 12.1, arrows always point from the derived class to the base class.

N_C7785_12.1c 551N_C7785_12.1c 551 1/18/11 10:52 AM1/18/11 10:52 AM

552 Extending Your Classes

 EXERCISES 12.2

1. (Practice) Enter and run Programs 12.2 and 12.3 so that you understand the relationship

between function calls in each program.

2. (Review) Describe the difference between static binding and dynamic binding.

3. (Review) Describe the difference between a virtual function and a nonvirtual function.

4. (Review) Explain what polymorphism is and give an example of polymorphic behavior.

5. (Review) Describe the two methods C++ provides for implementing polymorphism.

6. (Review) Explain whether the multiplication operator provided for integer and double-

precision built-in types is an example of overloading or polymorphism.

12.3 Dynamic Object Creation and Deletion

As each object is defined in a program, the compiler designates enough storage for it; this stor-

age is subsequently assigned from a pool of computer memory locations before the program

runs. After memory locations have been assigned, they remain fixed for the object’s lifetime or

until the program finishes running. For example, if a main() function declares three Date

objects, the storage for these objects remains fixed from the point of their definition until

main() completes execution.

An alternative to this fixed allocation of memory storage locations is dynamic allocation of

memory, in which the amount of storage to be allocated is assigned, as requested, at runtime

instead of being fixed at compile time. Dynamic allocation of memory is useful when dealing

with lists and objects because it allows expanding the list as new items are added and contract-

ing the list as items are deleted. For object-oriented programs, it allows creating and destroying

new objects as required.

As an example of dynamic object creation, say you’re creating a program designed to track

the flow of customers at a large outlet chain’s self-checkout registers. You don’t know in advance

the number of transactions taking place at each register. However, by using dynamic allocation,

the program can create an object as each checkout transaction occurs for tracking customer use

of the checkout process. This object might consist of the number of items checked out and the

arrival time of each customer at the register. Although the class’s do-nothing methods are com-

pleted later, the following class adequately defines the information this object needs. In review-

ing this class, notice the shaded constructor and destructor methods:

//ƒclassƒdeclarationƒsection
classƒCheckout
{
ƒƒprivate:
ƒƒƒƒintƒnumItems;
ƒƒƒƒdoubleƒarrivalTime;

☞

N_C7785_12.1c 552N_C7785_12.1c 552 1/18/11 10:52 AM1/18/11 10:52 AM

553Chapter 12
Dynamic Object Creation and Deletion

ƒƒpublic:
ƒƒƒƒCheckout();ƒƒƒ//ƒconstructor
ƒƒƒƒ//ƒtheƒfollowingƒisƒanƒinlineƒdestructor
ƒƒƒƒ~Checkout()
ƒƒƒƒƒ{coutƒ<<ƒ“!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!\n”;}
ƒƒƒƒvoidƒshowObject();
ƒƒƒƒvoidƒgetItems(){return;}ƒƒ//ƒinlineƒdo-nothingƒmethods
ƒƒƒƒvoidƒgetTime()ƒ{return;}ƒƒ//ƒwillƒbeƒusedƒinƒProgramƒ12.5
};

//ƒclassƒimplementationƒsection
Checkout::Checkout()ƒ//ƒconstructor
{
ƒƒcoutƒ<<ƒ“\n****ƒAƒnewƒCustomerƒobjectƒhasƒbeenƒcreatedƒ****\n”;
ƒƒnumItemsƒ=ƒ5;
ƒƒarrivalTimeƒ=ƒ2.5;
}

voidƒCheckout::showObject()
{
ƒƒƒcoutƒ<<ƒ“ƒƒƒƒƒForƒthisƒobject:\n”;
ƒƒƒcoutƒ<<ƒ“ƒƒƒƒnumItemsƒ=ƒ“ƒ<<ƒnumItems
ƒƒƒƒƒƒƒƒ<<ƒ“ƒƒƒƒarrivalTimeƒ=ƒ“ƒ<<ƒarrivalTimeƒ<<ƒendl;
ƒƒƒreturn;
}

The constructor method causes the following display whenever an object is created:

****ƒAƒnewƒCustomerƒobjectƒhasƒbeenƒcreatedƒ****

Similarly, the destructor method, which is called automatically when an object is destroyed,

causes the following message to be displayed:

!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!

These messages are included to help you monitor creation and deletion of an object by

using dynamic allocation. Table 12.2 describes two C++ operators, new and delete, that pro-

vide this capability. (These operators require the new header file.)

Table 12.2 Dynamic Allocation and Deallocation Operators

Operator Name Description
new Reserves the correct number of bytes for the variable or object

type requested by the declaration. Returns the address of the first
reserved location or a NULL value if not enough memory is available.

delete Releases previously reserved memory. The address of the first
reserved location must be passed as an argument to the operator.

N_C7785_12.1c 553N_C7785_12.1c 553 1/18/11 10:52 AM1/18/11 10:52 AM

554 Extending Your Classes

After an object has been dynamically created, it can be accessed only by using the address

the new operator returns. So like the this pointer, the newly created object’s address must be

stored in a pointer variable. The mechanism for doing this is rather simple. For example, the

statement

Checkoutƒ*anotherTransƒ=ƒnewƒCheckout;

declares anotherTrans as a pointer to a Checkout object, reserves memory for the object, and

places this newly created object’s address in the anotherTrans pointer.

This dynamic creation of a Checkout object can also be made in two steps. The first step

is to declare a pointer variable with a declaration statement. Then, when an object is actually

required, a request can be made to create the object. When the object is created, its address is

assigned to the previously declared pointer. Following are the two required statements:

Checkoutƒ*anotherTrans;ƒƒƒƒ//ƒdeclaresƒanotherTransƒasƒaƒpointer
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒthatƒcanƒstoreƒtheƒaddress
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒofƒaƒCheckoutƒobject

anotherTransƒ=ƒnewƒCheckout;ƒƒ//ƒcreatesƒaƒnewƒCheckoutƒobjectƒand
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstoresƒthisƒobject'sƒaddressƒin
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒtheƒpointerƒnamedƒanotherTrans

The expression newƒCheckout on the right of the equals sign creates a new Checkout

object. The address returned by the new operator is then assigned to the pointer variable on

the left of the equals sign. These two statements are the first two shaded statements in

Program 12.4’s main() function.

 Program 12.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒCheckout
{
ƒƒprivate:
ƒƒƒƒintƒnumItems;
ƒƒƒƒdoubleƒarrivalTime;

ƒƒpublic:
ƒƒƒƒCheckout();ƒƒƒƒ//ƒtheƒconstructor
ƒƒƒƒ//ƒtheƒfollowingƒisƒanƒinlineƒdestructor
ƒƒƒƒ~Checkout()
ƒƒƒƒƒ{coutƒ<<ƒ“!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!\n”;};

☞

N_C7785_12.1c 554N_C7785_12.1c 554 1/18/11 10:52 AM1/18/11 10:52 AM

555Chapter 12
Dynamic Object Creation and Deletion

ƒƒƒƒvoidƒshowObject();
ƒƒƒƒvoidƒgetItems(){return;};ƒƒ//ƒinlineƒdo-nothingƒmethods
ƒƒƒƒvoidƒgetTime()ƒ{return;};ƒƒ//ƒwillƒbeƒusedƒinƒProgramƒ12.5
};

//ƒclassƒimplementationƒsection
Checkout::Checkout()ƒ//ƒconstructor
{
ƒƒcoutƒ<<ƒ“\n****ƒAƒnewƒCustomerƒobjectƒhasƒbeenƒcreatedƒ****\n”;
ƒƒnumItemsƒ=ƒ5;
ƒƒarrivalTimeƒ=ƒ2.5;
}

voidƒCheckout::showObject()
{
ƒƒƒcoutƒ<<ƒ“ƒƒƒƒƒForƒthisƒobject:\n”;
ƒƒƒcoutƒ<<ƒ“ƒƒƒƒnumItemsƒ=ƒ“ƒ<<ƒnumItemsƒ
ƒƒƒƒƒƒƒƒ<<ƒ“ƒƒƒƒarrivalTimeƒ=ƒ“ƒ<<ƒarrivalTimeƒ<<ƒendl;
ƒƒƒreturn;
}

intƒmain()
{
ƒƒCheckoutƒ*anotherTrans;ƒƒ//ƒpointerƒtoƒaƒCheckoutƒobject
ƒƒintƒi,ƒhowMany;

ƒƒcoutƒ<<ƒ“Enterƒtheƒnumberƒofƒtransactionsƒtoƒbeƒcreated:ƒ“;
ƒƒcinƒ>>ƒhowMany;

ƒƒfor(iƒ=ƒ1;ƒiƒ<=ƒhowMany;ƒi++)ƒƒ
ƒƒ{ƒƒƒƒ
ƒƒƒƒanotherTransƒ=ƒnewƒCheckout;ƒ//ƒcreateƒaƒnewƒCheckoutƒobject

ƒƒƒƒ//ƒdisplayƒtheƒaddressƒofƒtheƒcreatedƒobject
ƒƒƒƒcoutƒ<<ƒ“Theƒmemoryƒaddressƒofƒthisƒobjectƒis:ƒ“ƒ<<ƒanotherTransƒ<<ƒendl;
ƒƒƒƒanotherTrans->showObject();ƒƒ//ƒdisplayƒcontentsƒofƒthisƒobject
ƒƒƒdeleteƒanotherTrans;ƒƒ//ƒdeleteƒtheƒobject
ƒƒ}

ƒƒreturnƒ0;
}

N_C7785_12.1c 555N_C7785_12.1c 555 1/18/11 10:52 AM1/18/11 10:52 AM

556 Extending Your Classes

Following is a sample output produced by Program 12.4:

Enterƒtheƒnumberƒofƒtransactionsƒtoƒbeƒcreated:ƒ1

****ƒAƒnewƒCustomerƒobjectƒhasƒbeenƒcreatedƒ****
Theƒmemoryƒaddressƒofƒthisƒobjectƒis:ƒ003B65A0
ƒƒƒƒƒForƒthisƒobject:
ƒƒƒƒƒƒƒnumItemsƒ=ƒ5ƒƒƒƒarrivalTimeƒ=ƒ2.5
!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!

Take a look at how this output was produced. The first shaded statement in main()—

Checkoutƒ*anotherTrans;—defines a pointer to a Checkout object. The user is then

prompted to enter the number of dynamic objects to be created, which in this case is one.

The next shaded statement—anotherTransƒ=ƒnewƒCheckout;—creates a new

Checkout object and stores its address in the anotherTrans variable. This stored address is

then displayed by inserting the pointer’s name in a cout stream (the third shaded statement).

Because the content of a pointer variable is a value, this value, even though it happens to be

an address, can be displayed in this manner. Figure 12.6 shows the allocation of memory cor-

responding to this address.

003B65A01st allocation at

Figure 12.6 The memory allocation produced by a sample run of Program 12.4

Now notice the fourth shaded statement, which shows the notation used to apply a

member method to a newly created object. The statement anotherTrans->showObject();

applies the showObject() method to the object whose address resides in the pointer vari-

able anotherTrans. Because dynamically created objects don’t have symbolic names, they

can be accessed only by using the address information in the pointer variable. However, as

explained in Section 11.2, the notation anotherTrans->showObject(); can be replaced

by (*anotherTrans).showObject();.

Finally, the last shaded statement in the main() function deletes the object and returns

the memory previously assigned to it to the computer’s operating system.2 Deleting dynami-

cally created objects when their usefulness ends is crucial. Otherwise, as new objects are cre-

ated, the computer starts to “eat up” available memory space, especially if the same pointer

is used in creating a new object before the old object is deleted. The reason is that after an

existing object’s address is overwritten with a new object’s address, there’s no way for the

system to reclaim the memory. This condition is referred to as memory leak. In the worst case,

2The allocated storage is returned automatically to the heap (a computer’s free storage area) when the program has finished running.

It is, however, a good practice to restore allocated storage back to the heap by using delete when the memory is no longer needed,

especially for large programs that make numerous requests for additional storage areas.

N_C7785_12.1c 556N_C7785_12.1c 556 1/18/11 10:52 AM1/18/11 10:52 AM

557Chapter 12
Dynamic Object Creation and Deletion

as available memory is lost because of a memory leak, system operation can slow down, appli-

cations can fail, and the computer can crash.

Next, a modified version of the Checkout class defined in Program 12.4 is used in

Program 12.5, which shows the basic elements of a simulation to predict the flow of customers

to express self-checkout counters. The assumption is that a customer arrives randomly during

an interval of between 0 and 5 minutes and has a maximum of 15 items to check out.

Except for using random numbers and coding the constructor as an inline function, the

Checkout class in this program is essentially the same one used in Program 12.4. There are no

class members in the class, however, because in practice, the data the simulation generates

would be written to a file for later analysis.

 Program 12.5

#includeƒ<iostream>
#includeƒ<ctime>
#includeƒ<cmath>
usingƒnamespaceƒstd;

//ƒCheckoutƒclass
//ƒprecondition:
//ƒƒƒsrand()ƒmustƒbeƒcalledƒonceƒbeforeƒanyƒmemberƒmethod
//ƒpost-conditions:
//ƒƒƒgetItems()ƒreturnsƒanƒintegerƒrandomƒno.ƒofƒitemsƒbetweenƒ1ƒandƒ20
//ƒƒƒgetTime()ƒreturnsƒanƒarrivalƒtimeƒbetweenƒ0.0ƒandƒ3.0

//ƒclassƒdeclarationƒsection
classƒCheckout
{
ƒƒprivate:
ƒƒƒƒ//ƒnoƒclassƒvariables
ƒƒpublic:
ƒƒƒƒCheckout()ƒ{coutƒ<<ƒ“\n****ƒAƒnewƒCustomerƒhasƒarrivedƒ****\n”;};
ƒƒƒƒ~Checkout()
ƒƒƒƒƒ{coutƒ<<ƒ“!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!\n”;};
ƒƒƒƒintƒgetItems(){return(1ƒ+ƒrand()ƒ%ƒ15);};ƒƒ
ƒƒƒƒdoubleƒgetTime(){return((double(rand())/RAND_MAX)*3);};
};

intƒmain()
{
ƒƒCheckoutƒ*anotherTrans;ƒƒ//ƒdeclareƒaƒpointerƒtoƒaƒCheckoutƒobject
ƒƒintƒi,ƒhowMany;

☞

N_C7785_12.1c 557N_C7785_12.1c 557 1/18/11 10:52 AM1/18/11 10:52 AM

558 Extending Your Classes

ƒƒcoutƒ<<ƒ“Enterƒtheƒnumberƒofƒsimulationsƒtoƒbeƒcreated:ƒ“;
ƒƒcinƒ>>ƒhowMany;

ƒƒsrand(time(NULL));
ƒƒfor(iƒ=ƒ1;ƒiƒ<=ƒhowMany;ƒi++)
ƒƒ{
ƒƒƒƒ//ƒcreateƒaƒnewƒCheckoutƒobject
ƒƒƒƒanotherTransƒ=ƒnewƒCheckout;

ƒƒƒƒ//ƒuseƒtheƒpointerƒtoƒaccessƒtheƒmemberƒmethods
ƒƒƒƒcoutƒ<<ƒ“Theƒarrivalƒtimeƒisƒ“ƒ<<ƒanotherTrans->getTime()ƒ<<ƒendl;
ƒƒƒƒcoutƒ<<ƒ“Theƒnumberƒofƒitemsƒisƒ“<<ƒanotherTrans->getItems()ƒ<<ƒendl;

ƒƒƒƒ//ƒdeleteƒtheƒobject
ƒƒƒƒdeleteƒanotherTrans;
ƒƒ}

ƒƒreturnƒ0;
}

Following is a sample output produced by Program 12.5. The main difference between

this output and that of Program 12.4 is that the arrival of customers to the checkout counter

and the number of items to be checked out are determined randomly.

Enterƒtheƒnumberƒofƒsimulationsƒtoƒbeƒcreated:ƒ4

****ƒAƒnewƒCustomerƒhasƒarrivedƒ****
Theƒarrivalƒtimeƒisƒ2.23121
Theƒnumberƒofƒitemsƒisƒ7
!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!

****ƒAƒnewƒCustomerƒhasƒarrivedƒ****
Theƒarrivalƒtimeƒisƒ4.78301
Theƒnumberƒofƒitemsƒisƒ14
!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!

****ƒAƒnewƒCustomerƒhasƒarrivedƒ****
Theƒarrivalƒtimeƒisƒ2.94565
Theƒnumberƒofƒitemsƒisƒ9
!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!

****ƒAƒnewƒCustomerƒhasƒarrivedƒ****
Theƒarrivalƒtimeƒisƒ1.3329
Theƒnumberƒofƒitemsƒisƒ3
!!!!ƒThisƒCustomerƒobjectƒhasƒbeenƒdeletedƒ!!!!

N_C7785_12.1c 558N_C7785_12.1c 558 1/18/11 10:52 AM1/18/11 10:52 AM

559Chapter 12
Dynamic Object Creation and Deletion

 EXERCISES 12.3

1. (Review) a. Explain how dynamic allocation of memory works.

b. Describe the process of creating a dynamically allocated object. Specifically, discuss the

roles of a pointer variable and the new operator in creating a dynamically allocated object.

c. Discuss the importance of deleting dynamically allocated objects, and explain what can

happen if these objects aren’t deleted.

2. (Review) a. Explain what a pointer is.

b. For each of the following pointer declarations, identify the pointer variable’s name and

the data type of the object to be accessed when the address in the pointer variable is

dereferenced:

 i. Checkoutƒ*a;

 ii. Pumpƒ*pointer1;

 iii. Pumpƒ*addr_of_aPump;

 iv. intƒ*addr_of_int;

 v. doubleƒ*b;

c. If the asterisks were removed from the declarations in Exercise 2b, what would the names

before the semicolon represent?

3. (Practice) a. Enter and run Program 12.4, but specify the number of objects to be created as

four. Explain why your program outputs the same memory addresses.

b. Remove the statement deleteƒanotherTrans; or convert it to a comment (called “com-

menting out”), and rerun Program 12.4. Again, make sure to have the program create four

new objects. Explain why the memory addresses now differ for each new object.

c. Using the results of Exercise 3b, why is it no longer possible to access any of the first three

created objects after the fourth object has been dynamically created? What does this imply

about the previously allocated memory, and why is it a serious flaw in the program?

4. (Practice) Enter and run Program 12.5.

5. (Desk check) For the following class, determine what the two member methods accomplish:

#includeƒ<iostream>
#includeƒ<ctime>
#includeƒ<cmath>
usingƒnamespaceƒstd;

//ƒCoinƒclass
//ƒprecondition:
//ƒƒƒƒƒsrand()ƒmustƒbeƒcalledƒonceƒbeforeƒtheƒflip()methodƒisƒcalled

☞

N_C7785_12.1c 559N_C7785_12.1c 559 1/18/11 10:52 AM1/18/11 10:52 AM

560 Extending Your Classes

//ƒclassƒdeclarationƒsection
classƒCoin
{
ƒƒprivate:
ƒƒƒƒstaticƒintƒtotalHeads;
ƒƒƒƒstaticƒintƒtotalTails;
ƒƒpublic:
ƒƒƒƒCoin()ƒ{coutƒ<<ƒ“\n****ƒAƒnewƒCoinƒobjectƒhasƒbeenƒcreatedƒ****”;};
ƒƒƒƒ~Coin()ƒ{coutƒ<<ƒ“\n!!!!ƒThisƒCoinƒobjectƒhasƒbeenƒdeletedƒ!!!!\n”;};
ƒƒƒƒvoidƒflip();
ƒƒƒƒstaticƒvoidƒpercentages();
};

//ƒstaticƒmemberƒdefinition
intƒCoin::totalHeadsƒ=ƒ0;
intƒCoin::totalTailsƒ=ƒ0;

//ƒclassƒimplementationƒsection
voidƒCoin::flip()
{
ƒƒif(ƒdouble(rand())/RAND_MAXƒ<ƒ0.5)
ƒƒ{
ƒƒƒƒ++totalTails;
ƒƒƒƒcoutƒ<<ƒ“\nTheƒcoinƒflipƒcameƒupƒtails”;
ƒƒ}
ƒƒƒelse
ƒƒ{
ƒƒƒƒ++totalHeads;
ƒƒƒƒcoutƒ<<ƒ“\nTheƒcoinƒflipƒcameƒupƒheads”;
ƒƒ}
ƒƒreturn;
}

voidƒCoin::percentages()ƒ//ƒthisƒcalculatesƒtheƒpercentagesƒof
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒheadsƒandƒtailsƒandƒdisplaysƒtheƒresult
ƒƒintƒtossesƒ=ƒtotalHeadsƒ+ƒtotalTails;

ƒƒcoutƒ<<ƒ“\nNumberƒofƒcoinƒtosses:ƒ“ƒ<<ƒtosses;
ƒƒcoutƒ<<ƒ“\nƒƒƒ“ƒ<<ƒtotalHeadsƒ<<ƒ“ƒHeadsƒƒƒƒƒƒ“
ƒƒƒƒƒƒƒ<<ƒtotalTailsƒ<<ƒ“ƒTails\n”;

ƒƒcoutƒ<<ƒ“\nHeadsƒcameƒupƒ“ƒ<<ƒ100.0ƒ*ƒdouble(totalHeads)/tosses
ƒƒƒƒƒƒƒ<<ƒ“ƒpercentƒofƒtheƒtime.”;
ƒƒcoutƒ<<ƒ“\nTailsƒcameƒupƒ“ƒ<<ƒ100.0ƒ*ƒdouble(totalTails)/tosses
ƒƒƒƒƒƒƒ<<ƒ“ƒpercentƒofƒtheƒtime.”;
ƒƒreturn;
}ƒƒ

N_C7785_12.1c 560N_C7785_12.1c 560 1/18/11 10:52 AM1/18/11 10:52 AM

561Chapter 12
Dynamic Object Creation and Deletion

6. (Program) a. Compile a program that uses the following main() function with the Coin class

given in Exercise 5:

intƒmain()
{
ƒƒCoinƒ*anewCoin;ƒƒ//ƒdeclareƒaƒpointerƒtoƒaƒCoinƒobject
ƒƒintƒi,ƒhowMany;
ƒƒƒƒ
ƒƒcoutƒ<<ƒ“Enterƒtheƒnumberƒofƒflips:ƒ“;
ƒƒcinƒ>>ƒhowMany;

ƒƒsrand(time(NULL));

ƒƒfor(iƒ=ƒ1;ƒiƒ<=ƒhowMany;ƒi++)
ƒƒ{
ƒƒƒƒanewCoinƒ=ƒnewƒCoin;ƒ//ƒcreateƒaƒnewƒCoinƒobject
ƒƒƒƒanewCoin->flip();ƒƒƒƒ//ƒflipƒtheƒcoin
ƒƒƒƒdeleteƒanewCoin;ƒƒƒƒƒ//ƒdeleteƒtheƒobject
ƒƒ}

ƒƒCoin::percentages();ƒƒƒ//ƒcallƒtheƒstaticƒmemberƒmethod

ƒƒreturnƒ0;
}

b. Run the program written for Exercise 6a so that it produces four flips of the coin.

7. (Modify) a. Remove all the cout statements from the constructor, destructor, and flip()

methods in the Coin class given in Exercise 5. Then combine the modified class with the

main() function given in Exercise 6a to produce an executable program.

b. Run the program written for Exercise 7a three times. On the first run, have your program

simulate flipping the coin 10 times; the second run, 100 times; and the third run, 1000 times.

Make sure each created object is deleted in the while loop.

c. What problem can occur if each created object isn’t deleted in your program? Do you think

this problem is serious?

8. (Modify) a. Modify the program written for Exercise 6a or 7a to contain a single dynamically

allocated Coin object. It should be created before the for loop is entered and deleted after

the loop completes its execution.

b. Discuss the advantages and disadvantages of using multiple Coin objects compared with

creating a single Coin object.

c. Is using a dynamically created object for the program written for Exercise 7a necessary?

9. (Program) a. Write a program that simulates a customer’s arrival at a gas station and the

amount of gas requested. Each customer should arrive randomly between 1 and 15 minutes

and request between 3 and 15 gallons of gas. The name of your class should be Customer.

b. Include the class written for Exercise 9a in a program that simulates the arrival of 10 cus-

tomers (using a while loop). The arrival time and number of gallons of gas each customer

N_C7785_12.1c 561N_C7785_12.1c 561 1/18/11 10:52 AM1/18/11 10:52 AM

562 Extending Your Classes

requests should be displayed. After the last customer, your program should display the total

number of gallons requested.

10. (Modify) a. Modify the class written for Exercise 9a to include the grade of gas. Assume there

are three grades of gas: 87 octane, 93 octane, and 97 octane.

b. Include the class written for Exercise 10a in a program that simulates the arrival of 10 cus-

tomers (using a while loop). The arrival time, number of gallons of gas each customer

requests, and octane rating of the gas should be displayed. After the last customer, your

program should display the total number of gallons requested for each grade of gas.

c. What does your simulation assume about the comparative desirability of each grade of gas?

Is this assumption realistic?

d. Based on your answer to Exercise 10c, what are the implications of using the simulation to

determine how much of each grade of gas to supply to a gas station?

12.4 Pointers as Class Members

As you learned in Section 10.2, a class can contain any C++ data type, so including a pointer

variable in a class shouldn’t seem surprising. As an example of the usefulness of a pointer

instance variable, say you need to store a list of book titles. Instead of using a fixed-length

character array with a data member to hold each title, you could include a pointer member to

a character array and then allocate an array of the correct size for each book title as it’s needed.

Figure 12.7 shows this arrangement of two objects, book1 and book2, each consisting of a

single pointer data member. As shown, object book1’s pointer contains the address of (“points

to”) a character array containing the characters WindowsƒPrimer, and object book2’s pointer

contains the address of a character array containing the characters AƒBriefƒHistoryƒof
WesternƒCivilization.

Windows PrimerAn address

Object book1’s data member:

A Brief History of Western CivilizationAn address

Object book2’s data member:

Figure 12.7 Two objects containing pointer data members

N_C7785_12.1c 562N_C7785_12.1c 562 1/18/11 10:52 AM1/18/11 10:52 AM

563Chapter 12
Pointers as Class Members

The following is a suitable class declaration section for the list of book titles to be

accessed, as shown in Figure 12.7:

//classƒdeclarationƒsection
classƒBook
{
ƒƒprivate:
ƒƒƒƒcharƒ*title;ƒƒƒƒƒ//ƒaƒpointerƒtoƒaƒbookƒtitle
ƒƒpublic:
ƒƒƒƒBook(charƒ*ƒ=ƒ‘\0’);ƒƒƒƒƒ//ƒconstructor
ƒƒƒƒvoidƒshowtitle(void);ƒƒƒƒ//ƒdisplayƒtheƒtitle
};

The constructor, Book(), and the display function, showtitle(), are defined in the class

implementation section:

//ƒclassƒimplementationƒsection
Book::Book(charƒ*name)
{
ƒƒtitleƒ=ƒnewƒchar[strlen(name)+1];ƒƒ//ƒallocateƒmemory
ƒƒstrcpy(title,name);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstoreƒtheƒstring
}

voidƒBook::showtitle(void)
{
ƒƒcoutƒ<<ƒtitleƒ<<ƒendl;
}

The body of the Book() constructor contains two statements. The first statement, title
=ƒnewƒchar[strlen(name)+1];, performs two tasks. First, the right side of the statement

allocates enough storage for the length of the name parameter plus 1 to accommodate the end-

of-string null character, '\0', and returns the address of the first allocated character position.

Because of the assignment operator, =, this address is then assigned to the pointer variable

title. Figure 12.8 shows these operations. The second statement in the constructor copies

the characters in the name argument to the newly created memory allocation. If no argument

is passed to the constructor, title is set to NULL. Program 12.6 uses this class definition in the

context of a complete program.

title = new char[strlen(name)+1]

Address of first allocated location

+1 for '\0'Allocate the storage length of name

Figure 12.8 Allocating memory for titleƒ=ƒnewƒchar[strlen(name)+1)]

N_C7785_12.1c 563N_C7785_12.1c 563 1/18/11 10:52 AM1/18/11 10:52 AM

564 Extending Your Classes

 Program 12.6

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒBook
{
ƒƒprivate:
ƒƒƒƒcharƒ*title;ƒƒƒ//ƒaƒpointerƒtoƒaƒbookƒtitle
ƒƒpublic:
ƒƒƒƒBook(charƒ*ƒ=ƒ'\0');ƒƒƒ//ƒconstructor
ƒƒƒƒvoidƒshowtitle(void);ƒƒ//ƒdisplayƒtheƒtitle
};

//ƒclassƒimplementationƒsection
Book::Book(charƒ*strng)
{
ƒƒtitleƒ=ƒnewƒchar[strlen(strng)+1];ƒƒ//ƒallocateƒmemory
ƒƒstrcpy(title,strng);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstoreƒtheƒstring
}

voidƒBook::showtitle(void)
{
ƒƒcoutƒ<<ƒtitleƒ<<ƒendl;

ƒƒreturn;
}

intƒmain()
{
ƒƒBookƒbook1(“WindowsƒPrimer”);ƒƒƒƒƒƒ//ƒcreateƒ1stƒtitle
ƒƒBookƒbook2(“AƒBriefƒHistoryƒofƒWesternƒCivilization”);ƒƒ//ƒ2ndƒtitle

ƒƒbook1.showtitle();ƒƒ//ƒdisplayƒbook1'sƒtitle
ƒƒbook2.showtitle();ƒƒ//ƒdisplayƒbook2'sƒtitle

ƒƒreturnƒ0;
}

N_C7785_12.1c 564N_C7785_12.1c 564 1/18/11 10:52 AM1/18/11 10:52 AM

565Chapter 12
Pointers as Class Members

This is the output produced by Program 12.6:

WindowsƒPrimer
AƒBriefƒHistoryƒofƒWesternƒCivilization

Assignment Operators and Copy Constructors Reconsidered3

When a class contains no pointer data members, the compiler-supplied defaults for the assign-

ment operator and copy constructor perform their intended tasks adequately. Both these

defaults provide a member-by-member operation that produces no adverse side effects.

However, this isn’t the case when a pointer member is included in the class declaration. The

following discussion explains why.

Figure 12.9a shows the arrangement of pointers and allocated memory that Program 12.6

produces just before it finishes running. Now assume that you insert the assignment statement

book2ƒ=ƒbook1; before the closing brace of the main() function. Because you haven’t

defined an assignment operation, the compiler’s default assignment is used. As you know, this

assignment produces a memberwise copy (that is, book2.titleƒ=ƒbook1.title) and means

the address in book1’s pointer is copied into book2’s pointer. Therefore, both pointers now

“point to” the character array containing the characters WindowsƒPrimer, and the address of

AƒBriefƒHistoryƒofƒWesternƒCivilization has been lost. This situation is shown in

Figure 12.9b.

Windows PrimerAn address

book1’s pointer

A Brief History of Western CivilizationAn address

book2’s pointer

Figure 12.9a Before the assignment book2ƒ=ƒbook1;

3The material in this section explains the problems that occur when the default assignment, copy constructor, and destructor methods

are used with classes containing pointer members and discusses how to overcome these problems. On first reading, this section can be

omitted without loss of subject continuity.

N_C7785_12.1c 565N_C7785_12.1c 565 1/18/11 10:52 AM1/18/11 10:52 AM

566 Extending Your Classes

Windows Primer

book1’s pointer

A Brief History of Western Civilization

book2’s pointer

An address

An address

Figure 12.9b The effect of default assignment

Because the memberwise assignment shown in Figure 12.9b results in losing the

address of AƒBriefƒHistoryƒofƒWesternƒCivilization, there’s no way for the program

to release this memory storage. (The operating system cleans it up when the program termi-

nates.) Worse, however, is a destructor method attempting to release the memory. After the

memory pointed to by book2 is released (again, referring to Figure 12.9b), book1 points to

an undefined memory location. If this memory area is subsequently reallocated before

book1 is deleted, the deletion releases memory that another object is using. The results can

wreak havoc on a program.

Typically, what you want is to have the book titles copied, as shown in Figure 12.9c, and

leave the pointers alone. This situation also removes the side effects of a subsequent deletion

of any Book object.

Windows Primer

Windows Primer

An address

book1’s pointer

An address

book2’s pointer

Figure 12.9c The correct effect

N_C7785_12.1c 566N_C7785_12.1c 566 1/18/11 10:52 AM1/18/11 10:52 AM

567Chapter 12
Pointers as Class Members

To achieve the assignment you want, you must write your own assignment operator. A

suitable definition for this operator is as follows:

voidƒBook::operator=(Book&ƒoldbook)
{
ƒƒif(oldbook.titleƒ!=ƒNULL)ƒƒ//ƒcheckƒthatƒitƒexists
ƒƒƒƒdelete(title);ƒƒƒƒƒƒƒƒƒƒƒ//ƒreleaseƒexistingƒmemory
ƒƒtitleƒ=ƒnewƒchar[strlen(oldbook.title)ƒ+ƒ1];ƒƒ//ƒallocateƒnewƒmemory
ƒƒstrcpy(title,ƒoldbook.title);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒcopyƒtheƒtitle
}

This definition cleanly releases the memory previously allocated for the object and then

allocates enough memory to store the copied title.

The problems associated with the default assignment operator also exist with the default

copy constructor because it performs a memberwise copy, too. As with the default assignment

operator, you can avoid these problems by writing your own copy constructor. For the Book

class, this constructor is as follows:

Book::Book(Book&ƒoldbook)
{

ƒƒtitleƒ=ƒnewƒchar[strlen(oldbook.title)+1];ƒƒ//ƒallocateƒnewƒmemory
ƒƒstrcpy(title,ƒoldbook.title);ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒcopyƒtheƒtitle
}

Comparing the body of this copy constructor with the assignment operator’s function body

reveals they’re identical except for the deallocation of memory the assignment operator per-

forms. This is because the copy constructor doesn’t have to release the existing array before

allocating a new one; none exists when the constructor is called.

 EXERCISES 12.4

1. (Program) Include the copy constructor and assignment operator explained in this section in

Program 12.6, and run the program to verify their operation.

2. (Program) Write a suitable destructor method for Program 12.6.

3. (Program) a. Construct a class named Car containing these four data members: a double-

precision variable named engineSize, a character variable named bodyStyle, an integer

variable named colorCode, and a character pointer named vinPtr to a vehicle ID code. The

member functions should include a constructor that provides default values of 0 for each

numeric data member, an X for each character variable, and a NULL for each pointer; a display

function that prints the engine size, body style, color code, and vehicle ID code; and an assign-

ment operator that performs a memberwise assignment between two Car objects and handles

the pointer member correctly.

b. Include the class written for Exercise 3a in a working C++ program that creates two Car

objects; the second object should be assigned the values of the first object.

N_C7785_12.1c 567N_C7785_12.1c 567 1/18/11 10:52 AM1/18/11 10:52 AM

568 Extending Your Classes

4. (Modify) Modify Program 12.6 to include the assignment statement bƒ=ƒa, and then run the

modified program to assess any error messages that occur.

5. (Modify) Using Program 12.6 as a start, write a program that creates five Book objects. The

program should allow the user to enter the five book titles interactively and then display the

titles entered.

6. (Modify) Modify the program written in Exercise 5 so that the program sorts the entered book

titles in alphabetical order before it displays them. (Hint: You have to define a sort routine for

the titles; refer back to Section 7.7.)

12.5 Common Programming Errors
1. Attempting to override a virtual function without using the same type and number of argu-

ments as the original function.

2. Using the keyword virtual in the class implementation section. Functions are declared as

virtual only in the class declaration section.

3. Forgetting to delete dynamically created objects.

4. Attempting to use memberwise assignment between objects containing a pointer member.

12.6 Chapter Summary
1. Inheritance is the capability of deriving one class from another class. The class used as the

basis for the derived class is referred to as the base class, parent class, or superclass. The

derived class is also referred to as the child class or subclass.

2. Base class functions can be overridden by derived class functions with the same name. The

override function is simply an overloaded version of the base member function defined in

the derived class.

3. Polymorphism is the capability of having the same function name invoke different responses,

based on the object used in making the function call. It can be accomplished with override

functions or virtual functions.

4. In static binding, the determination of which function is called is made at compile time. In

dynamic binding, the determination is made at runtime.

5. A virtual function designates that dynamic binding should take place. The specification is

made in the function’s prototype by placing the keyword virtual before the function’s

return type. After a function has been declared as virtual, it remains so for all derived

classes, as long as there’s a continuous trail of function declarations through the derived

chain of classes.

6. Pointers can be included as class data members. A pointer member adheres to the same

rules as a pointer variable.

N_C7785_12.1c 568N_C7785_12.1c 568 1/18/11 10:52 AM1/18/11 10:52 AM

569Chapter 12
Chapter Supplement: UML Class and Object
Diagrams

7. The default copy constructor and assignment operators typically aren’t useful with classes

containing pointer members. The reason is that these default functions perform a member-

wise copy, in which the address in the source pointer is copied to the destination pointer,

resulting in both pointers “pointing to” the same memory area. For these situations, you

must define your own copy constructor and assignment operator.

12.7 Chapter Supplement: UML Class and Object Diagrams

For all but extremely simple programs, you should start by creating an explicit design; after you

finish the design, you can begin coding. This process is equivalent to designing a house with

blueprints and physical models before beginning construction. Formally, the process of design-

ing an application is referred to as program modeling. This section introduces the Unified
Modeling Language (UML), which is widely accepted as a technique for developing object-

oriented programs. UML isn’t a programming language, nor is it part of C++. It’s a separate lan-

guage with its own rules and notations for creating an object-oriented design. If used correctly, a

UML design can help you understand and clarify a program’s requirements. The finished design

can serve as a set of detailed specifications (which can be coded easily in an object-oriented

programming language, such as C++) and as documentation for the final program.

UML uses diagrams and techniques that are easy to understand, and it supports all the

features required to implement an object-oriented design. Additionally, UML is the predomi-

nant object-oriented design procedure that professional programmers use. At the most funda-

mental level, designing an object-oriented application requires understanding and specifying

the following:

• The objects in the system

• What can happen to these objects

• When something can happen to these objects

In a UML analysis, each item is addressed by separate views and diagrams. This proce-

dure is similar to the plan for a house, which contains several diagrams required for the final

construction. For example, there must be blueprints for the physical outlay as well as diagrams

for electrical wiring, plumbing, heating and cooling ducts, and landscape and elevation views.

Each diagram presents a different view of the completed house and provides different infor-

mation, but all the information is required for the finished product.

The same is true for the diagrams in a UML analysis. UML has nine diagram types: class,

object, state, sequence, activity, use case, component, deployment, and collaboration. Not all

these diagram types are required for every analysis; some provide specific details that are

needed only in more advanced situations. This book covers the two basic UML diagrams you

should be familiar with—class and object diagrams—and the rules for creating them. After you

understand these rules, you’ll be able to read almost any UML diagram you encounter.

Class and object diagrams are similar in structure, and both include attributes and opera-

tions for classes or objects and the relationship between classes or objects. For many systems,

the descriptions that class and object diagrams provide are more than enough for designing and

creating an object-oriented program.

N_C7785_12.1c 569N_C7785_12.1c 569 1/18/11 10:52 AM1/18/11 10:52 AM

570 Extending Your Classes

Class and Object Diagrams
Class diagrams are used to describe classes and their relationships, and object diagrams are used

to describe objects and their relationships. As you know, a class refers to a type of object, from

which many specific objects can be created, and an object refers to a specific single item cre-

ated from a class. For example, a class of books might be described as fiction or nonfiction, of

which many specific instances, or objects, exist. The book A History of England is a specific

object of the nonfiction class, and Pride and Prejudice is a specific object of the fiction class.

Therefore, the class is always the basic plan, or recipe, from which real objects are created. It

describes the properties and operations each object must have to be a member of the class.

An attribute, as described in Section 10.7, is simply a characteristic each object in the class

must have. For example, title and author are attributes of Book objects; name, age, sex, weight,

and height are attributes of Person objects. After data values are assigned to attributes, a

unique object is created. Every object created from a class must also have an identity to dis-

tinguish it from another object of the same class. This rule isn’t true of a pure data value, such

as the number 5; all occurrences of this number are indistinguishable from one another.

Both classes and objects are represented with a diagram consisting of a box. In class dia-

grams, the class name is in bold text and centered at the top of the box. In object diagrams, the

object’s name is also centered at the top of box, but it’s underlined. Figure 12.10 shows the

representation of a Person class along with a Person object named Janet Smith.

Person

A class
diagram

Janet Smith

An object
diagram

Figure 12.10 Class and object representations

Including the class name in object diagrams is optional, but if you do, underline it and pre-

cede the class name with an object name, using a colon to separate the two names. For example,

in Figure 12.10’s object diagram, you could use the name Janet Smith:Person. Figure 12.11 shows

the basic symbols and notations for constructing class and object diagrams.

After class attributes have been identified, they’re listed in a box below the class name,

separated by a line. Objects are shown in a similar manner, with data values included for all

attributes. For example, Figure 12.12 shows the attributes associated with the Country class

and the values of these attributes for the U.S.A. and Spain objects. As you might expect, the

attributes listed in a class diagram become, in C++, the variables declared in the class declara-

tion section.

N_C7785_12.1c 570N_C7785_12.1c 570 1/18/11 10:52 AM1/18/11 10:52 AM

571Chapter 12
Chapter Supplement: UML Class and Object
Diagrams

ClassName

attribute
attribute:data-type
attribute:data-type=init-value
 ...

operation
operation (arg-list):return-type
 ...

Class:

Object:

attribute-name = value
.
.
.

Object Name

Figure 12.11 Basic UML symbols and notation

Country

Continent
Population

Class diagram

U.S.A

North
America

381 million

Object diagram

Spain

Object diagram

Europe
34 million

Figure 12.12 Including attributes in UML class and object diagrams

Attributes have two qualities: type and visibility. An attribute’s type is either a primitive

data type—such as integer, double, Boolean, or character—or a class data type, such as a string.

Type is required in a class diagram and is indicated after an attribute name with a colon fol-

lowed by the data type.

N_C7785_12.1c 571N_C7785_12.1c 571 1/18/11 10:52 AM1/18/11 10:52 AM

572 Extending Your Classes

Visibility defines where an attribute can be seen—that is, whether the attribute can be

used in other classes or is restricted to the class defining it. The following list explains the

types of visibility and the UML notation for indicating visibility:

• Private—An attribute with private visibility can be used only in its defining class and

can’t be accessed by other classes directly. A minus sign (-) in front of the attribute

name designates the attribute as private.

• Public—An attribute with public visibility can be used in any other class. Public visi-

bility is indicated with a plus sign (+) in front of the attribute name.

• Protected—An attribute with protected visibility can be passed along to a derived class;

neither a plus sign nor a minus sign is used to indicate protected visibility.

In a class diagram, an attribute’s name and type are required; all other information is

optional. Figure 12.13 shows the class diagram for a class named RoomType containing two

private attributes: length and width. Notice that it includes the default values the class is

expected to provide to its attributes.

RoomType

-length : double = 25.0
-width : double = 12.0

Figure 12.13 A class with attributes

Just as attributes are designated in a class diagram, so are operations. Operations are trans-

formations that can be applied to attributes and are coded as C++ functions. Operation names

are listed below attributes and separated from them by a line. Figure 12.14 shows two class

diagrams that include operations.

Person Gas Pump

name:string
street address:string
city:string
state:string
zip:string
age:double

setName()
setAddress()
setAge()
changeName()
changeAddress()
changeAge()

gallonsInTank:double
costPerGallon:double

enablePump()
disablePump()
setPricePerGallon()

Figure 12.14 Including operations in class diagrams

N_C7785_12.1c 572N_C7785_12.1c 572 1/18/11 10:52 AM1/18/11 10:52 AM

13 13.1 The Standard Template Library

 13.2 Linked Lists

 13.3 Stacks

 13.4 Queues

 13.5 Common Programming Errors

 13.6 Chapter Summary

A driving force behind the development of object-oriented programming was the need to create easily reus-
able source code. For example, re-creating source code each time an array or a list is needed wastes both
time and programming effort. In addition, time is spent testing and reverifying code that might have been
modified only minimally.

Suppose, for example, that a program uses three arrays: an array of characters, an array of integers,
and an array of double-precision numbers. Rather than code three different arrays, it makes more sense
to implement each list from a single, fully tested, generic array class. This class would have a complete set
of methods for processing the array, including methods for sorting, inserting, finding maximum and
minimum values, locating values, copying the list, comparing lists, and dynamically expanding and
contracting the list, as needed. This generic list structure, referred to as a container, forms the basis of the
Standard Template Library (STL).

This chapter is intended as an introduction to the STL. Currently, it provides seven different types
of lists, each supported by its own class. The STL capabilities discussed in this chapter represent an
extremely small subset of what’s available in the STL. Typically, an advanced course in a computer sci-
ence curriculum is devoted to covering the advanced applications that are programmed with the STL or
similarly constructed classes.

Chapter

The Standard
Template Library

O_C7785_13.1c 573O_C7785_13.1c 573 1/18/11 10:52 AM1/18/11 10:52 AM

574 The Standard Template Library

13.1 The Standard Template Library

You’ve already worked with one kind of list, an array, which is the list of choice for a fixed-

length set of related data. Many programming applications, however, require expanding and

contracting lists as list items are added and removed. Although expanding and contracting an

array can be accomplished by creating, copying, and deleting arrays, this solution is costly in

terms of programming, maintenance, and testing time.

In all but the simplest situations, it’s usually more efficient to use the Standard Template
Library (STL) to create and manipulate lists. Among other uses, one purpose of the STL is to

provide a tested and generic set of easily used lists that can be maintained in various configu-

rations. This is done by calling prewritten class methods or using generalized algorithms appli-

cable to all STL-created list types. The STL gives you a broad range of generic capabilities

for constructing and manipulating lists of objects rapidly—objects consisting of built-in vari-

ables or other objects. These capabilities enable you to maintain lists and perform operations

on them, such as sorting and searching, without having to fully understand or program the

advanced and often complicated underlying algorithms.

Table 13.1 summarizes the seven types of lists available in the STL. Each list type is

derived from its own class.

Table 13.1 STL Lists

List Type Classification Use

Vector Sequence Dynamic arrays
List Sequence Linked lists
Deque Sequence Stacks and queues
Set Associative Binary trees without duplicate objects
Multiset Associative Binary trees that might have duplicate objects
Map Associative Binary trees with a unique key that doesn’t permit

duplicate objects
Multimap Associative Binary trees with a unique key that permits duplicate

objects

As shown in the Classification column, each list type is categorized as sequence or associa-

tive. In a sequence list, a list object is determined solely by its position in the list—that is, by

where the object was placed in the list and how it might have been moved subsequently. For

example, arrays are sequence lists, and an object’s position in the list is determined by the exact

order in which it was added to the array or moved subsequently. An associative list is maintained

automatically in a sorted order. An object’s position in an associative list depends on its value

and a selected sorting criterion. For example, an alphabetical list of names depends on the name

and a sorting rule rather than the exact order in which names were entered into the list. In this

chapter, you’re concerned only with STL’s sequence types.

Before you begin working with lists and the STL, it’s helpful to understand the difference

between lists in the STL and arrays. An array is a built-in list type. By contrast, lists provided

by the STL are class types. Although arrays are used most often to store built-in numerical data

O_C7785_13.1c 574O_C7785_13.1c 574 1/18/11 10:52 AM1/18/11 10:52 AM

575Chapter 13
The Standard Template Library

types, they still retain general characteristics common to more advanced STL list types. For

example, like an array, an STL list can be empty, meaning it currently holds no items. As it

applies to both arrays and STL lists, a list is considered a container that can hold a collection

of zero or more items of the same type. For this reason, STL lists and arrays are referred to

as both containers and collections, and these terms are used interchangeably. A list must also

provide a means for accessing each object. When a list provides this data location capability,

the list becomes a data structure. In an array, this location capability is provided by the posi-

tion of each object in the array; the position is designated by using an integer index value.

Although STL lists can also store built-in data types, they’re more commonly used to store

and maintain objects. In commercial applications, these objects are usually referred to as

“records.” To make the concept of a record more tangible, take a look at the data items typi-

cally used in preparing mailing labels:

Name:
Street Address:
City:
State:
Zip:

Each data item in this list is a separate entity referred to as a data field. Taken together,

the data fields form a single unit referred to as a record. Although there could be thousands of

names and addresses in a mailing list, all the mailing labels are identical in form. The general

form of the record is described as a class’s data members, and each record is represented as an

object to be stored in a list.

After an object’s structure has been defined, some means for collecting all the objects into

a single list is required. Additionally, a means is needed to locate, display, print, and update

objects in the list. The STL provides these capabilities.

Point of Information
Homogeneous and Heterogeneous Data Structures

Both lists and objects are data structures. A data structure is a container of data orga-
nized in a way that facilitates inserting, retrieving, and deleting data. The difference
between these two data structures is the types of objects they contain. A list is a
homogeneous data structure, which means all its components must be of the same
data type. An object is a heterogeneous data structure, which means its components
can be of different data types.

For example, an object could contain a name stored as a string data type, a pay rate
stored as a double-precision data type, and an ID number stored as an integer data type.
Because an object can be composed of different data types, it’s a heterogeneous data
structure. However, the list holding all the objects is a homogeneous data structure, in
which each object has the same heterogeneous structure.

O_C7785_13.1c 575O_C7785_13.1c 575 1/18/11 10:52 AM1/18/11 10:52 AM

576 The Standard Template Library

Before describing specific types of applications in detail, however, it’s worth emphasizing

that only objects—not a class’s methods—are stored in a list. The methods, which apply to the

class as a whole, simply provide ways to initialize each object before it’s placed in the list and

report and modify an object before it’s inserted in the list or after it’s extracted from the list.

Figure 13.1 shows the process of creating and using objects and lists.

Extract
a

list
object

Extracting an object from a list

Add
to
list

Adding an object to a list

Step 1 Step 2

Instantiate
an

object

ObjectObject . . .Object . . .

Step 3

Figure 13.1 The list creation process

Each STL class provides its own set of methods for list maintenance. Additionally, the

STL provides a general set of methods (called algorithms) that can be applied to any range of

objects stored in any STL-created list. Table 13.2 lists these algorithms.

Table 13.2 Commonly Used STL Algorithms

Algorithm Name Description

accumulate Returns the sum of the numbers in a specified range.
binary_search Returns a Boolean value of true if the specified value exists

within the specified range; otherwise, returns false. Can be
used only on a sorted set of values.

copy Copies objects from a source range to a destination range.
copy_backward Copies objects from a source range to a destination range in a

reverse direction.
count Returns the number of objects in a specified range that match a

specified value.
equal Compares the objects in one range of objects, object by object,

to the objects in a second range.
fill Assigns every object in a specified range to a specified value.

O_C7785_13.1c 576O_C7785_13.1c 576 1/18/11 10:52 AM1/18/11 10:52 AM

577Chapter 13
The Standard Template Library

Algorithm Name Description

find Returns the position of an object’s first occurrence in a specified
range having a specified value if the value exists. Performs a linear
search, starting with the first object in a specified range, and
proceeds one object at a time until the complete range has been
searched or the specified object has been found.

max_object Returns the maximum value of objects in the specified range.
min_object Returns the minimum value of objects in the specified range.
random_shuffle Randomly shuffles object values in a specified range.
remove Removes a specified value in a specified range without changing

the order of the remaining objects.
replace Replaces each object in a specified range having a specified value

with a newly specified value.
reverse Reverses objects in a specified range.
search Finds the first occurrence of a specified value or sequence of

values within a specified range.
sort Sorts objects in a specified range into ascending order.
swap Exchanges object values between two objects.
unique Removes duplicate adjacent objects in a specified range.

Finally, the STL provides additional components referred to as iterators, used to specify

the means of accessing list objects, in much the same way as an index does for an array.

To create and use STL lists, you must do the following:

1. Select a suitable STL class to construct the container type.

2. Store objects in the list.

3. Apply the STL class’s methods or the more general STL algorithms to the stored

objects.

You put these steps into practice in the following sections when you construct three com-

monly used lists: linked lists, stacks, and queues.

 EXERCISES 13.1

1. (Review) Define the following terms:

a. Container

b. Collection

c. Data structure

d. Iterator

e. List

f. Standard Template Library

Table 13.2 Commonly Used STL Algorithms (continued)

O_C7785_13.1c 577O_C7785_13.1c 577 1/18/11 10:52 AM1/18/11 10:52 AM

578 The Standard Template Library

2. (Review) What sequential container types are supported in the STL?

3. (Review) What associative container types are supported in the STL?

4. (Practice) For each of the following, define a class containing only a class declaration section

that can be used to create the following objects:

a. An object (known as a student record) containing a student ID number, the number of

credits completed, and a cumulative grade point average

b. An object (known as a student record) capable of holding a student’s name, date of birth,

number of credits completed, and cumulative grade point average

c. A mailing list containing a title field, last name field, first name field, two street address

fields, a city field, a state field, and a zip code field

d. A stock object containing the stock’s name, the purchase price, and the date of purchase

e. An inventory object containing an integer part number, a string part description, an integer

number of parts in inventory, and an integer reorder value

5. (Practice) For each class declared in Exercise 4, add a suitable constructor and accessor

method. Test each method to initialize and display the following data:

a. ID Number: 4672

 Number of Credits Completed: 68

 Grade Point Average: 3.01

b. Name: Rhona Karp

 Date of Birth: 8/4/60

 Number of Credits Completed: 96

 Grade Point Average: 3.89

c. Title: Dr.

 Last Name: Kingsley

 First Name: Kay

 Address 1: Apt. 2B

 Address 2: 614 Freeman Street

 City: Indianapolis

 State: IN

 Zip Code: 07030

d. Stock: IBM

 Purchase Price: 134.5

 Date Purchased: 10/1/2010

e. Part Number: 16879

 Description: Battery

 Number in Stock: 10

 Reorder Number: 3

6. (Program) a. Write a C++ program that prompts a user to input the current month, day, and

year. Store the data entered in a suitably defined object and display the date in an appropriate

manner.

b. Modify the program written in Exercise 6a to use an object that accepts the current time in

hours, minutes, and seconds.

O_C7785_13.1c 578O_C7785_13.1c 578 1/18/11 10:52 AM1/18/11 10:52 AM

579Chapter 13
Linked Lists

7. (Program) Define a class capable of creating objects that can store a business’s name, descrip-

tion of its product or services, address, number of employees, and annual revenue.

8. (Practice) Define a class capable of creating objects for different screw types held in inven-

tory. Each object should contain a field for an integer inventory number, a double-precision

screw length, a double-precision diameter, the kind of head (Phillips or standard slot), the

material (steel, brass, other), and the cost.

9. (Program) Write a C++ program that defines a class capable of creating objects for storing the

name of a stock, its estimated earnings per share, and its estimated price-to-earnings ratio.

Have the program prompt the user to enter these items for five different stocks. When data

has been entered for a particular stock, have the program compute and display the anticipated

stock price based on the entered earnings and price-per-earnings values. For example, if a user

enters the data XYZƒ1.56ƒ12, the anticipated price for a share of XYZ stock is (1.56)*(12)
=ƒ$18.72.

13.2 Linked Lists

A classic data-handling problem is making additions or deletions to existing objects that are

maintained in a specific order. (Recall that objects in a list are also referred to as “records.”)

This problem is best illustrated by the alphabetical telephone list shown here:

Acme, Sam
(555) 898-2392
Dolan, Edith
(555) 682-3104
Lanfrank, John
(555) 718-4581
Mening, Stephen
(555) 382-7070
Zemann, Harold
(555) 219-9912

Starting with this list of names and phone numbers, you want to add new objects to the

list in such a way that alphabetic ordering is maintained. Although ordered objects can be

inserted or deleted by using an array, it’s not an efficient representation for adding or deleting

objects in the list. Arrays are fixed and have a specified size. Therefore, deleting an object from

an array creates an empty slot that requires shifting up all objects below the deleted object to

close the empty slot.

Similarly, adding an object to an array requires shifting all objects below the addition down

to make room for the new entry. Therefore, adding or deleting objects in an array generally

requires restructuring objects in the container—a cumbersome, time-consuming, and ineffi-

cient practice.

A linked list is a convenient method for maintaining a constantly changing list without

needing to reorder and restructure the entire list. In a linked list, each object contains one vari-

able specifying the location of the next object in the list. Instead of requiring each object to

O_C7785_13.1c 579O_C7785_13.1c 579 1/18/11 10:52 AM1/18/11 10:52 AM

580 The Standard Template Library

be physically stored in the correct order, each new object is physically added wherever the

computer has free storage space. If an object is added to the list, only the variables for objects

immediately before and after the new object must be updated with new location information.

Therefore, from a programming standpoint, information is always contained in one object that

allows locating the next object, no matter where it’s actually stored.

Figure 13.2 illustrates the concept of a linked list. Each object consists of a name and

phone number plus a variable for storing the address of the next object in the list. Although

the actual data for the Lanfrank object in the figure can be physically stored anywhere in the

computer, the variable at the end of the Dolan object maintains the correct alphabetical order.

This variable is a pointer variable that provides the starting address of the location where the

Lanfrank object is stored. All you need to know at this point, however, is that each object in

a linked list must contain information to locate the next object.

address of
Lanfrank object

(555) 682-3104

Dolan, Edith

address of
Mening object

(555) 718-4581

Lanfrank, John

Figure 13.2 Using pointer variables to link objects

To illustrate the usefulness of a pointer variable in the Dolan object, Figure 13.3 shows

adding a phone number for June Hagar to the alphabetical list. The data for June Hagar is

stored in an object, using the same data type as for existing objects. To make sure the phone

number for Hagar is displayed correctly after the Dolan phone number, the pointer variable in

the Dolan object must be altered to locate the Hagar object, and the pointer variable in the

Hagar object must be set to locate the Lanfrank object. As Figure 13.3 shows, the pointer

variable in each object simply locates the next object in the list, even if this object isn’t phys-

ically stored in the correct order.

address of
Lanfrank object

(555) 467-1818

Hagar, June

address of
Hagar object

(555) 682-3104

Dolan, Edith

address of
Mening object

(555) 718-4581

Lanfrank, John

Figure 13.3 Adjusting pointer variables to point to the correct objects

O_C7785_13.1c 580O_C7785_13.1c 580 1/18/11 10:52 AM1/18/11 10:52 AM

581Chapter 13
Linked Lists

Removing an object from a linked list is the reverse of adding an object. The actual object

is logically removed from the list simply by changing the pointer variable’s value in the object

preceding it to the location of the object immediately after the deleted object.

There are two different approaches to constructing a linked list. The first is using the STL

list class; the second is “making your own,” in which the programmer defines a class that

includes an object’s declaration and the code for creating and maintaining the list.

The usefulness of the STL list class is that the linked list, as shown in Figure 13.3, can

be constructed without the programmer having to understand or code the internal details of

pointer variables. The programmer doesn’t even have to understand the details of how an STL

list is created and maintained. This is, of course, the major benefit of object-oriented program-

ming with existing classes. Therefore, except for highly specialized cases, you should almost

always use the STL list class, which is described next.

Using the STL list Class
Figure 13.4 shows the internal structure the STL list class uses to maintain a list of linked

objects. The important point to notice is that access through the list occurs only via link variables

in each object that contain location information for an object. This structure makes it possible to

insert a new object into the list simply by storing it in any available memory location and adjust-

ing the location information in at most two link variables. Unlike an array, storing list objects in

contiguous memory locations isn’t necessary. Similarly, an object can be removed by adjusting

the link information in two link variables. As explained earlier, this means expanding and con-

tracting the list are more efficient operations than in an array.

Address of previous object

Address of next object

Address of previous object

Address of next object

Figure 13.4 A class with four link variables

Table 13.3 lists the methods available in the STL list class. These methods deal with

adding, removing, and locating objects from the front or back of the list. Note that linked lists

provide no random access methods. To get to any internal object, the list must be traversed

sequentially, object by object, starting at the front or back of the list.

O_C7785_13.1c 581O_C7785_13.1c 581 1/18/11 10:52 AM1/18/11 10:52 AM

582 The Standard Template Library

Table 13.3 Summary of STL list Class Methods and Operations

Methods and Operations Type Description
list<DataType>ƒname constructor Creates an empty list named

name with a compiler-dependent
initial size

list<DataType>ƒname(source) constructor Creates a copy of the source list
list<DataType>ƒname(n) constructor Creates a list of size n
list<DataType>ƒname(n,ƒobject) constructor Creates a list of size n with each

object initialized as object
list<DataType>ƒname(src.beg,src.end) constructor Creates a list initialized with objects

from a source container, beginning
at src.beg and ending at src.end

~list<DataType>() destructor Destroys the list and all objects it
contains

name.front() accessor Returns the object at the front
of the list (the first object) with
no check for the existence of a
first object

name.pop_front() mutator Removes but does not return the
object at the front of the list

name.push_front(object) mutator Inserts object at the front of the list
name.back() accessor Returns the object at the back of

the list with no check for the exis-
tence of a last object

name.pop_back() mutator Removes but does not return the
object at the back of the list (the
last object)

name.push_back(object) mutator Inserts object at the back of the list
name.insert(itr,ƒobject) mutator Inserts object at the iterator

position itr
name.insert(itr,ƒsrc.beg,ƒsrc.end) mutator Inserts copies of objects from a

source container, beginning at src.
beg and ending at src.end, at
iterator position itr

name.insert(itr,ƒn,ƒobject) mutator Inserts n copies of object at iterator
position itr

name.assign(n,ƒobject) mutator Assigns n copies of object
name.(src.begin,ƒsrc.end) mutator Assigns the objects of the src

container (need not be a list),
between the range src.begin and
src.end, to the named list

N_C7785_13.1c 582N_C7785_13.1c 582 1/19/11 9:22 AM1/19/11 9:22 AM

583Chapter 13
Linked Lists

Methods and Operations Type Description
name.erase(pos) mutator Removes the object at the specified

position pos
name.erase(begin,ƒend) mutator Removes objects within the speci-

fied range
name.resize(value) mutator Resizes the list larger with new

objects instantiated by using the
default constructor

name.resize(value,ƒobject) mutator Resizes the list larger with new
objects instantiated as object

name.clear() mutator Removes all objects from the list
nameA.swap(nameB) mutator Swaps the objects of nameA and

nameB lists; can be performed with
the swap() algorithm

name.begin() accessor Returns an iterator to the first
object in the list

name.end() accessor Returns an iterator to the position
after the last object in the list

name.rbegin() accessor Returns a reverse iterator to the first
object in the list

name.rend() accessor Returns a reverse iterator to the
position after the last object in
the list

name.unique() mutator Removes consecutive duplicate
objects

name.merge(nameB) mutator Merges sorted objects of nameB
into sorted objects of name, creat-
ing a final sorted list

name.reverse() mutator Reverses objects in the list
name.splice(itr,ƒnameB) mutator Inserts nameB objects into name at

position itr
name.splice(itr,ƒ
nameB,ƒbeg,ƒend)

mutator Inserts nameB objects in the position
range from beg to end into name at
position itr

name.sort() mutator Sorts objects in the list
nameAƒ==ƒnameB relational Returns a Boolean true if all nameA

objects equal nameB objects; other-
wise, returns false

nameAƒ!=ƒnameB relational Returns a Boolean false if all
nameA objects equal nameB objects;
otherwise, returns true; same as
!(nameAƒ==ƒnameB)

Table 13.3 Summary of STL list Class Methods and Operations (continued)

O_C7785_13.1c 583O_C7785_13.1c 583 1/18/11 10:52 AM1/18/11 10:52 AM

584 The Standard Template Library

Methods and Operations Type Description
nameAƒ<ƒnameB relational Returns a Boolean true if nameA is

less than nameB; otherwise, returns
false

nameAƒ>ƒnameB relational Returns a Boolean true if nameA
is greater than nameB; other-
wise, returns false; same as
nameBƒ<ƒnameA

nameAƒ<=ƒnameB relational Returns a Boolean true if nameA is
less than or equal to nameB

nameAƒ>=ƒnameB relational Returns a Boolean true if nameA is
greater than or equal
to nameB

name.size() capacity Returns the number of objects in
the list as an integer

name.empty() capacity Returns a Boolean true if list is
empty; otherwise, returns false

name.max_size() capacity Returns the maximum possible
objects as an integer

name.capacity() capacity Returns the maximum possible
objects as an integer without relo-
cating the list

The list class has no method for returning any object except the first and last objects.

Instead, to access an internal object, the list must be traversed from one end, and all objects

before the one you’re accessing must be removed from the list. Technically, when an item is

removed in this fashion, it’s referred to as “popping” the object from the list. Generally, to

make sure removed objects aren’t lost, a copy of the list is made, either as a complete list or an

object-by-object list as each object is removed, or popped.

In the next two programs, Program 13.1 creates and displays a single linked list of

names, stored as strings, and Program 13.2 shows how to store and retrieve user-created

objects. Because of the STL’s structure, the two applications are virtually the same.

Table 13.3 Summary of STL list Class Methods and Operations (continued)

O_C7785_13.1c 584O_C7785_13.1c 584 1/18/11 10:52 AM1/18/11 10:52 AM

585Chapter 13
Linked Lists

 Program 13.1

#includeƒ<iostream>
#includeƒ<list>
#includeƒ<algorithm>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒlist<string>ƒnames,ƒaddnames;
ƒƒstringƒn;

ƒƒ//ƒaddƒnamesƒtoƒtheƒoriginalƒlist
ƒƒnames.push_front(“Dolan,ƒEdith”);
ƒƒnames.push_back(“Lanfrank,ƒJohn”);

ƒƒ//ƒcreateƒaƒnewƒlist
ƒƒaddnames.push_front(“Acme,ƒSam”);
ƒƒaddnames.push_front(“Mening,ƒStephen”);
ƒƒaddnames.push_front(“Zemann,ƒFrank”);

ƒƒnames.sort();
ƒƒaddnames.sort();

ƒƒ//ƒmergeƒtheƒsecondƒlistƒintoƒtheƒfirst
ƒƒnames.merge(addnames);
ƒƒcoutƒ<<ƒ“Theƒfinalƒlistƒsizeƒis:ƒ“ƒ<<ƒƒnames.size()ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Thisƒlistƒcontainsƒtheƒnames:\n”;

ƒƒwhileƒ(!names.empty())
ƒƒ{
ƒƒƒƒcoutƒ<<ƒnames.front()ƒ<<ƒendl;
ƒƒƒƒnames.pop_front();ƒƒ//ƒremoveƒtheƒobject
ƒƒ}
ƒƒreturnƒ0;
}

O_C7785_13.1c 585O_C7785_13.1c 585 1/18/11 10:52 AM1/18/11 10:52 AM

586 The Standard Template Library

The output Program 13.1 produces is as follows:

Theƒfinalƒlistƒsizeƒis:ƒ5
Thisƒlistƒcontainsƒtheƒnames:
Acme,ƒSam
Dolan,ƒEdith
Lanfrank,ƒJohn
Mening,ƒStephen
Zemann,ƒFrank

Using User-Defined Objects
In practice, most real-life applications using linked lists require a user-defined object consisting

of a combination of data types. For example, consider the problem of creating a linked list for

the simplified telephone directory object class shown in Figure 13.5.

Class Name: NameTele

Attributes
name: string
phoneNum: string

Methods
NameTele(name, phoneNum) //constructor
string getName(): return name // input name
string getPhone(): return phoneNum // input phone number

Figure 13.5 A class description for a telephone directory object

Point of Information
List Application Considerations

Vectors are the preferred list type when you need random access to objects but don’t
need many insertions or deletions. The reason is that an index value can be used to go
directly to the object being accessed. Insertions and deletions require modifying the
underlying array supporting the vector and can be costly in terms of the overhead needed
to perform these operations when many insertions and deletions are required.

Because the only way to get to an object in the middle of a list is by traversing all the
objects before it or by traversing objects from the back of the list toward the object in
the middle, attempts at random access tend to be costly in terms of access time.
Therefore, a list is the preferred list type when many object insertions and deletions need
to be made and object access tends to be sequential.

Finally, if you need to store only primitive data types, such as integers or double-
precision values, a simple array should be your first choice.

O_C7785_13.1c 586O_C7785_13.1c 586 1/18/11 10:52 AM1/18/11 10:52 AM

587Chapter 13
Linked Lists

The following class definition corresponds to Figure 13.5:

//ƒclassƒdeclarationƒsection
classƒNameTele
{
ƒƒprivate:
ƒƒƒƒstringƒname;
ƒƒƒƒstringƒphoneNum;

//ƒclassƒimplementationƒsection
ƒƒpublic:
ƒƒƒƒNameTele(stringƒnn,ƒstringƒphone)ƒƒ//ƒconstructor
ƒƒƒƒ{
ƒƒƒƒƒƒnameƒ=ƒnn;
ƒƒƒƒƒƒphoneNumƒ=ƒphone;
ƒƒƒƒ}
ƒƒƒƒ//ƒinlineƒmethodƒdefinitions
ƒƒƒƒstringƒgetName(){returnƒname;}
ƒƒƒƒstringƒgetPhone(){returnƒphoneNum;}
};

This class permits constructing objects consisting of name and phoneNum instance vari-

ables by using a constructor and accessor methods for setting and retrieving these variables.

Program 13.2 instantiates four objects of this class and stores them in a linked list. After it’s

created, the complete list is displayed.

O_C7785_13.1c 587O_C7785_13.1c 587 1/18/11 10:52 AM1/18/11 10:52 AM

588 The Standard Template Library

 Program 13.2

#includeƒ<iostream>
#includeƒ<list>
#includeƒ<string>
usingƒnamespaceƒstd;

//ƒclassƒdeclarationƒsection
classƒNameTele
{
ƒƒprivate:
ƒƒƒƒstringƒname;
ƒƒƒƒstringƒphoneNum;

//ƒclassƒimplementationƒsection
ƒƒpublic:
ƒƒƒƒNameTele(stringƒnn,ƒstringƒphone)ƒƒƒ//ƒconstructor
ƒƒƒƒ{
ƒƒƒƒƒƒnameƒ=ƒnn;
ƒƒƒƒƒƒphoneNumƒ=ƒphone;
ƒƒƒƒ}
ƒƒƒƒ//ƒinlineƒmethodƒdefinitions
ƒƒƒƒstringƒgetName(){returnƒname;}
ƒƒƒƒstringƒgetPhone(){returnƒphoneNum;}
};

ƒƒintƒmain()
ƒƒ{
ƒƒƒƒlist<NameTele>ƒemployee;ƒƒ//ƒinstantiateƒandƒinitializeƒtheƒlist
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒusingƒobjectsƒinƒtheƒarray

ƒƒƒƒemployee.push_front(NameTele(“Acme,ƒSam”,ƒ“(555)ƒ898–2392”));
ƒƒƒƒemployee.push_back(NameTele(“Dolan,ƒEdith”,ƒ“(555)ƒ682–3104”));
ƒƒƒƒemployee.push_back(NameTele(“Lanfrank,ƒJohn”,ƒ“(555)ƒ718–4581”));
ƒƒƒƒemployee.push_back(NameTele(“Mening,ƒStephen”,ƒ“(555)ƒ382–7070”));
ƒƒƒƒemployee.push_back(NameTele(“Zemann,ƒHarold”,ƒ“(555)ƒ219–9912”));

ƒƒƒƒ//ƒretrieveƒallƒlistƒobjects
ƒƒƒƒ//ƒuseƒaccessorƒmethodsƒtoƒextractƒtheƒnameƒandƒpayƒrate
ƒƒƒƒcoutƒ<<”Theƒsizeƒofƒtheƒlistƒisƒ“ƒ<<ƒemployee.size()ƒ<<ƒendl;
ƒƒƒƒcoutƒ<<”\nƒƒƒƒƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒƒTelephone”;
ƒƒƒƒcoutƒ<<”\n--------------ƒƒƒƒƒƒƒ--------------\n”;

☞

O_C7785_13.1c 588O_C7785_13.1c 588 1/18/11 10:52 AM1/18/11 10:52 AM

589Chapter 13
Linked Lists

ƒƒƒƒwhileƒ(!employee.empty())
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒemployee.front().getName()
ƒƒƒƒƒƒƒƒƒƒƒ<<ƒ“\tƒƒƒƒƒ“ƒ<<ƒemployee.front().getPhone()ƒ<<ƒendl;
ƒƒƒƒƒƒemployee.pop_front();ƒƒ//ƒremoveƒtheƒobject
ƒƒƒƒ}
ƒƒreturnƒ0;
}

Program 13.2 produces the following output:

Theƒsizeƒofƒtheƒlistƒisƒ5
ƒƒƒƒƒƒNameƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒTelephone
---------------ƒƒƒƒƒƒƒ--------------
Acme,ƒSamƒƒƒƒƒƒƒƒƒƒƒƒƒ(555)ƒ898-2392
Dolan,ƒEdithƒƒƒƒƒƒƒƒƒƒ(555)ƒ682-3104
Lanfrank,ƒJohnƒƒƒƒƒƒƒƒ(555)ƒ718-4581
Mening,ƒStephenƒƒƒƒƒƒƒ(555)ƒ382-7070
Zemann,ƒHaroldƒƒƒƒƒƒƒƒ(555)ƒ219-9912

Notice that after each object is retrieved from the list, the underlying class’s accessor meth-

ods extract name and phoneNum values. Because the dot operator has a left-to-right associativity,

an expression such as employee.front().getName() is interpreted as (employee.front()).
getName(). Therefore, the STL list class’s front() method is used to return the front

object from the list, which is then further processed by the NameTele class’s getName() method.

 EXERCISES 13.2

1. (Practice) Enter and run Program 13.1.

2. (Practice) Enter and run Program 13.2.

3. (Modify) Modify Program 13.2 to prompt the user for a name. Have the program search the

existing list for the entered name. If the name is in the list, display the corresponding phone

number; otherwise, display this message: Theƒnameƒisƒnotƒinƒtheƒcurrentƒphone list.

4. (Practice) Write a C++ program containing a linked list of 10 integer numbers. Have the pro-

gram display the numbers in the list.

5. (Practice) Using the linked list of objects shown in Figure 13.3, write the sequence of steps

for deleting the object for John Lanfrank from the list.

6. (Practice) Generalize the description in Exercise 5 to describe the sequence of steps for

removing the nth object from a list of linked objects. The nth object is preceded by the (n - 1)st

object and followed by the (n + 1)st object. Make sure to store all pointer values correctly.

O_C7785_13.1c 589O_C7785_13.1c 589 1/18/11 10:52 AM1/18/11 10:52 AM

590 The Standard Template Library

7. (Desk check) Determine the output of this program:

#includeƒ<iostream>
#includeƒ<list>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒintValue;
ƒƒdoubleƒsumƒ=ƒ0.0;
ƒƒdoubleƒaverage;

ƒƒƒintƒnums[]ƒ=ƒ{1,ƒ2,ƒ3,ƒ4,ƒ5ƒ};ƒƒ//ƒcreateƒarrayƒofƒintegerƒvalues

ƒƒƒlist<int>ƒx(nums,ƒnumsƒ+ƒ4);ƒ//ƒinstantiateƒaƒlistƒofƒintsƒusing
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒaƒconstructorƒthatƒinitializes
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒtheƒlistƒwithƒvaluesƒfromƒarray

ƒƒƒcoutƒ<<”\nTheƒlistƒxƒinitiallyƒhasƒaƒsizeƒofƒ“ƒ<<ƒx.size()
ƒƒƒƒƒƒƒƒ<<ƒ“,\nƒandƒcontainsƒtheƒobjects:ƒ“;

ƒƒƒwhileƒ(!x.empty())
ƒƒƒ{
ƒƒƒƒƒcoutƒ<<ƒx.front()ƒ<<ƒ“ƒƒ“;
ƒƒƒƒƒx.pop_front();
ƒƒƒ}

ƒƒƒcoutƒ<<ƒendl;
}

13.3 Stacks

A stack is a special type of list in which objects can be added and removed only from the top

of the list. Therefore, it’s a last-in, first-out (LIFO) list—that is, a LIFO list in which the last item

added to the list is the first item that can be removed. An example of this type of operation is

a stack of dishes in a cafeteria; the last dish placed on top of the stack is the first dish removed.

Another example is the inbox on a desk, where the last paper placed in the inbox is typically

the first one removed. In programming, stacks are used in all function calls to store and retrieve

data to and from the function. As a stack example, Figure 13.6 shows an existing list of three

last names. The top name on this list is Barney.

O_C7785_13.1c 590O_C7785_13.1c 590 1/18/11 10:52 AM1/18/11 10:52 AM

591Chapter 13
Stacks

Barney

Smith

Jones

Figure 13.6 A list of names

If you restrict access to the list so that names can be added and removed only from the top

of the list, the list becomes a stack, so you must designate which end of the list is the top and

which is the bottom. Because the name Barney is physically placed above the other names, it’s

considered the top of the list. The arrow in the figure is used to indicate the top of the list.

Figure 13.7 (which consists of six parts, labeled a through f) illustrates how the stack

expands and contracts as names are added and deleted. For example, in part b, the name

Ventura has been added to the list. By part c, a total of two new names have been added, and

the top of the list has changed accordingly. By removing the top name, Lanfrank, from the list

in part c, the stack then shrinks to what’s shown in part d, where Ventura is now at the top of

the stack. As names continue to be removed from the list (parts e and f), the stack continues

to contract.

Barney

Smith

Jones

a

Barney

Ventura

Smith

Jones

b

Barney

Ventura

Lanfrank

Smith

Jones

c

Barney

Ventura

Smith

Jones

d

Barney

Smith

Jones

e

Smith

Jones

f

Figure 13.7 An expanding and contracting list of names

O_C7785_13.1c 591O_C7785_13.1c 591 1/18/11 10:52 AM1/18/11 10:52 AM

592 The Standard Template Library

Although Figure 13.7 is an accurate representation of a list of names, it contains addi-

tional information that a true stack object doesn’t provide. When names are added to or

removed from a stack, no count is kept of how many names have been added or deleted or of

how many items the stack contains at any time. For example, by examining each part of

Figure 13.7, you can determine how many names are on the list. In a true stack, the only item

that can be seen and accessed is the top one on the list. Finding out how many items the list

contains would require removing the top item continually until no more items exist.

Stack Implementation with the deque Class
Creating a stack requires the following four components:

• A container for holding items in the list

• A method of designating the current top stack item

• An operation for placing a new item on the stack

• An operation for removing an item from the stack

By convention, the operation of placing a new item on the top of a stack is called a push,

and the operation of removing an item from a stack is called a pop. How these operations are

implemented depends on the container type used to represent a stack. In C++, a stack can be

created easily with STL’s deque class. This class creates a double-ended list, where objects can

be pushed and popped from either end. To create a stack, only the front end of the deque is

used. Table 13.4 summarizes the deque class’s methods and operations.

Point of Information
Dr. Lukasiewicz and RPN

Dr. Jan Lukasiewicz, born in 1878, studied and taught mathematics at the University of
Lvov in Poland before becoming a respected professor at the University of Warsaw. He
was appointed to the post of Minister of Education in Poland in 1919 and, with
Stanislaw Lesniewski, founded the Warsaw School of Logic. After World War II,
Dr. Lukasiewicz and his wife, Regina, were exiled in Belgium. When he was offered a
professorship at the Royal Academy in Dublin, they moved to Ireland, where they
remained until his death in 1956.

In 1951, Dr. Lukasiewicz developed a new set of postfix algebraic notation, which was
critical in the design of early microprocessors in the 1960s and 1970s. The actual imple-
mentation of postfix algebra was done by using stack arithmetic, in which data was
pushed on a stack and popped off when an operation needed to be performed. These
stack-handling instructions required no address operands and made it possible for very
small computers to handle large tasks effectively.

Stack arithmetic, which is based on Dr. Lukasiewicz’s work, reverses the more com-
monly known prefix algebra and became known as Reverse Polish Notation (RPN). Early
pocket calculators developed by Hewlett-Packard Corporation were especially notable for
their use of RPN and made stack arithmetic the favorite of many scientists and engineers.

O_C7785_13.1c 592O_C7785_13.1c 592 1/18/11 10:52 AM1/18/11 10:52 AM

593Chapter 13
Stacks

Table 13.4 Summary of deque Class Methods and Operations

Methods and Operations Type Description

deque<DataType>ƒname constructor Creates an empty deque
named name with a compiler-
dependent initial size

deque<DataType>ƒname(source) constructor Creates a copy of the
source deque

deque<DataType>ƒname(n) constructor Creates a deque of size n
deque<DataType>ƒname(n,ƒobject) constructor Creates a deque of size n

with each object initialized
as object

deque<DataType>ƒname(src.beg,src.end) constructor Creates a deque initialized with
objects from a source con-
tainer beginning at src.beg
and ending at src.end

~deque(DataType>() destructor Destroys the deque and all
objects it contains

name.at(index) accessor Returns the object at index
and throws an exception if
the index is out of bounds

name.front() accessor Returns the first object at the
front of the deque with no
check for the existence of a
first object

name.pop_front() mutator Removes but does not return
the first object at the front of
the deque

name.push_front(object) mutator Inserts object at the front of
the deque

name.back() accessor Returns the object at the back
of the deque with no check for
the existence of a last object

name.pop_back() mutator Removes but does not return
the last object at the back of
the deque

name.push_back(object) mutator Inserts object at the back of
the deque

name.insert(itr,ƒobject) mutator Inserts object at iterator posi-
tion itr

name.insert(itr,ƒsrc.beg,ƒsrc.end) mutator Inserts object at iterator posi-
tion itr

O_C7785_13.1c 593O_C7785_13.1c 593 1/18/11 10:52 AM1/18/11 10:52 AM

594 The Standard Template Library

Methods and Operations Type Description

name.insert(itr,ƒn,ƒobject) mutator Inserts n copies of object at
iterator position itr

name2.assign(n,ƒobject) mutator Assigns n copies of object
name2.(src.begin,ƒsrc.end) mutator Assigns objects of the src

container (need not be a
deque) between the range
src.begin and src.end
to name2

name.erase(pos) mutator Removes the object at the
specified position pos

name.erase(begin,ƒend) mutator Removes objects within the
specified range

name.resize(value) mutator Resizes the deque larger with
new objects instantiated by
using the default constructor

name.resize(value,ƒobject) mutator Resizes the deque larger with
new objects instantiated as
object

name.clear() mutator Removes all objects from
the deque

name.swap(nameB) mutator Swaps objects of name and
nameB deques; can be per-
formed by using the swap()
algorithm

name.begin() accessor Returns an iterator to the first
object in the deque

name.end() accessor Returns an iterator to the
position after the last object in
the deque

name.rbegin() accessor Returns a reverse iterator to
the first object in the deque

name.rend() accessor Returns a reverse iterator to
the position after the last
object in the deque

nameAƒ==ƒnameB relational Returns a Boolean true if
all nameA objects equal
nameB objects; otherwise,
returns false

Table 13.4 Summary of deque Class Methods and Operations (continued)

O_C7785_13.1c 594O_C7785_13.1c 594 1/18/11 10:52 AM1/18/11 10:52 AM

595Chapter 13
Stacks

Methods and Operations Type Description

nameAƒ!=ƒnameB relational Returns a Boolean false
if all nameA objects equal
nameB objects; otherwise,
returns true; same as
!(nameAƒ==ƒnameB)

nameAƒ<ƒnameB relational Returns a Boolean true if
nameA is less than nameB;
otherwise, returns false

nameAƒ>ƒnameB relational Returns a Boolean true if
nameA is greater than nameB;
otherwise, returns false;
same as nameBƒ<ƒnameA

nameAƒ<=ƒnameB relational Returns a Boolean true if
nameA is less than or equal
to nameB

nameAƒ>=ƒnameB relational Returns a Boolean true if
nameA is greater than or equal
to nameB

name.size() capacity Returns number of objects in
the deque as an integer

name.empty() capacity Returns a Boolean true if
deque is empty; otherwise,
returns false

name.max_size() capacity Returns the maximum pos-
sible objects as an integer

name.capacity() capacity Returns the maximum pos-
sible objects as an integer
without relocating the deque

Program 13.3 uses the deque class to implement a stack. This program is straightforward

in that only one stack is instantiated, and user-entered names are pushed to the front of the

deque until the sentinel value of x is entered. At detection of this sentinel string value, names

are popped from the front of the deque as long as the deque isn’t empty.

Table 13.4 Summary of deque Class Methods and Operations (continued)

O_C7785_13.1c 595O_C7785_13.1c 595 1/18/11 10:52 AM1/18/11 10:52 AM

596 The Standard Template Library

 Program 13.3

#includeƒ<iostream>
#includeƒ<deque>
#includeƒ<string>
#includeƒ<cctype>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒname;
ƒƒdeque<string>ƒstack;

ƒƒcoutƒ<<ƒ“Enterƒasƒmanyƒnamesƒasƒyouƒwant,ƒoneƒperƒline”ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Toƒstopƒenterƒaƒsingleƒx”ƒ<<ƒendl;
ƒƒwhile(true)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒ“;
ƒƒƒƒgetline(cin,ƒname);
ƒƒƒƒifƒ(tolower(name.at(0))ƒ==ƒ'x')ƒbreak;
ƒƒƒƒstack.push_front(name);
ƒƒ}

Point of Information
Stacking the Deque

Stacks and queues are two special forms of a more general data object called a deque
(stands for “double-ended queue” and is pronounced “deck”). In a deque object, data
can be handled in one of four ways:

1. Insert at the beginning and remove from the beginning, which is a last-in, first-out
(LIFO) stack.

2. Insert at the beginning and remove from the end, which is a first-in, first-out
(FIFO) queue.

3. Insert at the end and remove from the end, which represents an inverted LIFO
technique.

4. Insert at the end and remove from the beginning, which represents an inverted
FIFO queue.

Implementation 1 (a stack object) is discussed in this section, and implementation 2 (a
queue object) is covered in the next section. Implementations 3 and 4 are sometimes
used for keeping track of memory addresses, as when programming is done in machine
language or when objects are handled in a file. When a high-level language, such as
C++, manages the data area automatically, users might not be aware of where data is
being stored or which type of deque is being applied.

☞

O_C7785_13.1c 596O_C7785_13.1c 596 1/18/11 10:52 AM1/18/11 10:52 AM

597Chapter 13
Stacks

ƒƒcoutƒ<<ƒ“\nTheƒnamesƒinƒtheƒstackƒare:\n”;

ƒƒ//ƒpopƒnamesƒfromƒtheƒstack
ƒƒwhile(!stack.empty())
ƒƒ{
ƒƒƒƒnameƒ=ƒstack.front();ƒƒ//ƒretrieveƒtheƒname
ƒƒƒƒstack.pop_front();ƒƒƒƒƒ//ƒpopƒnameƒfromƒtheƒstack
ƒƒƒƒcoutƒ<<ƒnameƒ<<ƒendl;
ƒƒ}
ƒƒreturnƒ0;
}

Following is a sample run of Program 13.3:

Enterƒasƒmanyƒnamesƒasƒyouƒwant,ƒoneƒperƒline
ƒToƒstopƒenterƒaƒsingleƒx
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒJane Jones
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒBill Smith
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒJim Robinson
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒx

Theƒnamesƒinƒtheƒstackƒare:
JimƒRobinson
BillƒSmith
JaneƒJones

 EXERCISES 13.3

1. (Review) State whether a stack is appropriate for each of the following tasks, and indicate why

or why not:

a. A word-processing program must remember a line of up to 80 characters. Pressing the

Backspace key deletes the previous character, and pressing Ctrl+Backspace deletes the

entire line. Users must be able to undo deletion operations.

b. Customers must wait one to three months for delivery of their new cars. The dealer creates

a list to determine the “fair” order in which customers should get their cars; the list is pre-

pared in the order in which customers placed their requests for a new car.

c. You’re required to search downward in a pile of magazines to locate the issue for last

January. Each magazine was placed on the pile as soon as it was received.

d. A programming team accepts jobs and prioritizes them on the basis of urgency.

e. A line forms at a bus stop.

2. (Practice) Enter and run Program 13.3.

3. (Modify) Modify Program 13.3 to implement a stack of integers rather than a stack of strings.

O_C7785_13.1c 597O_C7785_13.1c 597 1/18/11 10:52 AM1/18/11 10:52 AM

598 The Standard Template Library

4. (Modify) Modify Program 13.3 to instantiate three stacks of digits named digits1, digits2,

and digits3. Initialize digits1 to contain the digits 9, 8, 5, and 2, which is the number 2589

in reverse order. Similarly, the digits2 stack should be initialized to contain the digits 3, 1, 5,

and 7, which is the number 7513 in reverse order. Calculate and place the sum of these two

numbers in the digits3 stack. This sum should be obtained by popping objects from

digits1 and digits2 and adding them together with a variable named carry, which is ini-

tialized to 0. If the sum of the two popped objects and carry doesn’t exceed 10, the sum

should be pushed onto digits3 and carry should be set to 0; otherwise, carry should be set

to 1, and the units digit of the sum should be pushed onto the digits3 stack.

5. (Program) Write a C++ program that allows a user to enter a maximum of 100 integers in a

stack object. Then have the program do the following:

a. Reverse the stack’s contents into a second stack of integers.

b. Using two additional stacks, reverse the contents in the original stack. For example, if the

original stack contains the integers 1, 2, 3, and 4, it should contain the integers 4, 3, 2, and 1

at the end of the program.

6. (Program) Write a C++ program that allows a user to enter a maximum of 50 characters in a

stack object. Then have the program sort the stack contents in increasing order. For example,

if the stack’s contents are initially D, E, A, and B, its final contents are A, B, D, and E.

13.4 Queues

A queue (pronounced “cue”) is a list in which items are added to one end of the list, called the

top, and removed from the other end of the list, called the bottom. This arrangement ensures

that items are removed from the list in the exact order in which they were entered. This means

the first item placed on the list is the first item to be removed, the second item placed on the

list is the second item to be removed, and so on. Therefore, a queue is a first-in, first-out (FIFO)
list—a list in which the first item added to the list is the first item that can be removed.

As an example of a queue, think of a list of people waiting to purchase season tickets to a

professional football team. The first person on the list should be called when the first set of

tickets becomes available, the second person should be called for the second available set, and

so on. Figure 13.8 shows the names of people currently on the list.

Harriet Wright last name on the queue (head)
Jim Robinson
Bill Smith
Jane Jones first name on the queue (tail)

Figure 13.8 A queue with its pointers

The names have been added in the same fashion as on a stack: As new names are added

to the list, they’re stacked on top of existing names. The difference in a queue relates to how

the names are popped off the list. Clearly, the people on this list expect to be serviced in the

order they were placed on the list—that is, first in, first out. Therefore, unlike a stack, the name

added to the list most recently is not the first name removed. Rather, the oldest name still on

the list is always the first name removed.

O_C7785_13.1c 598O_C7785_13.1c 598 1/18/11 10:52 AM1/18/11 10:52 AM

599Chapter 13
Queues

To keep the list in the correct order, with new names added to one end of the list and old

names removed from the other end, using two link variables is convenient: one that locates the

front of the list for the next person to be serviced and one that locates the end of the list where

new people will be added. The link variable that locates the front of the list where the next

name is to be removed is referred to as the tail pointer (or tail, for short). The second link vari-

able, which locates the last person in the list and indicates where the next person entering the

list is to be placed, is called the head pointer (or head, for short). For the list in Figure 13.8, the

tail points to Jane Jones, and the head points to Harriet Wright. If Jane Jones were removed

from the list and Lou Hazlet and Teresa Filer were added, the queue and its associated posi-

tion indicators would look like Figure 13.9.

Teresa Filer head
Lou Hazlet
Harriet Wright
Jim Robinson
Bill Smith tail

Figure 13.9 The updated queue pointers

Queue Implementation with the deque Class
A queue can be derived easily by using the STL deque class. The operation of placing a new

item on a queue is formally referred to as enqueuing and casually called a “push operation,” and

removing an item from a queue is formally referred to as serving and casually called a “pop

operation.” Operationally, enqueuing is similar to pushing on one end of a stack, and serving is

Point of Information
Artificial Intelligence

A major step toward creating programs that “learn” as they work is the development
of dynamic data objects. In 1950, Alan Turing proposed a test in which an expert enters
questions at an isolated terminal. Presumably, artificial intelligence (AI) is achieved when
the expert can’t discern whether the answers displayed onscreen have been produced by
a human or a machine. Although there are problems with the Turing test, its concepts
have spawned numerous research efforts.

By the mid-1960s, many AI researchers believed the efforts to create “thinking
machines” were futile. Today, however, much lively research and development focus on
topics such as dynamic problem solving, computer vision, parallel processing, natural lan-
guage processing, and speech and pattern recognition—all of which are encompassed in
the field of AI.

Techniques that allow machines to emulate humans have proliferated in recent years,
concurrent with smaller, faster, more powerful, and cheaper computers. Most people
agree that computers could never replace all human decision making. There’s also general
agreement that society must remain alert and in control of important decisions that
require human compassion, ethics, and understanding.

O_C7785_13.1c 599O_C7785_13.1c 599 1/18/11 10:52 AM1/18/11 10:52 AM

600 The Standard Template Library

similar to popping from the other end of a stack. How these operations are implemented

depends on the list used to represent a queue. Because you’re using the deque class as the base

class, you can easily create push and pop operations by using the deque class’s push_front()

and pop_back() methods (see Table 13.4).

Program 13.4 shows using the deque class to construct a queue in the context of a com-

plete program, where names are pushed onto the front of the deque and popped from the

back. This process creates the FIFO ordering that characterizes a queue.

 Program 13.4

#includeƒ<iostream>
#includeƒ<deque>
#includeƒ<string>
#includeƒ<cctype>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒstringƒname;
ƒƒdeque<string>ƒqueue;

ƒƒcoutƒ<<ƒ“Enterƒasƒmanyƒnamesƒasƒyouƒwant,ƒoneƒperƒline”ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“ƒToƒstopƒenterƒaƒsingleƒx”ƒ<<ƒendl;
ƒƒƒ
ƒƒ//ƒpushƒnamesƒontoƒtheƒqueue
ƒƒwhile(true)
ƒƒ{
ƒƒƒƒƒcoutƒ<<ƒ“Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒ“;
ƒƒƒƒƒgetline(cin,ƒname);
ƒƒƒƒƒifƒ(tolower(name.at(0))ƒ==ƒ'x')ƒbreak;
ƒƒƒƒƒqueue.push_front(name);
ƒƒ}

ƒƒcoutƒ<<ƒ“\nTheƒnamesƒinƒtheƒqueueƒare:\n”;

ƒƒ//ƒpopƒnamesƒfromƒtheƒqueue
ƒƒwhile(!queue.empty())
ƒƒ{
ƒƒƒƒnameƒ=ƒqueue.back();ƒƒ//ƒretrieveƒtheƒname
ƒƒƒƒqueue.pop_back();ƒƒƒƒƒ//ƒpopƒaƒnameƒfromƒtheƒqueue
ƒƒƒƒcoutƒ<<ƒnameƒ<<ƒendl;
ƒƒ}
ƒƒreturnƒ0;
}

O_C7785_13.1c 600O_C7785_13.1c 600 1/18/11 10:52 AM1/18/11 10:52 AM

601Chapter 13
Queues

A sample run of Program 13.4 produced the following:

Enterƒasƒmanyƒnamesƒasƒyouƒwant,ƒoneƒperƒline
ƒToƒstopƒenterƒaƒsingleƒx
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒJane Jones
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒBill Smith
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒJim Robinson
Enterƒaƒnameƒ(orƒxƒtoƒstop):ƒx

Theƒnamesƒinƒtheƒqueueƒare:
JaneƒJones
BillƒSmith
JimƒRobinson

 EXERCISES 13.4

1. (Review) State whether a queue, a stack, or neither object is appropriate for each of the fol-

lowing tasks, and indicate why or why not:

a. A list of customers waiting to be seated in a restaurant

b. A group of student tests waiting to be graded

c. An address book listing names and phone numbers in alphabetical order

d. Patients waiting for examinations in a doctor’s office

2. (Practice) Enter and run Program 13.4.

3. (Modify) Modify Program 13.4 to use a queue of integers rather than a queue of strings.

4. (Program) Write a C++ program that allows a user to enter a maximum of 20 characters in a

queue. Then have the program sort the queue contents in increasing order. For example, if the

queue’s contents are initially D, E, A, and B, its final contents are A, B, D, and E.

5. (Program) Write a queue program that accepts an object consisting of an integer ID number

and a double-precision hourly pay rate.

6. (Modify) Add a menu method to Program 13.4 that gives the user a choice of adding a name

to the queue, removing a name from the queue, or listing the queue’s contents without remov-

ing any objects from it.

7. (Program) A group of people have arrived at a bus stop and are lined up in this order:

1. Chaplin 4. Laurel 7. Oliver 10. Garland
2. West 5. Smith 8. Hardy 11. Wayne
3. Taylor 6. Grisby 9. Burton 12. Stewart

 Read the names from an input file into a queue and display the order in which passengers

board the bus.

O_C7785_13.1c 601O_C7785_13.1c 601 1/18/11 10:52 AM1/18/11 10:52 AM

602 The Standard Template Library

13.5 Common Programming Errors

There are two common programming errors related to using STL’s list and deque classes:

1. Inserting objects instantiated from different classes into the same list

2. Attempting to use indexes rather than iterators when using STL class methods and

algorithms

The five most common programming errors related to linked lists, stacks, and queues that

occur when programmers attempt to construct their own lists are as follows:

1. Not checking the pointer provided by the new operator when constructing a non-STL

list. If this operator returns a NULL value, the user should be notified that the allocation

didn’t take place, and normal program operation must be altered appropriately. You

simply can’t assume that all calls to new will result in the requested allocation of

memory space being successful.

2. Not updating all relevant pointer addresses correctly when adding or removing records

from dynamically created stacks and queues. Unless extreme care is taken in updating

all addresses, these dynamic data structures can become corrupted quickly.

3. Forgetting to free previously allocated memory space when the space is no longer

needed. This error is typically a problem only in a large application program that’s

expected to run continuously and can make many requests for allocated space based

on user demand.

4. Not preserving the integrity of addresses in the top-of-stack pointer when dealing

with a stack and the queue-in and queue-out pointers when dealing with a queue. As

these pointers locate a starting position in their data structures, the complete list will

be lost if the starting addresses are incorrect.

5. Not updating internal record pointers correctly when inserting and removing records

from a stack or queue. After an internal pointer in these lists contains an incorrect

address, it’s almost impossible to locate and reestablish the missing set of objects.

13.6 Chapter Summary
1. An object allows storing data items under a common variable name. These objects can then

be stored together in a list.

2. A linked list is a list of objects in which each object contains a pointer variable that locates

the next object in the list. Each linked list must have a pointer to locate the first object in

the list. The last object’s pointer variable is set to NULL to indicate the end of the list.

3. Linked lists can be constructed automatically by using the STL’s list class.

4. A stack is a list consisting of objects that can be added and removed only from the top of

the list. This object is a LIFO (last-in, first-out) list, which means the last object added to

the list is the first object removed. Stacks can be implemented with STL’s deque class.

5. A queue is a list consisting of objects that are added to the top of the list and removed from

the bottom of the list. This object is a FIFO (first-in, first-out) list, which means objects are

removed in the order in which they were added. Queues can be implemented with STL’s

deque class.

O_C7785_13.1c 602O_C7785_13.1c 602 1/18/11 10:52 AM1/18/11 10:52 AM

14 The string Class and
Exception Handling

15 Strings as Character Arrays

16 Data Structures

Additional Topics

ThreePart

Q_C7785_14.1c 603Q_C7785_14.1c 603 1/18/11 10:53 AM1/18/11 10:53 AM

14 14.1 The string Class

 14.2 Character Manipulation Methods

 14.3 Exception Handling

 14.4 Exceptions and File Checking

 14.5 Input Data Validation

 14.6 Common Programming Errors

 14.7 Chapter Summary

 14.8 Chapter Supplement:
Namespaces and Creating a
Personal Library

Manipulating strings stored as a one-dimensioned array of characters terminated with the null character
(referred to as C-strings), as done in Section 7.2, can be time consuming. This is especially true for appli-
cations requiring numerous string operations, such as inserting, searching, and/or deleting characters in
an existing string. The reason is that each time a string is lengthened by adding characters, a new and
larger array must be created, and removing characters requires shifting characters to fill the empty
spaces left by deleted characters, with adjustment of the end-of-string null character. Searching for spe-
cific characters in a string requires nested loops.

To circumvent the coding required for these types of operations, C++ provides the string class as
part of the standard C++ library. This class provides an expanded set of class functions, including easy
insertion and removal of characters from a string, automatic string expansion when a string’s original
capacity is exceeded, string contraction when characters are removed from a string, and range checking to
detect invalid character positions. In many ways, the strings created from the string class can also be
manipulated by using the array techniques suitable for C-strings. The main difference is that string
class strings aren’t terminated with a null character, and the string class provides many useful func-
tions for operating on strings.

Exception handling is a means of error detection and processing that has gained increasing accep-
tance in programming technology. It permits detecting an error at the point in the code where the error has

Chapter

The string Class
and Exception
Handling

Q_C7785_14.1c 605Q_C7785_14.1c 605 1/18/11 10:53 AM1/18/11 10:53 AM

606 The string Class and Exception Handling

occurred and provides a means of processing the error and returning control to the line that generated the
error. As you also see, although error detection and code correction are possible by using if statements
and functions, exception handling is one more useful programming tool for validating user input. Both
the string class and exception handling are discussed in this chapter.

14.1 The string Class

The programs in this book have used the istream class’s cout object extensively for display-

ing output, but you haven’t investigated this class in detail or learned how the cout object is

created. An advantage of object-oriented programming languages, however, is that you can use

thoroughly tested classes without knowing how the class is constructed. In this section, you

use another class provided by C++’s standard library: the string class. However, you’re going

to create objects from the class before using them instead of using an existing object, such

as cout.

As discussed in Chapter 10, a class is a user-created data type. Like built-in data types, a

class defines a valid set of data values and a set of operations that can be used on them. The

difference between a user-created class and a built-in data type is how the class is constructed.

A built-in data type is provided as an integral part of the compiler, and a class is constructed

by a programmer using a programming language’s code. Other than that and the terminology

used, the two data types are used in much the same manner. The key difference in terminol-

ogy is that storage areas for built-in data types are referred to as variables, whereas storage areas

declared for a class are referred to as objects.

The values the string class permits are referred to as string literals. As you’ve seen, a

string literal is any sequence of characters enclosed in quotation marks. It’s also referred to as

a string value, a string constant, and, more conventionally, a string. Examples of strings are

“Thisƒisƒaƒstring”, “HelloƒWorld!”, and “xyzƒ123ƒ*!#@&”. The quotation marks indi-

cate the beginning and ending points of the string and are never stored with the string. As you

learned in Section 7.2, when a string literal is used to initialize a character array, the null char-

acter, '\0', is appended to the string; this isn’t the case with string objects created from the

string class. However, string objects can be accessed by using array notation, although there’s

rarely any need to do so because of the extensive set of string operations available with the

string class.

Figure 14.1 shows the programming representation of the string Hello when this string is

created as an object of the string class. By convention, the first character in a string is always

designated as position 0. This position value is also referred to as the character’s index value or

its offset value.

H e l

3

l

4210Position:

o

Figure 14.1 Storing a string as a sequence of characters

Q_C7785_14.1c 606Q_C7785_14.1c 606 1/18/11 10:53 AM1/18/11 10:53 AM

607Chapter 14
The string Class

string Class Functions
The string class provides a number of functions for declaring, creating, and initializing a

string. In C++, the process of creating a new object is referred to as instantiating an object,
which in this case becomes instantiating a string object, or creating a string, for short.

Table 14.1 lists the functions the string class provides for creating and initializing a

string object. In class terminology, functions are formally referred to as methods, and the

methods that perform the tasks of creating and initializing are called constructor methods,

or just constructors.

Table 14.1 string Class Constructors (Require the Header File string)

Constructor Description Examples
stringƒobjectNameƒ=ƒvalue Creates and initial-

izes a string object to
a value that can be a
string literal, a previ-
ously declared string
object, or an expression
containing string literals
and string objects

stringƒstr1ƒ=ƒ“Good Morning”;

stringƒstr2ƒ=ƒstr1;

stringƒstr3ƒ=ƒstr1ƒ+ƒstr2;

stringƒobjectName(stringValue) Produces the same
initialization as the
preceding item

stringƒstr1(“Hot”);

stringƒstr1(str1ƒ+ƒ“ƒDog”);

stringƒobjectName(str,ƒn) Creates and initializes a
string object with a sub-
string of string object
str, starting at index
position n of str

stringƒstr1(str2,ƒ5);

If str2 contains the string Good
Morning, str1 becomes the string
Morning

stringƒobjectName(str,ƒn,ƒp) Creates and initializes a
string object with a sub-
string of string object
str, starting at index
position n of str and
containing p characters

stringƒstr1(str2,ƒ5,2);

If str2 contains the string Good
Morning, str1 becomes the
string Mo

stringƒobjectName(n,ƒchar) Creates and initializes
a string object with n
copies of char

stringƒstr1(5,'*');

This makes str1ƒ=ƒ“*****”

stringƒobjectName Creates and initializes a
string object to repre-
sent an empty char-
acter sequence (same
as string objectName
= “”;, so the string’s
length is 0)

stringƒmessage;

Program 14.1 shows examples of each constructor the string class provides.

Q_C7785_14.1c 607Q_C7785_14.1c 607 1/18/11 10:53 AM1/18/11 10:53 AM

608 The string Class and Exception Handling

 Program 14.1

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒ//ƒSevenƒwaysƒtoƒinstantiateƒ(create)ƒaƒstringƒobject
ƒƒstringƒstr1;ƒ//ƒcreateƒanƒemptyƒstringƒnamedƒstr1
ƒƒstringƒstr2(“GoodƒMorning”);
ƒƒstringƒstr3ƒ=ƒ“HotƒDog”;
ƒƒstringƒstr4(str3);
ƒƒstringƒstr5(str4,ƒ4);
ƒƒstringƒstr6ƒ=ƒ“linear”;
ƒƒstringƒstr7(str6,ƒ3,ƒ3);

ƒƒcoutƒ<<ƒ“str1ƒis:ƒ“ƒ<<ƒstr1ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“str2ƒis:ƒ“ƒ<<ƒstr2ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“str3ƒis:ƒ“ƒ<<ƒstr3ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“str4ƒis:ƒ“ƒ<<ƒstr4ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“str5ƒis:ƒ“ƒ<<ƒstr5ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“str6ƒis:ƒ“ƒ<<ƒstr6ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“str7ƒis:ƒ“ƒ<<ƒstr7ƒ<<ƒendl;

ƒƒreturnƒ0;
}

In reviewing Program 14.1, notice that the string library is included with the

#includeƒ<string> statement. Inside main(), objects are created in a similar manner as

declaring variables, but instead of using built-in data types, such as int or double, the key-

word string is used. Each string, except the first one (str1), has also been initialized explic-

itly. Because no explicit string is used to initialize str1, it’s initialized automatically with no

characters at all. These strings are referred to as “empty strings.” Here’s the output created by

Program 14.1:

str1ƒis:
str2ƒis:ƒGoodƒMorning
str3ƒis:ƒHotƒDog
str4ƒis:ƒHotƒDog
str5ƒis:ƒDog
str6ƒis:ƒlinear
str7ƒis:ƒear

Q_C7785_14.1c 608Q_C7785_14.1c 608 1/18/11 10:53 AM1/18/11 10:53 AM

609Chapter 14
The string Class

This output is straightforward; str1 is an empty string consisting of no characters, and the

other strings display the characters they were initialized with. Because the first character in a

string is designated as position 0, not 1, the character position of D in the string HotƒDog, for

example, is position 4, as shown in Figure 14.2.

H o t

210 5 64

D o g

3Character position:

Figure 14.2 The character positions of the string HotƒDog

String Input and Output
In addition to a string being initialized with the constructors listed in Table 14.1, strings can

be input from the keyboard and displayed onscreen. Table 14.2 lists the basic methods and

objects for input and output of string values.

Table 14.2 string Class Input and Output

C++ Object or Method Description
cout General-purpose screen output object
cin General-purpose keyboard input object that

stops reading string input when white space is
encountered

getline(cin,ƒstrObj) General-purpose keyboard input method that
inputs all characters entered, stores them in the
string strObj, and stops accepting characters
when it receives a newline character (\n)

In addition to the standard cout and cin streams you have been using throughout this

book, the string class provides the getline() method for string input. For example, the

expression getline(cin,ƒmessage) continuously accepts and stores characters typed at the

keyboard until the Enter key is pressed. Pressing the Enter key generates a newline character,

'\n', which getline() interprets as the end-of-line entry. All the characters encountered by

getline(), except the newline character, are stored in the string message, as shown in

Figure 14.3.

getline()characters \n characters

Figure 14.3 Inputting a string with getline()

Program 14.2 shows using the getline() method and cout stream to input and output a

string that’s entered at the user’s keyboard. Although cout is used in this program for string

output, cin generally can’t be used in place of getline() for string input because cin reads

a set of characters up to a blank space or a newline character. Therefore, attempting to enter

Q_C7785_14.1c 609Q_C7785_14.1c 609 1/18/11 10:53 AM1/18/11 10:53 AM

610 The string Class and Exception Handling

the characters Thisƒisƒaƒstring by using the statement cinƒ>>ƒmessage; results in only

the word This being assigned to message. Because a blank space terminates a cin extraction

operation, cin’s usefulness for entering string data is restricted; therefore, getline() is used.

 Program 14.2

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒmessage;ƒƒƒƒ//ƒdeclareƒaƒstringƒobject

ƒƒcoutƒ<<ƒ“Enterƒaƒstring:\n”;

ƒƒgetline(cin,ƒmessage);

ƒƒcoutƒ<<ƒ“Theƒstringƒjustƒenteredƒis:\n”
ƒƒƒƒƒƒƒ<<ƒmessageƒ<<ƒendl;

ƒƒreturnƒ0;
}

The following is a sample run of Program 14.2:

Enterƒaƒstring:
This is a test input of a string of characters.
Theƒstringƒjustƒenteredƒis:
Thisƒisƒaƒtestƒinputƒofƒaƒstringƒofƒcharacters.

In its most general form, the getline() method has the following syntax:

getline(cin,ƒstrObj,ƒterminatingChar)

In this syntax, strObj is a string object name and terminatingChar is an optional char-

acter constant, or variable, specifying the terminating character. For example, the expression

getline(cin,ƒmessage,ƒ'!') accepts all characters entered at the keyboard, including a

newline character, until an exclamation point is entered. The exclamation point isn’t stored as

part of the string.

If the optional third argument, terminatingChar, is omitted when getline() is called,

the default terminating character is the newline ('\n') character. Therefore, the statement

getline(cin,message,'\n'); can be used in place of the statement getline
(cin,ƒmessage);. Both these statements stop reading characters when the Enter key is

Q_C7785_14.1c 610Q_C7785_14.1c 610 1/18/11 10:53 AM1/18/11 10:53 AM

611Chapter 14
The string Class

pressed. In all the programs used from this point on, input is terminated by pressing the Enter

key, which generates a newline character. For this reason, the optional third argument passed

to getline(), which is the terminating character, is omitted.

Caution: The Phantom Newline Character Seemingly strange results can happen when the

cin input stream and getline() method are used together to accept data or when cin is used

by itself to accept characters. To see how this result can occur, take a look at Program 14.3,

which uses cin to accept an integer entered at the keyboard. The integer is then stored in the

variable value, and a getline() method call follows.

 Program 14.3

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒvalue;
ƒƒstringƒmessage;

ƒƒcoutƒ<<ƒ“Enterƒaƒnumber:ƒ“;
ƒƒcinƒƒ>>ƒvalue;
ƒƒcoutƒ<<ƒ“Theƒnumberƒenteredƒis:\n”
ƒƒƒƒƒƒƒ<<ƒvalueƒ<<ƒendl;

ƒƒcoutƒ<<ƒ“Enterƒtext:\n”;
ƒƒgetline(cin,ƒmessage);
ƒƒcoutƒ<<ƒ“Theƒtextƒenteredƒis:\n”
ƒƒƒƒƒƒƒ<<ƒmessageƒ<<ƒendl;
ƒƒcoutƒ<<ƒint(message.length());

ƒƒreturnƒ0;
}

When Program 14.3 runs, the number entered in response to the prompt Enterƒaƒnumber:

is stored in the variable value. At this point, everything seems to be working fine. Notice,

however, that in entering a number, you type the number and press the Enter key. On almost

all computer systems, this entered data is stored in a temporary holding area called a buffer
immediately after the characters are entered, as shown in Figure 14.4.

Q_C7785_14.1c 611Q_C7785_14.1c 611 1/18/11 10:53 AM1/18/11 10:53 AM

612 The string Class and Exception Handling

2 6 \n

Each character is
sent to a buffer

as it’s typed

Buffer
(temporary storage)

Keyboard

Figure 14.4 Typed characters are first stored in a buffer

The cin input stream in Program 14.3 accepts the number entered but leaves the '\n'

in the buffer. The next input statement, which is a call to getline(), picks up the code for

the Enter key as the next character and terminates any further input. Following is a sample

run of Program 14.3:

Enterƒaƒnumber:ƒ26
Theƒnumberƒenteredƒisƒ26
Enterƒtext:
Theƒtextƒenteredƒis

In this output, no text is accepted in response to the prompt Enterƒtext:. No text is

accepted because after the program accepts the number 26, the code for the Enter key, which is

a newline escape sequence, remains in the buffer and is picked up and interpreted by getline()

as the end of its input. This result occurs whether an integer (as in Program 14.3), a string, or any

Point of Information
The string and char Data Types

A string can consist of zero, one, or more characters. When the string has no characters,
it’s said to be an empty string with a length of 0. A string with a single character, such
as "a", is a string of length 1 and is stored differently from a char data type, such as
'a'. However, for many practical purposes, a string of length 1 and a char respond in
the same manner; for example, both cout >> “\n” and cout >> '\n' produce a
new line onscreen. It’s important to understand that they’re different data types. For
example, both these declarations

stringƒs1ƒ=ƒ'a';ƒƒ//ƒINVALIDƒINITIALIZATION
charƒkeyƒ=ƒ“\n”;ƒƒ//ƒINVALIDƒINITIALIZATION

produce a compiler error because they attempt to initialize one data type with literal
values of another type.

Q_C7785_14.1c 612Q_C7785_14.1c 612 1/18/11 10:53 AM1/18/11 10:53 AM

613Chapter 14
The string Class

other input is accepted by cin and then followed by a getline() method call. There are three

solutions to this “phantom” Enter key problem:

• Don’t mix cin with getline() inputs in the same program.

• Follow the cin input with the call to cin.ignore().

• Accept the Enter key in a character variable and then ignore it.

The first solution is preferred. All solutions, however, center on the fact that the Enter key

is a legitimate character input and must be recognized as such. You encounter this problem

again when you learn about accepting char data types in Section 14.2.

String Processing
Strings can be manipulated by using string class functions or the character-at-a-time func-

tions described in Section 14.2. Table 14.3 lists the most commonly used string class meth-

ods plus the standard arithmetic and comparison operators that can also be used with strings.

In the examples, class methods are called by giving the object’s name first, followed by a

period, and then the method’s name. With a few notable exceptions, all class methods are

called in this way.

Table 14.3 The string Class Processing Methods (Require #includeƒ<string>)

Method/Operation Description Example
intƒlength() Returns the length of the string string.length()

intƒsize() Same as the preceding item string.size()

at(index) Returns the character at the
specified index and throws
an exception if the index is
nonexistent

string.at(4)

intƒcompare(str) Compares the given string with
str; returns a negative value
if the given string is less than
str, a 0 if they’re equal, and
a positive value if the given
string is greater than str

string1.compare(string2)

c_str() Returns the string as a NULL-
terminated C-string

string1.c_str()

boolƒempty Returns true if the string is
empty; otherwise, returns
false

string1.empty()

erase(ind,n); Removes n characters from the
string, starting at index ind

string1.erase(2,3)

erase(ind) Removes all characters from
the string, starting from index
ind until the end of the string,
and the length of the remain-
ing string becomes ind

string1.erase(4)

Q_C7785_14.1c 613Q_C7785_14.1c 613 1/18/11 10:53 AM1/18/11 10:53 AM

614 The string Class and Exception Handling

intƒfind(str) Returns the index of the first
occurrence of str in the string

string1.find(“the”)

intƒfind(str,ƒind) Returns the index of the first
occurrence of str in the string,
with the search beginning at
index ind

string1.find(“the”,5)

intƒfind_first_of
(str,ƒind)

Returns the index of the first
occurrence of any character
in str in the string, with the
search starting at index ind

string1.find_first_of (“lt”,6)

intƒfind_first_not_
of(str,ƒind)

Returns the index of the first
occurrence of any character not
in str in the string, with the
search starting at index ind

string1.find_first_not_of(“lt”,6)

voidƒinsert
(ind,ƒstr)

Inserts the string str into the
string, starting at index ind

string.insert(4,ƒ “there”)

voidƒreplace(ind,ƒ
n,ƒstr)

Removes n characters in the
string object, starting at index
position ind, and inserts the
string str at index position ind

string1.replace(2,4, ”okay”)

stringƒsubstr(ind,n) Returns a string consisting of n
characters extracted from the
string, starting at index ind; if
n is greater than the remaining
number of characters, the rest
of the string is used

string2ƒ=ƒstring1.substr(0,10)

voidƒswap(str) Swaps characters in str with
those in the first string

string1.swap(string2)

string[ind]
(Note: This is standard
array notation.)

Returns the character at index
ind, without checking whether
ind is a valid index

string1[5]

= Assignment (also converts a
C-string to a string)

string1ƒ=ƒstring

+ Concatenates two strings string1ƒ+ƒstring2

+= Concatenation and assignment string2ƒ+=ƒstring1

==ƒƒƒ!=
<ƒƒƒƒ<=
>ƒƒƒƒ>=

Relational operators
Return true if the relation is
satisfied; otherwise, return
false

string1ƒ==ƒstring2
string1ƒ<=ƒstring2
string1ƒ>ƒstring2

Table 14.3 The string Class Processing Methods (Require #includeƒ<string>)
(continued)

Q_C7785_14.1c 614Q_C7785_14.1c 614 1/18/11 10:53 AM1/18/11 10:53 AM

615Chapter 14
The string Class

One of the most commonly used methods in Table 14.3 is length(). It returns the num-

ber of characters in the string, which is referred to as the string’s length. For example, the value

returned by the method call “HelloƒWorld!”.length() is 12. As always, the quotation

marks surrounding a string value aren’t considered part of the string. Similarly, if the string

referenced by string1 contains the value “Haveƒaƒgoodƒday.”, the value returned by the

call string1.length() is 16.

Two string expressions can be compared for equality by using the standard relational

operators. Each character in a string is stored in binary with the ASCII or Unicode code.

Although these codes are different, they have some characteristics in common. In both, a blank

precedes (is less than) all letters and numbers, letters of the alphabet are stored in order from

A to Z, and digits are stored in order from 0 to 9. In addition, digits come before (that is, are

less than) uppercase characters, which are followed by lowercase characters. Therefore, upper-

case characters are mathematically less than lowercase characters.

When two strings are compared, their characters are compared a pair at a time (both first

characters, then both second characters, and so on). If no differences are found, the strings are

equal; if a difference is found, the string with the first lower character is considered the smaller

string, as shown in these examples:

• “Hello” is greater than “GoodƒBye” because the H in Hello is greater than the G in

GoodƒBye.

• “Hello” is less than “hello” because the H in Hello is less than the h in hello.

• “SMITH” is greater than “JONES” because the S in SMITH is greater than the J in

JONES.

• “123” is greater than “1227” because the third character in 123, the 3, is greater than

the third character in 1227, the 2.

• “Behop” is greater than “Beehive” because the third character in Behop, the h, is

greater than the third character in Beehive, the e.

Program 14.4 uses length() and several relational expressions in the context of a com-

plete program.

 Program 14.4

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒstring1ƒ=ƒ“Hello”;
ƒƒstringƒstring2ƒ=ƒ“Helloƒthere”;

ƒƒcoutƒ<<ƒ“string1ƒisƒtheƒstring:ƒ“ƒ<<ƒƒstring1ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒnumberƒofƒcharactersƒinƒstring1ƒisƒ“

☞

Q_C7785_14.1c 615Q_C7785_14.1c 615 1/18/11 10:53 AM1/18/11 10:53 AM

616 The string Class and Exception Handling

ƒƒƒƒƒƒƒ<<ƒƒint(string1.length())ƒ<<ƒendlƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“string2ƒisƒtheƒstring:ƒ“ƒ<<ƒƒstring2ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒnumberƒofƒcharactersƒinƒstring2ƒisƒ“
ƒƒƒƒƒƒƒ<<ƒint(string2.length())ƒ<<ƒendlƒ<<ƒendl;
ƒƒifƒ(string1ƒ<ƒstring2)
ƒƒƒƒcoutƒ<<ƒstring1ƒ<<ƒƒ“ƒisƒlessƒthanƒ“ƒ<<ƒƒstring2ƒ<<ƒendlƒ<<ƒendl;
ƒƒelseƒifƒ(string1ƒ==ƒstring2)
ƒƒƒƒcoutƒ<<ƒstring1ƒ<<ƒƒ“ƒisƒequalƒtoƒ“ƒ<<ƒƒstring2ƒ<<ƒendlƒ<<ƒendl;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒstring1ƒ<<ƒƒ“ƒisƒgreaterƒthanƒ“ƒ<<ƒƒstring2ƒ<<ƒendlƒ<<ƒendl;

ƒƒstring1ƒ=ƒstring1ƒ+ƒ“ƒthereƒworld!”;
ƒƒcoutƒ<<ƒ“Afterƒconcatenation,ƒstring1ƒcontainsƒtheƒcharacters:ƒ“
ƒƒƒƒƒƒƒ<<ƒstring1ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒlengthƒofƒthisƒstringƒisƒ“ƒ<<ƒƒint(string1.length())ƒ<<ƒendl;

ƒƒreturnƒ0;
}

Following is a sample output produced by Program 14.4:

string1ƒisƒtheƒstring:ƒHello
Theƒnumberƒofƒcharactersƒinƒstring1ƒisƒ5

string2ƒisƒtheƒstring:ƒHelloƒthere
Theƒnumberƒofƒcharactersƒinƒstring2ƒisƒ11

HelloƒisƒlessƒthanƒHelloƒthere

Afterƒconcatenation,ƒstring1ƒcontainsƒtheƒcharacters:ƒHelloƒthereƒworld!
Theƒlengthƒofƒthisƒstringƒisƒ18

When reviewing this output, refer to Figure 14.5, which shows how the characters in

string1 and string2 are stored in memory. The length of each string refers to the total

number of characters in the string, and the first character in each string is located at index

position 0. Therefore, the length of a string is always 1 more than the index number of the last

character’s position in the string.

Although you use the concatenation operator and length() method most often, at times

you’ll find the other string methods described in Table 14.3 useful. One of the most useful is

the at() method, which enables you to retrieve separate characters in a string. Program 14.5

uses this method to select one character at a time from the string, starting at string position 0

and ending at the index of the last character in the string. This last index value is always 1 less

than the number of characters (that is, the string’s length) in the string.

Q_C7785_14.1c 616Q_C7785_14.1c 616 1/18/11 10:53 AM1/18/11 10:53 AM

617Chapter 14
The string Class

Location of
a string

string2

string1

Character part of a string object

Character part of a string object

Location of
a string

H e l l o

H e l l o t h e r e

Figure 14.5 The initial strings used in Program 14.4

 Program 14.5

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒstrƒ=ƒ“Countingƒtheƒnumberƒofƒvowels”;
ƒƒintƒi,ƒnumChars;
ƒƒintƒvowelCountƒ=ƒ0;

ƒƒcoutƒ<<ƒ“Theƒstring:ƒ“ƒ<<ƒƒstrƒ<<ƒendl;
ƒƒnumCharsƒ=ƒint(str.length());
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒnumChars;ƒi++)
ƒƒ{
ƒƒƒƒswitch(str.at(i))ƒƒƒ//ƒhere'sƒwhereƒaƒcharacterƒisƒretrieved
ƒƒƒƒ{
ƒƒƒƒƒƒcaseƒ'a':
ƒƒƒƒƒƒcaseƒ'e':
ƒƒƒƒƒƒcaseƒ'i':
ƒƒƒƒƒƒcaseƒ'o':
ƒƒƒƒƒƒcaseƒ'u':
ƒƒƒƒƒƒƒƒvowelCount++;
ƒƒƒƒ}
ƒƒ}
ƒƒcoutƒ<<ƒ“hasƒ“ƒ<<ƒƒvowelCountƒ<<ƒƒ“ƒvowels.”ƒ<<ƒendl;
ƒƒreturnƒ0;
}

Q_C7785_14.1c 617Q_C7785_14.1c 617 1/18/11 10:53 AM1/18/11 10:53 AM

618 The string Class and Exception Handling

The expression str.at(i) in the switch statement retrieves the character at position i

in the string. This character is then compared with five different character values. The switch

statement uses the fact that selected cases “drop through” in the absence of break statements.

Therefore, all selected cases result in an increment to vowelCount. Program 14.5 displays the

following output:

Theƒstring:ƒCountingƒtheƒnumberƒofƒvowels
hasƒ9ƒvowels.

As an example of inserting and replacing characters in a string with the methods listed in

Table 14.3, assume you start with a string created by the following statement:

stringƒstrƒ=ƒ“Thisƒcannotƒbe”;

Figure 14.6 illustrates how this string is stored in the buffer created for it. As indicated, the

length of the string is 14 characters.

Character position:

T h i

210 5 643

s

87 11 12109 13

c a n n o b et

Length = 14

Figure 14.6 Initial storage of a string object

Now assume the following statement is executed:

str.insert(4,”ƒIƒknow”);

This statement inserts the designated seven characters in “ƒIƒknow”, beginning with a

blank, into the existing string (“Thisƒcannotƒbe”) starting at index position 4. Figure 14.7

shows the string after the insertion.

Character position:

T h i

210 5 643

s

87 11 12109 13

I k n o w

Length = 21

1514 18 191716 20

a nc n o t b e

Figure 14.7 The string after the insertion

Q_C7785_14.1c 618Q_C7785_14.1c 618 1/18/11 10:53 AM1/18/11 10:53 AM

619Chapter 14
The string Class

If the statement str.replace(12,ƒ6,ƒ“to”); is executed next, the existing characters

in index positions 12 through 17 are deleted, and the two characters contained in to are

inserted starting at index position 12. Figure 14.8 shows the net effect of this replacement. The

number of replacement characters (in this case, two) can be fewer than, equal to, or greater

than the number of characters being replaced, which in this case is six.

Character position:

T h i

210 5 643

s

87 11 12109 13

I k n o w

Length = 17

1514 16

ot b e

Figure 14.8 The string after the replacement

Finally, if you append the string “correct” to the string shown in Figure 14.8 by using

the concatenation operator, +, you get the string shown in Figure 14.9.

Character position:

T h i

210 5 643

s

87 11 12109 13

I k n o w

Length = 25

1514 18 191716 20

ot b e c o r

22 2321 24

e c tr

Figure 14.9 The string after the append

Program 14.6 uses these statements in a complete program.

 Program 14.6

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒstrƒ=ƒ“Thisƒcannotƒbe”;

ƒƒcoutƒ<<ƒ“Theƒoriginalƒstringƒis:ƒ“ƒ<<ƒstrƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“ƒƒandƒhasƒ“ƒ<<ƒint(str.length())ƒ<<ƒ“ƒcharacters.”ƒ<<ƒendl;

ƒƒ//ƒinsertƒcharacters
ƒƒstr.insert(4,”ƒIƒknow”);
ƒƒcoutƒ<<ƒ“Theƒstring,ƒafterƒinsertion,ƒis:ƒ“ƒ<<ƒstrƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“ƒƒandƒhasƒ“ƒ<<ƒint(str.length())ƒ<<ƒ“ƒcharacters.”ƒ<<ƒendl;

☞

Q_C7785_14.1c 619Q_C7785_14.1c 619 1/18/11 10:53 AM1/18/11 10:53 AM

620 The string Class and Exception Handling

ƒƒ//ƒreplaceƒcharacters
ƒƒstr.replace(12,ƒ6,ƒ“to”);
ƒƒcoutƒ<<ƒ“Theƒstring,ƒafterƒreplacement,ƒis:ƒ“ƒ<<ƒstrƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“ƒƒandƒhasƒ“ƒ<<ƒint(str.length())ƒ<<ƒ“ƒcharacters.”ƒ<<ƒendl;

ƒƒ//ƒappendƒcharacters
ƒƒstrƒ=ƒstrƒ+ƒ“ƒcorrect”;
ƒƒcoutƒ<<ƒ“Theƒstring,ƒafterƒappending,ƒis:ƒ“ƒ<<ƒstrƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“ƒƒandƒhasƒ“ƒ<<ƒint(str.length())ƒ<<ƒ“ƒcharacters.”ƒ<<ƒendl;

ƒƒƒreturnƒ0;
}

The following output produced by Program 14.6 matches the strings shown in Figures 14.6

to 14.9:

Theƒoriginalƒstringƒis:ƒThisƒcannotƒbe
ƒƒandƒhasƒ14ƒcharacters.
Theƒstring,ƒafterƒinsertion,ƒis:ƒThisƒIƒknowƒcannotƒbe
ƒƒandƒhasƒ21ƒcharacters.
Theƒstring,ƒafterƒreplacement,ƒis:ƒThisƒIƒknowƒtoƒbe
ƒƒandƒhasƒ17ƒcharacters.
Theƒstring,ƒafterƒappending,ƒis:ƒThisƒIƒknowƒtoƒbeƒcorrect
ƒƒandƒhasƒ25ƒcharacters.

Of the remaining string methods in Table 14.3, the most commonly used are those that

locate specific characters in a string and create substrings. A substring is any sequence of char-

acters contained in the original string. Program 14.7 shows how some of these other methods

are used.

 Program 14.7

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{

ƒƒstringƒstring1ƒ=ƒ“LINEARƒPROGRAMMINGƒTHEORY”;
ƒƒstringƒs1,ƒs2,ƒs3;
ƒƒintƒj,ƒk;

ƒƒcoutƒ<<ƒ“Theƒoriginalƒstringƒisƒ“ƒ<<ƒƒstring1ƒ<<ƒendl;

☞

Q_C7785_14.1c 620Q_C7785_14.1c 620 1/18/11 10:53 AM1/18/11 10:53 AM

621Chapter 14
The string Class

ƒƒjƒ=ƒint(string1.find('I'));
ƒƒcoutƒ<<ƒ“ƒƒTheƒfirstƒpositionƒofƒanƒ'I'ƒisƒ“ƒ<<ƒƒjƒ<<ƒendl;

ƒƒkƒ=ƒint(string1.find('I',ƒ(j+1)));
ƒƒcoutƒ<<ƒ“ƒƒTheƒnextƒpositionƒofƒanƒ'I'ƒisƒ“ƒ<<ƒƒkƒ<<ƒendl;

ƒƒjƒ=ƒint(string1.find(“THEORY”));
ƒƒcoutƒ<<ƒ“ƒƒTheƒfirstƒlocationƒofƒ\”THEORY\”ƒisƒ“ƒ<<ƒƒjƒ<<ƒendl;

ƒƒkƒ=ƒint(string1.find(“ING”));
ƒƒcoutƒ<<ƒ“ƒƒTheƒfirstƒindexƒofƒ\”ING\”ƒisƒ“ƒ<<ƒƒkƒ<<ƒendl;

ƒƒ//ƒnowƒextractƒthreeƒsubstrings
ƒƒs1ƒ=ƒstring1.substr(2,5);
ƒƒs2ƒ=ƒstring1.substr(19,3);
ƒƒs3ƒ=ƒstring1.substr(6,8);

ƒƒcoutƒ<<ƒ“Theƒsubstringsƒextractedƒare:”ƒ<<ƒendl
ƒƒƒƒƒƒƒ<<ƒ“ƒƒ“ƒ<<ƒs1ƒ+ƒs2ƒ+ƒs3ƒ<<ƒendl;

ƒƒreturnƒ0;
}

Here’s the output produced by Program 14.7:

TheƒoriginalƒstringƒisƒLINEARƒPROGRAMMINGƒTHEORY
ƒƒTheƒfirstƒpositionƒofƒanƒ'I'ƒisƒ1
ƒƒTheƒnextƒpositionƒofƒanƒ'I'ƒisƒ15
ƒƒTheƒfirstƒlocationƒofƒ“THEORY”ƒisƒ19
ƒƒTheƒfirstƒindexƒofƒ“ING”ƒisƒ15
Theƒsubstringsƒextractedƒare:
ƒƒNEARƒTHEƒPROGRAM

The main point shown in Program 14.7 is that characters and sequences of characters can

be located and extracted from a string with string class methods.

 EXERCISES 14.1

1. (Practice) Enter and run Program 14.2.

2. (Practice) Determine the value of text.at(0), text.at(3), and text.at(10), assuming

for each one that text is each of the following strings:

a. Now is the time

b. Rocky raccoon welcomes you

c. Happy Holidays

d. The good ship

Q_C7785_14.1c 621Q_C7785_14.1c 621 1/18/11 10:53 AM1/18/11 10:53 AM

622 The string Class and Exception Handling

3. (Practice) Enter and run Program 14.5.

4. (Modify) Modify Program 14.5 to count and display the numbers of each vowel contained in

the string.

5. (Modify) Modify Program 14.5 to display the number of vowels in a user-entered string.

6. (Program) Using the at() method, write a C++ program that reads in a string by using

getline(), stores the string in a string object named message, and then displays the

string in reverse order. (Hint: After the string has been entered and saved, retrieve and dis-

play characters, starting from the end of the string. The last character is located at the posi-

tion message.length()ƒ-ƒ1.)

7. (Program) Write a C++ program that accepts both a string and a single character from the

user. The program should determine how many times the character is contained in the string.

(Hint: Search the string by using the find(str,ƒind) method. This method should be used

in a loop that starts the index value at 0 and then changes the index value to 1 past the index

of where the char was last found.)

8. (Practice) Enter and run Program 14.6.

9. (Practice) Enter and run Program 14.7.

14.2 Character Manipulation Methods

In addition to the string methods from the string class, C++ provides several useful

character class methods, listed in Table 14.4. The header files string and cctype must be

included in any program using these methods.

Table 14.4 Character Library Methods (Require the Header Files string and cctype)

Method Prototype Description Example
int isalpha (charExp) Returns a true (non-zero integer) if charExp

evaluates to a letter; otherwise, it returns a
false (zero integer)

isalpha('a')

int isalnum (charExp) Returns a true (non-zero integer) if charExp
evaluates to a letter or a digit; otherwise, it
returns a false (zero integer)

isalnum(key)

int isupper (charExp) Returns a true (non-zero integer) if charExp
evaluates to an uppercase letter; otherwise,
it returns a false (zero integer)

isupper('a')

int islower (charExp) Returns a true (non-zero integer) if charExp
evaluates to a lowercase letter; otherwise, it
returns a false (zero integer)

islower('a')

int isdigit (charExp) Returns a true (non-zero integer) if charExp
evaluates to a digit (0 through 9); otherwise,
it returns a false (zero integer)

isdigit('a')

Q_C7785_14.1c 622Q_C7785_14.1c 622 1/18/11 10:53 AM1/18/11 10:53 AM

623Chapter 14
Character Manipulation Methods

Table 14.4 Character Library Methods (Require the Header Files string and cctype)
(continued)

int isascii (charExp) Returns a true (non-zero integer) if charExp
evaluates to an ASCII character; otherwise,
returns a false (zero integer)

isascii('a')

int isspace (charExp) Returns a true (non-zero integer) if charExp
evaluates to a space; otherwise, returns a
false (zero integer)

isspace('ƒ')

int isprint (charExp) Returns a true (non-zero integer) if charExp
evaluates to a printable character; other-
wise, returns a false (zero integer)

isprint('a')

int isctrl (charExp) Returns a true (non-zero integer) if charExp
evaluates to a control character; otherwise,
it returns a false (zero integer)

isctrl('a')

int ispunct (charExp) Returns a true (non-zero integer) if charExp
evaluates to a punctuation character; other-
wise, returns a false (zero integer)

ispunct('!')

int isgraph (charExp) Returns a true (non-zero integer) if charExp
evaluates to a printable character other than
white space; otherwise, returns a false
(zero integer)

isgraph('ƒ')

int toupper (charExp) Returns the uppercase equivalent if charExp
evaluates to a lowercase character; other-
wise, returns the character code without
modification

toupper('a')

int tolower (charExp) Returns the lowercase equivalent if charExp
evaluates to an uppercase character;
otherwise, returns the character code
without modification

tolower('A')

Because all the istype() methods listed in Table 14.4 return a non-zero integer (inter-

preted as a Boolean true value) when the character meets the condition and a zero integer

(interpreted as a Boolean false value) when the condition isn’t met, these methods are typi-

cally used in an if statement. For example, the following code segment assumes ch is a char-

acter variable:

if(isdigit(ch))
ƒƒcoutƒ<<ƒ“Theƒcharacterƒjustƒenteredƒisƒaƒdigit”ƒ<<ƒendl;
elseƒif(ispunct(ch))
ƒƒcoutƒ<<ƒ“Theƒcharacterƒjustƒenteredƒisƒaƒpunctuationƒmark”ƒ<<ƒendl;

Q_C7785_14.1c 623Q_C7785_14.1c 623 1/18/11 10:53 AM1/18/11 10:53 AM

624 The string Class and Exception Handling

In this example, if ch contains a digit character, the first cout statement is executed; if the

character is a letter, the second cout statement is executed. In both cases, however, the char-

acter to be checked is included as an argument to the method. Program 14.8 shows this type

of code in a program that counts the number of letters, digits, and other characters in a string.

The characters to be checked are obtained by using the string class’s at() method. In this

program, this method is used in a for loop that cycles through the string from the first charac-

ter to the last.

 Program 14.8

#includeƒ<iostream>
#includeƒ<string>
#includeƒ<cctype>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒƒƒstringƒstrƒ=ƒ“Thisƒ-123/ƒisƒ567ƒAƒ?<6245>ƒTest!”;
ƒƒƒƒcharƒnextChar;
ƒƒƒƒintƒi;
ƒƒƒƒintƒnumLettersƒ=ƒ0,ƒnumDigitsƒ=ƒ0,ƒnumOthersƒ=ƒ0;
ƒƒƒƒcoutƒ<<ƒ“Theƒoriginalƒstringƒis:ƒ“ƒ<<ƒƒstr
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nThisƒstringƒcontainsƒ“ƒ<<ƒƒint(str.length())
ƒƒƒƒƒƒƒƒƒ<<ƒƒ“ƒcharacters,”ƒ<<ƒƒ“ƒwhichƒconsistƒof”ƒ<<ƒendl;

ƒƒƒƒ//ƒcheckƒeachƒcharacterƒinƒtheƒstring
ƒƒƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒint(str.length());ƒi++)
ƒƒƒƒ{
ƒƒƒƒƒƒnextCharƒ=ƒstr.at(i);ƒƒ//ƒgetƒaƒcharacter
ƒƒƒƒƒƒifƒ(isalpha(nextChar))
ƒƒƒƒƒƒƒƒnumLetters++;
ƒƒƒƒƒƒelseƒifƒ(isdigit(nextChar))
ƒƒƒƒƒƒƒƒnumDigits++;
ƒƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒnumOthers++;
ƒƒƒƒ}

ƒƒƒƒcoutƒ<<ƒ“ƒƒƒƒƒ“ƒ<<ƒƒnumLettersƒ<<ƒƒ“ƒletters”ƒ<<ƒendl;
ƒƒƒƒcoutƒ<<ƒ“ƒƒƒƒƒ“ƒ<<ƒƒnumDigitsƒ<<ƒƒ“ƒdigits”ƒ<<ƒendl;
ƒƒƒƒcoutƒ<<ƒ“ƒƒƒƒƒ“ƒ<<ƒƒnumOthersƒ<<ƒƒ“ƒotherƒcharacters.”ƒ<<ƒendl;

ƒƒƒcin.ignore();
ƒƒƒreturnƒ0;
}

Q_C7785_14.1c 624Q_C7785_14.1c 624 1/18/11 10:53 AM1/18/11 10:53 AM

625Chapter 14
Character Manipulation Methods

Program 14.8 produces the following output:

Theƒoriginalƒstringƒis:ƒThisƒ-123/ƒisƒ567ƒAƒ?<6245>ƒTest!
Thisƒstringƒcontainsƒ33ƒcharacters,ƒwhichƒconsistƒof
ƒƒƒƒƒ11ƒletters
ƒƒƒƒƒ10ƒdigits
ƒƒƒƒƒ12ƒotherƒcharacters.

As indicated by this output, each of the 33 characters in the string has been categorized

correctly as a letter, a digit, or other character.

Typically, as in Program 14.8, the methods in Table 14.4 are used in a character-by-character

manner on each character in a string. You see this again in Program 14.9, where each lowercase

string character is converted to its uppercase equivalent by using the toupper() method. This

method converts only lowercase letters, leaving all other characters unaffected.

 Program 14.9

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒi;
ƒƒstringƒstr;

ƒƒcoutƒ<<ƒ“Typeƒinƒanyƒsequenceƒofƒcharacters:ƒ“;
ƒƒgetline(cin,str);

ƒƒ//ƒcycleƒthroughƒallƒelementsƒofƒtheƒstring
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒint(str.length());ƒi++)
ƒƒƒƒstr[i]ƒ=ƒtoupper(str[i]);

ƒƒcoutƒ<<ƒ“Theƒcharactersƒjustƒentered,ƒinƒuppercase,ƒare:ƒ“
ƒƒƒƒƒƒƒ<<ƒstrƒ<<ƒendl;

ƒƒreturnƒ0;
}

Q_C7785_14.1c 625Q_C7785_14.1c 625 1/18/11 10:53 AM1/18/11 10:53 AM

626 The string Class and Exception Handling

A sample run of Program 14.9 produced the following output:

Typeƒinƒanyƒsequenceƒofƒcharacters:ƒthisƒisƒaƒtestƒofƒ12345.
Theƒcharactersƒjustƒentered,ƒinƒuppercase,ƒare:ƒTHISƒISƒAƒTESTƒOFƒ12345.

In this program, pay particular attention to the statement used to cycle through each charac-

ter in the string: forƒ(iƒ=ƒ0;ƒiƒ<ƒint(str.length());ƒi++). Typically, cycling through

the string one character at a time is how each element in a string is accessed, using the length()

method to determine when the end of the string has been reached. (Review Program 14.8 to see

that it’s used in the same way.) The only real difference is that in Program 14.9, each element is

accessed by using the array subscript notation str[i]; in Program 14.8, the at() method is used.

Although these two notations are interchangeable—and which one you use is a matter of

choice—for consistency, the two notations shouldn’t be mixed in the same program.

Point of Information
Why the char Data Type Uses Integer Values

In C++, a character is stored as an integer value, which is sometimes confusing to begin-
ning programmers. The reason is that in addition to standard English letters and charac-
ters, a program needs to store special characters that have no printable equivalents. One
is the end-of-file (EOF) sentinel that all computer systems use to designate the end of a
data file. The EOF sentinel can be transmitted from the keyboard. For example, on UNIX-
based systems, it’s generated by holding down the Ctrl key and pressing D; on Windows-
based systems, it’s generated by holding down Ctrl and pressing Z. On both systems, the
EOF sentinel is stored as the integer number -1, which has no equivalent character value.
You can check this by displaying the integer value of each entered character (see
Program 14.10) and pressing Ctrl+D or Ctrl+Z, depending on the system you’re using.

By using a 16-bit integer value, more than 64,000 different characters can be repre-
sented. This number of characters provides enough storage for multiple character sets,
including Arabic, Chinese, Hebrew, Japanese, and Russian, and almost all known lan-
guage symbols. Therefore, storing a character as an integer value has a practical value.

An important consequence of using integer codes for string characters is that characters
can be compared easily for alphabetical ordering. For example, as long as each subsequent
letter in an alphabet has a higher value than its preceding letter, the comparison of charac-
ter values is reduced to the comparison of numeric values. Because characters are stored in
sequential numerical order, adding 1 to a letter produces the next letter in the alphabet.

Q_C7785_14.1c 626Q_C7785_14.1c 626 1/18/11 10:53 AM1/18/11 10:53 AM

627Chapter 14
Character Manipulation Methods

Character I/O
Although you have used cin and getline() to accept data entered from the keyboard in a

more or less “cookbook” manner, understanding what data is being sent to the program and

how the program must react to process the data is useful. At a fundamental level, all input (as

well as output) is done on a character-by-character basis, as shown in Figure 14.10.

H e l l o

Assemble
into a
string

Is
it '\n'?

get()

int

Replace with
getline()

Stream of data

'H' 'e' 'l' 'l' 'o' <Enter>

No

Stop readingYes

value

Figure 14.10 Accepting keyboard-entered characters

As this figure shows, the entry of every piece of data, whether it’s a string or a number,

consists of typing characters. For example, entry of the string Hello consists of pressing and

releasing the five character keys H, e, l, l, o, and the Enter key. Similarly, output of the number

26.95 consists of displaying the five characters 2, 6, ., 9, and 5. Although programmers usually

don’t think of data in this manner, programs are restricted to this character-by-character I/O,

and all of C++’s higher-level I/O methods and stream objects are based on lower-level charac-

ter I/O methods. These more basic character methods, which can be used by a programmer,

are listed in Table 14.5.

Q_C7785_14.1c 627Q_C7785_14.1c 627 1/18/11 10:53 AM1/18/11 10:53 AM

628 The string Class and Exception Handling

Table 14.5 Basic Character I/O Methods (Require the Header File iostream)

Method Description Example
cout.put(charExp) Places the character value of

charExp on the output stream
cout.put('A');

cin.get(charVar) Extracts the next character
from the input stream and
assigns it to the variable
charVar

cin.get(key);

cin.peek(charVar) Assigns the next character from
the input stream to the variable
charVar without extracting
the character from the stream

cin.peek(nextKey);

cin.putback(charExp) Pushes a character value of
charExp back onto the
input stream

cin.putback(cKey);

cin.ignore(n,ƒchar) Ignores a maximum of the next
n input characters, up to and
including the detection of char;
if no arguments are specified,
ignores the next single character
on the input stream

cin.ignore(80,'\n');
cin.ignore();

The get() method reads the next character in the input stream and assigns it to the

method’s character variable. For example, examine this statement:

cin.get(nextChar);

It causes the next character entered at the keyboard to be stored in the character variable

nextChar. This method is useful for inputting and checking characters before they’re assigned

to a complete string, character, or numeric variable.

The character output method corresponding to get() is put(). This method expects a

single-character argument and displays onscreen the character passed to it. For example, the

statement cout.put('A') causes the letter A to be displayed onscreen.

Of the last three methods listed in Table 14.5, cin.ignore() is the most useful. This

method permits skipping over input until a designated character, such as '\n', is encountered.

For example, the statement cin.ignore(80,ƒ'\n') skips up to a maximum of the next

80 characters or stops the skipping if the newline character is encountered. This statement can

be useful for skipping all further input on a line, up to a maximum of 80 characters, or until the

end of the current line is encountered. Input would begin with the next line.

The peek() method in Table 14.5 returns the next character on the stream but doesn’t

remove it from the stream’s buffer. For example, the expression cin.peek(nextChar)

returns the next character input at the keyboard but leaves it in the buffer. This action is

sometimes useful for peeking ahead and seeing what the next character is but leaving it in

place for the next input.

Q_C7785_14.1c 628Q_C7785_14.1c 628 1/18/11 10:53 AM1/18/11 10:53 AM

629Chapter 14
Character Manipulation Methods

Finally, the putback() method places a character back on the stream so that it’s the next

character read. The argument passed to putback() can be any character expression that

evaluates to a legitimate character value; it doesn’t have to be the last input character.

The Phantom Newline Character Revisited As you saw in Section 14.1, sometimes you get

seemingly strange results when a cin input stream is followed by a getline() method call.

This same result can occur when characters are inputted by using the get() character method.

To see how it can occur, take a look at Program 14.10, which uses the get() method to accept

the next character entered at the keyboard, and then stores the character in the variable fkey.

 Program 14.10

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcharƒfkey;

ƒƒcoutƒ<<ƒ“Typeƒinƒaƒcharacter:ƒ“;
ƒƒcin.get(fkey);
ƒƒcoutƒ<<ƒ“Theƒkeyƒjustƒacceptedƒisƒ“ƒ<<ƒint(fkey)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

Point of Information
A Notational Inconsistency

All the character class methods in Table 14.5 use the standard object-oriented
notation of preceding the method’s name with an object name and a period, as in
cin.get(). However, the string class getline() method uses the notation
getline(cin, strVar). In this notation, the object (cin) appears as an argument
inside the parentheses, which is how procedural-based functions pass variables. For con-
sistency, you would expect getline() to be called as cin.getline(). Unfortunately,
this notation was already in use for a getline() function created for C-style strings
(which are simply one-dimensional arrays of characters, as discussed in Section 7.2)
before the class methods in Table 14.5 were included in the C++ library. Keeping the
original invocation syntax meant that a notational inconsistency was created.

Q_C7785_14.1c 629Q_C7785_14.1c 629 1/18/11 10:53 AM1/18/11 10:53 AM

630 The string Class and Exception Handling

When Program 14.10 is run, the character entered in response to the prompt

Typeƒinƒaƒcharacter: is stored in the character variable fkey, and the decimal code for the

character is displayed by explicitly casting the character into an integer to force its display as

an integer value. The following sample run illustrates this technique:

Typeƒinƒaƒcharacter:ƒm
Theƒkeyƒjustƒacceptedƒisƒ109

At this point, everything seems to be working, although you might be wondering why the

decimal value of m is displayed instead of the character. As you’ll see in Program 14.11, in typ-

ing m, two keys are usually pressed: the m key and the Enter key. As explained in Section 14.1,

these two characters are stored in a buffer after they’re pressed (refer back to Figure 14.2). The

first key pressed—m, in this case—is taken from the buffer and stored in fkey, but the code

for the Enter key is still in the buffer. Therefore, a subsequent call to get() for a character

input picks up the code for the Enter key as the next character automatically. To see an

example, take a look at Program 14.11.

 Program 14.11

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcharƒfkey,ƒskey;

ƒƒcoutƒ<<ƒ“Typeƒinƒaƒcharacter:ƒ“;
ƒƒcin.get(fkey);
ƒƒcoutƒ<<ƒ“Theƒkeyƒjustƒacceptedƒisƒ“ƒ<<ƒint(fkey)ƒ<<ƒendl;

ƒƒcoutƒ<<ƒ“Typeƒinƒanotherƒcharacter:ƒ“;
ƒƒcin.get(skey);
ƒƒcoutƒ<<ƒ“Theƒkeyƒjustƒacceptedƒisƒ“ƒ<<ƒint(skey)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

The following is a sample run of Program 14.11:

Typeƒinƒaƒcharacter:ƒm
Theƒkeyƒjustƒacceptedƒisƒ109
Typeƒinƒanotherƒcharacter:ƒTheƒkeyƒjustƒacceptedƒisƒ10

To review what happened in this program, after entering the letter m in response to the

first prompt, the Enter key is also pressed. From a character standpoint, this input represents

Q_C7785_14.1c 630Q_C7785_14.1c 630 1/18/11 10:53 AM1/18/11 10:53 AM

631Chapter 14
Character Manipulation Methods

the entry of two distinct characters. The first character is m, which is coded and stored as the

integer 109. The second character also gets stored in the buffer with the numerical code for

the Enter key. The second call to get() picks up this code immediately, without waiting for

another key to be pressed. The last cout stream displays the code for this key. The reason

for displaying the numerical code rather than the character is that the Enter key has no

printable character associated with it that can be displayed.

Remember that every key has a numerical code, including Enter, the spacebar, Escape,

and Ctrl. These keys generally have no effect when entering numbers because the input

methods ignore them as leading or trailing input with numerical data. These keys also don’t

affect the entry of a single character requested as the first user data to be inputted, as in

Program 14.10. Only when a character is requested after the user has already input other data,

as in Program 14.11, does the usually invisible Enter key become noticeable.

In Section 14.5, you learn other ways to prevent the Enter key from being accepted as a

legitimate character input when the getline() method is used. However, when the get()

method is used in a program, you can use the following ways:

• Follow the cin.get() input with the call cin.ignore().

• Accept the Enter key in a character variable, and then don’t use it again.

Program 14.12 applies the first solution to Program 14.11. Ignoring the Enter key after the

first character is read and displayed clears the buffer of the Enter key, which gets it ready to

store the next valid input character as its first character.

 Program 14.12

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒcharƒfkey,ƒskey;

ƒƒcoutƒ<<ƒ“Typeƒinƒaƒcharacter:ƒ“;
ƒƒcin.get(fkey);
ƒƒcoutƒ<<ƒ“Theƒkeyƒjustƒacceptedƒisƒ“ƒ<<ƒint(fkey)ƒ<<ƒendl;
ƒƒcin.ignore();

ƒƒcoutƒ<<ƒ“Typeƒinƒanotherƒcharacter:ƒ“;
ƒƒcin.get(skey);
ƒƒcoutƒ<<ƒ“Theƒkeyƒjustƒacceptedƒisƒ“ƒ<<ƒint(skey)ƒ<<ƒendl;

ƒƒreturnƒ0;
}

Q_C7785_14.1c 631Q_C7785_14.1c 631 1/18/11 10:53 AM1/18/11 10:53 AM

632 The string Class and Exception Handling

In this program, observe that when the user types the letter m and presses the Enter key,

the m is assigned to fkey and the code for the Enter key is ignored. The next call to get()

stores the code for the next key pressed in the variable skey. From the user’s standpoint, the

Enter key has no effect, except to signal the end of each character input. The following is a

sample run of Program 14.12:

Typeƒinƒaƒcharacter:ƒm
Theƒkeyƒjustƒacceptedƒisƒ109
Typeƒinƒanotherƒcharacter:ƒb
Theƒkeyƒjustƒacceptedƒisƒ98

A Second Look at User-Input Validation
As mentioned in the first look at user-input validation (in Section 3.4), programs that respond

effectively to unexpected user input are formally referred to as robust programs and infor-

mally as “bulletproof” programs. Code that validates user input and ensures that a program

doesn’t produce unintended results caused by unexpected input is a sign of a well-constructed,

robust program. One of your jobs as a programmer is to produce robust programs. To see how

unintended results can occur, examine the following two code examples. First, assume your

program contains the following statements:

intƒvalue;
coutƒ<<ƒ“Enterƒanƒinteger:ƒ“;
cinƒƒ>>ƒvalue;

By mistake, a user enters the characters e4. In earlier versions of C++, this input would

cause the program to terminate unexpectedly, or crash. Although a crash can still occur for other

reasons, it doesn’t in this case. Instead, a meaningless integer value is assigned to the variable

value. This assignment, of course, invalidates any results obtained by using this variable.

As a second example, take a look at the following code, which causes an infinite loop if

the user enters a non-numeric value. (The program can be halted by holding down Ctrl and

pressing C.)

doubleƒvalue;
ƒƒdo
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Enterƒaƒnumberƒ(enterƒ0ƒtoƒexit):ƒ“;
ƒƒƒƒcinƒƒ>>ƒvalue;

ƒƒƒƒcoutƒ<<ƒ“Theƒsquareƒrootƒofƒthisƒnumberƒis:ƒ“ƒ<<ƒsqrt(value)ƒ<<ƒendl;
ƒƒ}ƒwhileƒ(valueƒ!=0);

The basic technique for handling invalid data input and preventing seemingly innocu-

ous code from producing unintended results, as in these two examples, is called user-input
validation. This term means validating the entered data during or after data entry and giving

the user a way of reentering invalid data. User-input validation is an essential part of any

commercially viable program, and if done correctly, it protects a program from attempting to

process data types that can cause a program to crash, create infinite loops, or produce more

invalid results.

Q_C7785_14.1c 632Q_C7785_14.1c 632 1/18/11 10:53 AM1/18/11 10:53 AM

633Chapter 14
Character Manipulation Methods

The central element in user-input validation is checking each entered character to verify

that it qualifies as a legitimate character for the expected data type. For example, if an integer

is required, the only acceptable characters are a leading plus (+) or minus (-) sign and the dig-

its 0 through 9. These characters can be checked as they’re being typed, which means the

get() method is used to input a character at a time, or after all the characters can be accepted

in a string, and then each string character is checked for validity. After all the entered charac-

ters have been validated, the entered string can be converted into the correct data type.

Two basic techniques can be used to verify the validity of entered characters: character-

by-character checking and exception processing, both discussed in Section 14.5.

 EXERCISES 14.2

1. (Practice) Enter and run Program 14.8.

2. (Practice) Enter and run Program 14.9.

3. (Program) Write a C++ program that counts the number of words in a string. A word is

encountered whenever a transition from a blank space to a nonblank character is encountered.

The string contains only words separated by blank spaces.

4. (Practice) Generate 10 random numbers in the range 0 to 129. (If necessary, review Section 6.8

for how to do this.) If the number represents a printable character, print the character with a

message that indicates the following:

The character is a lowercase letter.
The character is an uppercase letter.
The character is a digit.
The character is a space.
If the character is none of these, display its value in integer format.

5. (Practice) a. Write a function named reverse() that returns a string in reverse order without

using the string class’s length() method.

b. Write a simple main() function to test the reverse() function written for Exercise 5a.

6. (Practice) a. Write a function named countlets() that returns the number of letters in a

string passed as an argument. Digits, spaces, punctuation, tabs, and newline characters

shouldn’t be included in the returned count.

b. Include the countlets() function written for Exercise 6a in an executable C++ program,

and use the program to test the function.

7. (Program) Write a program that accepts a string from the console and displays the hexadeci-

mal equivalent of each character in the string.

8. (Program) Write a C++ program that accepts a string from the keyboard and displays the

string one word per line.

Q_C7785_14.1c 633Q_C7785_14.1c 633 1/18/11 10:53 AM1/18/11 10:53 AM

634 The string Class and Exception Handling

9. (Debug) In response to the following code, suppose a user enters the data 12e4:

coutƒ<<ƒ“Enterƒanƒinteger:ƒ“;
cinƒƒ>>ƒvalue;

 What value will be stored in the integer variable value?

10. (Useful utility) a. Write a C++ function that accepts a string and two character values. The

function should return the string with each occurrence of the first character replaced by the

second character.

b. Test the function written for Exercise 10a by writing a program that accepts a string from

the user, calls the function written for Exercise 10a to replace all occurrences of the letter e

with the letter x from the user-entered string, and then displays the changed string.

11. (Useful utility) Modify the function written for Exercise 10a to search for all occurrences

of a user-entered sequence of characters, and then replace this sequence, when it’s found in

the string, with a second user-entered sequence. For example, if the entered string is

Figureƒ4-4ƒillustratesƒtheƒoutputƒofƒProgramƒ4-2 and the user specifies that 4-

is to be replaced by 3-, the resulting string is Figureƒ3-4ƒillustratesƒtheƒoutputƒof
Programƒ3-2. (All occurrences of the searched-for sequence have been changed.)

12. (Program) a. Write a C++ program that stops reading a line of text when a period is entered and

displays the sentence with correct spacing and capitalization. For this program, correct spacing

means only one space should be used between words, and all letters should be lowercase, except

the first letter. For example, if the user enters the text iƒamƒƒƒƒƒƒƒgoingƒƒƒtoƒƒƒƒƒGoƒƒTO
ƒƒTHeƒmoVies., the displayed sentence should be Iƒamƒgoingƒtoƒgoƒtoƒtheƒmovies.

b. Determine what characters, if any, aren’t displayed correctly by the program you created for

Exercise 12a.

14.3 Exception Handling

The traditional C++ approach to error handling uses a function to return a specific value to

indicate specific operations. Typically, a return value of 0 or 1 is used to indicate successful

completion of the function’s task, whereas a negative value indicates an error condition. For

example, with a function used to divide two numbers, a return value of -1 could indicate that

the denominator is 0, and the division can’t be performed. When multiple error conditions can

occur, different return values can be used to indicate specific errors.

Although this approach is still available and often used, a number of problems can occur.

First, the programmer must check the return value to detect whether an error did occur. Next,

the error-handling code that checks the return value frequently becomes intermixed with

normal processing code, so sometimes it’s difficult to determine which part of the code is han-

dling errors, as opposed to normal program processing. Finally, returning an error condition

from a function means the condition must be the same data type as a valid returned value;

hence, the error code must be a specially identified value that can be identified as an error

Q_C7785_14.1c 634Q_C7785_14.1c 634 1/18/11 10:53 AM1/18/11 10:53 AM

635Chapter 14
Exception Handling

alert. This means the error code is embedded as one of the possible nonerror values the func-

tion might require and is available only at the point where the function returns a value. A

function returning a Boolean value has no additional values for reporting an error condition,

except true and false.

None of these problems is insurmountable, and many times this approach is simple and

effective. However, another technique is available that’s designed for error detection and

handling: exception handling. With this technique, when an error occurs while a function is

executing, the function creates an exception. An exception is a value, a variable, or an object

containing information about the error at the point the error occurs. This exception is imme-

diately passed, at the point it’s generated, to code called the exception handler, which is

designed to deal with the exception. The process of generating and passing an exception is

referred to as throwing an exception. The exception is thrown from within the function while

it’s still executing, which permits handling the error and then returning control back to the

function so that it can complete its assigned task.

In general, two fundamental types of errors can cause C++ exceptions: those resulting

from a program’s inability to obtain a required resource and those resulting from flawed data.

Examples of the first error type are attempts to obtain a system resource, such as locating and

finding a file for input. These errors are the result of external resources over which the pro-

grammer has no control.

The second type of error can occur when a program prompts the user to enter an integer,

and the user enters a string, such as e234, that can’t be converted to a numerical value.

Another example is the attempt to divide two numbers when the denominator has a 0 value,

a condition referred to as a “division by zero error.” These errors can always be checked and

handled in a manner that doesn’t result in a program crash. Before seeing how to use excep-

tion handling, review Table 14.6 to familiarize yourself with the terminology used with

processing exceptions.

Table 14.6 Exception-Handling Terminology

Terminology Description
Exception A value, a variable, or an object that identifies a

specific error that has occurred while a program is
running

Throw an exception Send the exception to a section of code that
processes the detected error

Catch or handle an exception Receive a thrown exception and process it
Catch clause The section of code that processes the error
Exception handler The code that throws and catches an exception

Q_C7785_14.1c 635Q_C7785_14.1c 635 1/18/11 10:53 AM1/18/11 10:53 AM

636 The string Class and Exception Handling

The general syntax of the code required to throw and catch an exception is as follows:

try
{
ƒƒ//ƒoneƒorƒmoreƒstatements,
ƒƒ//ƒatƒleastƒoneƒofƒwhichƒshould
ƒƒ//ƒbeƒcapableƒofƒthrowingƒanƒexception
}
catch(exceptionDataTypeƒparameterName)
{
ƒƒ//ƒoneƒorƒmoreƒstatements
}

This example uses two new keywords: try and catch. The try keyword identifies the

start of an exception-handling block of code. At least one of the statements inside the braces

defining this block of code should be capable of throwing an exception. As an example, exam-

ine the try block in the following section of code:

try
{
ƒƒcoutƒ<<ƒ“Enterƒtheƒnumeratorƒ(wholeƒnumbersƒonly):ƒ“;
ƒƒcinƒƒ>>ƒnumerator;
ƒƒcoutƒ<<ƒ“Enterƒtheƒdenominatorƒ(wholeƒnumbersƒonly):”;
ƒƒcinƒƒ>>ƒdenominator;
ƒƒresultƒ=ƒnumerator/denominator;
}

The try block contains five statements, three of which might result in an error you want

to catch. In particular, a professionally written program would make sure valid integers are

entered in response to both prompts and the second entered value isn’t a 0. For this example,

you see how to ensure that the second value entered isn’t 0.

Therefore, for the purposes of this example, only the value of the second number matters.

The try block is altered to say “Try all the statements in me to see whether an exception,

which in this case is a 0 second value, occurs.” To check that the second value isn’t 0, you add

a throw statement in the try block, as follows:

try
{
ƒƒcoutƒ<<ƒ“Enterƒtheƒnumerator:ƒ(wholeƒnumberƒonly):ƒ“;
ƒƒcinƒƒ>>ƒnumerator;
ƒƒcoutƒ<<ƒ“Enterƒtheƒdenominator:ƒ(wholeƒnumberƒonly):ƒ“;
ƒƒcinƒƒ>>ƒdenominator;
ƒƒifƒ(denominatorƒ==ƒ0)
ƒƒƒƒthrowƒdenominator;
ƒƒelse
ƒƒƒƒresultƒ=ƒnumerator/denominator;
}

Q_C7785_14.1c 636Q_C7785_14.1c 636 1/18/11 10:53 AM1/18/11 10:53 AM

637Chapter 14
Exception Handling

In this try block, the thrown item is an integer value. A string literal, a variable, or an

object could have been used, but only one of these items can be thrown by any single throw

statement. The first four statements in the try block don’t have to be included in the code;

however, doing so keeps all the relevant statements together. Keeping related statements

together makes it easier to add throw statements in the same try block to ensure that both

input values are integer values.

A try block must be followed by one or more catch blocks, which serve as exception

handlers for any exceptions thrown by statements in the try block. Here’s a catch block that

handles the thrown exception, which is an integer:

catch(intƒe)
{
ƒƒcoutƒ<<ƒ“Aƒdenominatorƒvalueƒofƒ“ƒ<<ƒeƒ<<ƒ“ƒisƒinvalid.”ƒ<<ƒendl;
ƒƒexitƒ(1);
}

The exception handling this catch block provides is an output statement that identifies

the caught exception and then terminates program execution. Notice the parentheses follow-

ing the catch keyword. Inside the parentheses are the data type of the exception that’s thrown

and a parameter named e used to receive the exception. This parameter, which is a program-

mer-selected identifier but conventionally uses the letter e for exception, is used to hold the

exception value generated when an exception is thrown.

Multiple catch blocks can be used as long as each block catches a unique data type. The

only requirement is providing at least one catch block for each try block. The more excep-

tions that can be caught with the same try block, the better. Program 14.13 is a complete

program that includes a try block and a catch block to detect a division-by-zero error.

 Program 14.13

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnumerator,ƒdenominator;

ƒƒtry
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Enterƒtheƒnumeratorƒ(wholeƒnumberƒonly):ƒ“;
ƒƒƒƒcinƒƒ>>ƒnumerator;
ƒƒƒƒcoutƒ<<ƒ“Enterƒtheƒdenominator(wholeƒnumberƒonly):ƒ“;
ƒƒƒƒcinƒƒ>>ƒdenominator;

ƒƒƒƒifƒ(denominatorƒ==ƒ0)
ƒƒƒƒƒƒƒƒthrowƒdenominator;ƒƒ//ƒanƒintegerƒvalueƒisƒthrown

☞

Q_C7785_14.1c 637Q_C7785_14.1c 637 1/18/11 10:53 AM1/18/11 10:53 AM

638 The string Class and Exception Handling

ƒƒƒƒelse
ƒƒƒƒƒƒƒƒcoutƒ<<ƒnumeratorƒ<<'/'ƒ<<ƒdenominator
ƒƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒ“ƒ=ƒ“ƒ<<ƒdouble(numerator)/ƒdouble(denominator)ƒ<<ƒendl;
ƒƒ}
ƒƒcatch(intƒe)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Aƒdenominatorƒvalueƒofƒ“ƒ<<ƒeƒ<<ƒ“ƒisƒinvalid.”ƒ<<ƒendl;
ƒƒƒƒexitƒ(1);
ƒƒ}

ƒƒreturnƒ0;
}

Following are two sample runs of Program 14.13. Note that the second output indicates

that an attempt to divide by a zero denominator has been detected successfully before the

operation is performed.

Enterƒtheƒnumeratorƒ(wholeƒnumberƒonly):ƒ12
Enterƒtheƒdenominator(wholeƒnumberƒonly):ƒ3
12/3ƒ=ƒ4

and

Enterƒtheƒnumeratorƒ(wholeƒnumberƒonly):ƒ12
Enterƒtheƒdenominator(wholeƒnumberƒonly):ƒ0
Aƒdenominatorƒvalueƒofƒ0ƒisƒinvalid.

Instead of terminating program execution when a zero denominator is detected, a more

robust program can give the user the opportunity to reenter a non-zero value. To do this, the

try block is included in a while statement, and then the catch block returns program con-

trol to the while statement after informing the user that a zero value has been entered.

Program 14.14 accomplishes this.

 Program 14.14

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒintƒnumerator,ƒdenominator;
ƒƒboolƒneedDenominatorƒ=ƒtrue;

ƒƒcoutƒ<<ƒ“Enterƒaƒnumeratorƒ(wholeƒnumberƒonly):ƒ“;
ƒƒcinƒƒ>>ƒnumerator;

☞

Q_C7785_14.1c 638Q_C7785_14.1c 638 1/18/11 10:53 AM1/18/11 10:53 AM

639Chapter 14
Exception Handling

ƒƒcoutƒ<<ƒ“Enterƒaƒdenominatorƒ(wholeƒnumberƒonly):ƒ“;

ƒƒwhile(needDenominator)
ƒƒ{
ƒƒƒƒcinƒƒ>>ƒdenominator;
ƒƒƒƒtry
ƒƒƒƒ{
ƒƒƒƒƒƒifƒ(denominatorƒ==ƒ0)
ƒƒƒƒƒƒƒƒthrowƒdenominator;ƒƒ//ƒanƒintegerƒvalueƒisƒthrown
ƒƒƒƒ}
ƒƒƒƒcatch(intƒe)
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒ“Aƒdenominatorƒvalueƒofƒ“ƒ<<ƒeƒ<<ƒ“ƒisƒinvalid.”ƒ<<ƒendl;
ƒƒƒƒƒƒcoutƒ<<ƒ“Pleaseƒreenterƒtheƒdenominatorƒ(wholeƒnumberƒonly):ƒ“;
ƒƒƒƒƒƒcontinue;ƒƒ//ƒsendƒcontrolƒbackƒtoƒtheƒwhileƒstatement
ƒƒƒƒ}
ƒƒƒƒcoutƒ<<ƒnumeratorƒ<<'/'ƒ<<ƒdenominator
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒ=ƒ“ƒ<<ƒdouble(numerator)/ƒdouble(denominator)ƒ<<ƒendl;
ƒƒƒƒƒƒneedDenominatorƒ=ƒfalse;
ƒƒ}

ƒƒreturnƒ0;
}

In reviewing this code, notice that it’s the continue statement in the catch block that

returns control to the top of the while statement. (See Section 5.2 for a review of the

continue statement.) Following is a sample run of Program 14.14:

Enterƒaƒnumeratorƒ(wholeƒnumberƒonly):ƒ12
Enterƒaƒdenominatorƒ(wholeƒnumberƒonly):ƒ0
Aƒdenominatorƒvalueƒofƒ0ƒisƒinvalid.
Pleaseƒreenterƒtheƒdenominatorƒ(wholeƒnumberƒonly):ƒ5
12/5ƒ=ƒ2.4

When throwing string literals as opposed to numeric values, one caution should be men-

tioned. When a string literal is thrown, it’s a C-string, not a string class object, that’s thrown.

This means the catch statement must declare the received argument as a C-string (which is

a character array) rather than as a string. As an example, take a look at using the following state-

ment instead of throwing the value of the denominator variable in Programs 14.3 and 14.4:

throwƒ“***Invalidƒinputƒ-ƒAƒzeroƒdenominatorƒvalueƒisƒnotƒpermitted***”;

Here’s a correct catch statement for the preceding throw statement:

catch(charƒe[])

An attempt to declare the exception as a string class variable results in a compiler error.

Q_C7785_14.1c 639Q_C7785_14.1c 639 1/18/11 10:53 AM1/18/11 10:53 AM

640 The string Class and Exception Handling

 EXERCISES 14.3

1. (Practice) Define the following terms:

a. Exception

b. try block

c. catch block

d. Exception handler

e. Throw an exception

f. Catch an exception

2. (Practice) Enter and run Program 14.14.

3. (Modify) Replace the following statement in Program 14.14

coutƒ<<ƒnumeratorƒ<<'/'ƒ<<ƒdenominator
ƒƒƒƒƒ<<ƒ“ƒ=ƒ“ƒ<<ƒdoubleƒ(numerator)/ƒdoubleƒ(denominator)ƒ<<ƒendl;

 with the statement

coutƒ<<ƒnumeratorƒ<<'/'ƒ<<ƒdenominator
ƒƒƒƒƒ<<ƒ“ƒ=ƒ“ƒ<<ƒnumerator/denominatorƒ<<ƒendl;

 and run the modified program. Enter the values 12 and 5, and explain why the result is incor-

rect from the user’s viewpoint.

4. (Modify) Modify Program 14.14 so that it throws and catches the message ***Invalidƒinput
-Aƒdenominatorƒvalueƒofƒzeroƒisƒnotƒpermitted***. (Hint: Review the caution at

the end of this section.)

5. (Modify) Modify Program 14.14 so that the try and catch blocks are included in a while

statement. The while statement should provide code that continuously requests the user to

enter a denominator until a non-zero number is entered. (Hint: The prompt to enter a new

denominator should be made in the catch block immediately after the message informing the

user an invalid denominator has been entered.)

6. (Modify) Modify Program 14.14 so that it continues to divide two numbers until the user

enters the number 999 (as a numerator or denominator) to terminate program execution.

14.4 Exceptions and File Checking

Error detection and processing with exception handling are used extensively in C++ programs

that require one or more files. For example, if a user deletes or renames a file by using an OS

command, this action causes a C++ program to fail when an open() function call attempts to

open the file with its original name.

Q_C7785_14.1c 640Q_C7785_14.1c 640 1/18/11 10:53 AM1/18/11 10:53 AM

641Chapter 14
Exceptions and File Checking

Recall from Section 14.3 that the code for general exception handling looks like this:

try
{
ƒƒ//ƒoneƒorƒmoreƒstatements,
ƒƒ//ƒatƒleastƒoneƒofƒwhichƒshould
ƒƒ//ƒthrowƒanƒexception
}
catch(exceptionDataTypeƒparameterName)
{
ƒƒ//ƒoneƒorƒmoreƒstatements
}

In this code, the try block statements are executed. If no error occurs, the catch block

statements are omitted, and processing continues with the statement following the catch

block. However, if any statement in the try block throws an exception, the catch block with

the exception data type matching the exception is executed. If no catch block is defined for

a try block, a compiler error occurs. If no catch block exists that catches a thrown data type,

a program crash occurs if the exception is thrown. The simplest approach is to have the catch

block display an error message and terminate processing with a call to the exit() function.

Program 14.15 shows the statements required to open a file in read mode and includes excep-

tion handling.

 Program 14.15

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfilenameƒ=ƒ“prices.dat”;ƒƒ//ƒputƒtheƒfilenameƒupƒfront
ƒƒstringƒdescrip;
ƒƒdoubleƒprice;

ƒƒifstreamƒinFile;

ƒƒtryƒƒ//ƒtriesƒtoƒopenƒtheƒfile,ƒreadƒit,ƒandƒdisplayƒfile'sƒdata
ƒƒ{
ƒƒƒƒinFile.open(filename.c_str());

ƒƒƒƒifƒ(inFile.fail())ƒthrowƒfilename;ƒ//ƒexceptionƒbeingƒchecked

☞

Q_C7785_14.1c 641Q_C7785_14.1c 641 1/18/11 10:53 AM1/18/11 10:53 AM

642 The string Class and Exception Handling

ƒƒƒƒ//ƒreadƒandƒdisplayƒtheƒfile'sƒcontents
ƒƒƒƒinFileƒ>>ƒdescripƒ>>ƒprice;
ƒƒƒƒwhileƒ(inFile.good())ƒ//ƒcheckƒnextƒcharacter
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒdescripƒ<<ƒ'ƒ'ƒ<<ƒpriceƒ<<ƒendl;
ƒƒƒƒƒƒinFileƒ>>ƒdescripƒ>>ƒprice;
ƒƒƒƒ}
ƒƒƒƒinFile.close();

ƒƒƒƒreturnƒ0;
ƒƒ}
ƒƒcatchƒ(stringƒe)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“\nTheƒfileƒ“<<ƒeƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened.”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}
}

This is the exception message Program 14.15 displays when the prices.dat file isn’t found:

Theƒfileƒprices.datƒwasƒnotƒsuccessfullyƒopened.
ƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.

Although the exception-handling code in this program can be used to check for a success-

ful file open for input and output, a more rigorous check is usually required for an output file

because a file opened for output is almost guaranteed to be found. If it exists, the file will be

found; if it doesn’t exist, the operating system creates it (unless append mode is specified and

the file exists). Knowing that the file has been found and opened, however, isn’t enough for

output purposes when an existing output file must not be overwritten. In these cases, the file

can be opened for input, and if the file is found, a further check can be made to ensure that

the user explicitly approves overwriting it. The shaded code in Program 14.16 shows how to

make this check.

 Program 14.16

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>
#includeƒ<iomanip>ƒƒƒ//ƒneededƒforƒformatting
usingƒnamespaceƒstd;

☞

Q_C7785_14.1c 642Q_C7785_14.1c 642 1/18/11 10:53 AM1/18/11 10:53 AM

643Chapter 14
Exceptions and File Checking

intƒmain()
{
ƒƒcharƒresponse;
ƒƒstringƒfilenameƒ=ƒ“prices.dat”;ƒƒ//ƒputƒtheƒfilenameƒupƒfront
ƒƒifstreamƒinFile;
ƒƒofstreamƒoutFile;

ƒƒtryƒ//ƒopenƒaƒbasicƒinputƒstreamƒtoƒcheckƒwhetherƒtheƒfileƒexists
ƒƒ{
ƒƒƒƒinFile.open(filename.c_str());

ƒƒƒƒifƒ(inFile.fail())ƒthrowƒ1;ƒ//ƒthisƒmeansƒtheƒfileƒdoesn'tƒexist
ƒƒƒƒƒƒ//ƒonlyƒgetƒhereƒifƒtheƒfileƒisƒfound;
ƒƒƒƒƒƒ//ƒotherwise,ƒtheƒcatchƒblockƒtakesƒcontrol
ƒƒƒƒcoutƒ<<ƒ“Aƒfileƒbyƒtheƒnameƒ“ƒ<<ƒfilenameƒ<<ƒ“ƒcurrentlyƒexists.\n”
ƒƒƒƒƒƒƒƒƒ<<ƒ“Doƒyouƒwantƒtoƒoverwriteƒitƒwithƒtheƒnewƒdataƒ(yƒorƒn):ƒ“;
ƒƒƒƒcinƒ>>ƒresponse;

ƒƒƒƒifƒ(tolower(response)ƒ==ƒ'n')
ƒƒƒƒ{
ƒƒƒƒƒƒinFile.close();
ƒƒƒƒƒƒcoutƒ<<ƒ“Theƒexistingƒfileƒhasƒnotƒbeenƒoverwritten.”ƒ<<ƒendl;
ƒƒƒƒƒƒexit(1);
ƒƒƒƒ}
ƒƒ}
ƒƒƒcatch(intƒe)ƒ{};ƒƒ//ƒaƒdo-nothingƒblockƒthatƒpermits
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒprocessingƒtoƒcontinue
ƒƒƒtry
ƒƒƒ{
ƒƒƒƒƒ//ƒopenƒtheƒfileƒinƒwriteƒmodeƒandƒcontinueƒwithƒfileƒwrites
ƒƒƒƒƒoutFile.open(filename.c_str());

ƒƒƒƒƒifƒ(outFile.fail())ƒthrowƒfilename;
ƒƒƒƒƒ//ƒsetƒtheƒoutputƒfileƒstreamƒformats
ƒƒƒƒƒoutFileƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒsetprecision(2);
ƒƒƒƒƒ//ƒwriteƒtheƒdataƒtoƒtheƒfile
ƒƒƒƒƒoutFileƒ<<ƒ“Matsƒ“ƒ<<ƒ39.95ƒ<<ƒendl
ƒƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒ“Bulbsƒ“ƒƒ<<ƒ3.22ƒ<<ƒendl
ƒƒƒƒƒƒƒƒƒƒƒƒƒ<<ƒ“Fusesƒ“ƒ<<ƒ1.08ƒ<<ƒendl;
ƒƒƒƒƒoutFile.close();
ƒƒƒƒƒcoutƒ<<ƒ“Theƒfileƒ“ƒ<<ƒfilename
ƒƒƒƒƒƒƒƒƒƒ<<ƒ“ƒhasƒbeenƒsuccessfullyƒwritten.”ƒ<<ƒendl;
ƒƒƒƒƒreturnƒ0;

☞

Q_C7785_14.1c 643Q_C7785_14.1c 643 1/18/11 10:53 AM1/18/11 10:53 AM

644 The string Class and Exception Handling

ƒƒƒ}
ƒƒƒcatch(stringƒe)
ƒƒƒ{
ƒƒƒƒƒcoutƒ<<ƒ“Theƒfileƒ“ƒ<<ƒfilename
ƒƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwasƒnotƒopenedƒforƒoutputƒandƒhasƒnotƒbeenƒwritten.”
ƒƒƒƒƒƒƒƒƒƒ<<ƒendl;
ƒƒƒ}
}

In Program 14.16, the try blocks are separate. Because a catch block is affiliated with the

closest previous try block, there’s no ambiguity about unmatched try and catch blocks.

Opening Multiple Files
To understand how to apply exception handling to opening two files at the same time, assume

you want to read data from a character-based file named info.txt, one character at a time,

and write this data to a file named info.bak. Essentially, this application is a file-copying

program that reads data from one file in a character-by-character manner and writes the data

to a second file. Figure 14.11 shows the characters stored in the input file.

Now is the time for all good people
 to come to the aid of their party.
Please call (555) 888-6666 for
 further information.

Figure 14.11 The data stored in the info.txt file

Figure 14.12 illustrates the structure of the streams needed to produce the file copy. In

this figure, an input stream object referenced by the variable inFile reads data from the

info.txt file, and an output stream object referenced by the variable outFile writes data to

the info.bak file.

Computer
Program

Read

Write

Disk

OS interface info.txt

info.bakOS interface

Figure 14.12 The file copy stream structure

Now examine Program 14.17, which creates the info.bak file as a duplicate of the info.
txt file, using the procedure shown in Figure 14.12.

Q_C7785_14.1c 644Q_C7785_14.1c 644 1/18/11 10:53 AM1/18/11 10:53 AM

645Chapter 14
Exceptions and File Checking

 Program 14.17

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfileOneƒ=ƒ“info.txt”;ƒƒ//ƒputƒtheƒfilenameƒupƒfront
ƒƒstringƒfileTwoƒ=ƒ“info.bak”;
ƒƒcharƒch;
ƒƒifstreamƒinFile;
ƒƒofstreamƒoutFile;

ƒƒtryƒƒ//thisƒblockƒtriesƒtoƒopenƒtheƒinputƒfile
ƒƒ{
ƒƒƒƒ//ƒopenƒaƒbasicƒinputƒstream
ƒƒƒƒinFile.open(fileOne.c_str());
ƒƒƒƒifƒ(inFile.fail())ƒthrowƒfileOne;

Point of Information
Checking That a File Was Opened Successfully

When using exception handling, the most common method for checking that the oper-
ating system located the designated file is the one coded in Program 14.15. The key
coding points are repeated here for convenience:

tryƒ//ƒtriesƒtoƒopenƒtheƒfile,ƒreadƒit,ƒ
ƒƒƒƒ//ƒandƒdisplayƒfile'sƒdata
{
ƒƒ//ƒopenƒtheƒfile,ƒthrowingƒanƒexceptionƒifƒtheƒopenƒfails
ƒƒ//ƒperformƒallƒrequiredƒfileƒprocessing
ƒƒ//ƒcloseƒtheƒfile
}
catchƒ(stringƒe)
{
ƒƒcoutƒ<<ƒ“\nTheƒfileƒ“<<ƒeƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened.”
ƒƒƒƒƒƒƒ<<ƒ“\nƒPleaseƒcheckƒthatƒtheƒfileƒcurrentlyƒexists.”
ƒƒƒƒƒƒƒ<<ƒendl;
ƒƒexit(1);
}

☞

Q_C7785_14.1c 645Q_C7785_14.1c 645 1/18/11 10:53 AM1/18/11 10:53 AM

646 The string Class and Exception Handling

ƒƒ}ƒ//ƒendƒofƒouterƒtryƒblock
ƒƒcatchƒ(stringƒin)ƒƒ//ƒcatchƒforƒouterƒtryƒblock
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Theƒinputƒfileƒ“ƒ<<ƒin
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened.”ƒ<<ƒendl
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒNoƒbackupƒwasƒmade.”ƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒtryƒƒ//ƒthisƒblockƒtriesƒtoƒopenƒtheƒoutputƒfileƒand
ƒƒ{ƒƒƒƒ//ƒperformƒallƒfileƒprocessing
ƒƒƒƒoutFile.open(fileTwo.c_str());

ƒƒƒƒifƒ(outFile.fail())throwƒfileTwo;

ƒƒƒƒwhileƒ((chƒ=ƒinFile.get())!=ƒEOF)
ƒƒƒƒƒƒƒoutFile.put(ch);

ƒƒƒƒinFile.close();
ƒƒƒƒoutFile.close();
ƒƒƒ}
ƒƒƒcatchƒ(stringƒout)ƒƒ//ƒcatchƒforƒinnerƒtryƒblock
ƒƒƒ{
ƒƒƒƒƒcoutƒ<<ƒ“Theƒbackupƒfileƒ“ƒ<<ƒout
ƒƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened.”ƒ<<ƒendl;
ƒƒƒƒƒexit(1);
ƒƒƒ}

ƒƒƒƒcoutƒ<<ƒ“Aƒsuccessfulƒbackupƒofƒ“ƒ<<ƒfileOne
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒnamedƒ“ƒ<<ƒfileTwoƒ<<ƒ“ƒwasƒmade.”ƒ<<ƒendl;

ƒƒƒƒreturnƒ0;
}

For simplicity, Program 14.17 attempts to open the input and output files in separate and

unnested try blocks. More generally, the second file is opened in a nested inner try block, so

the attempt to open this second file wouldn’t be made if opening the first file threw an excep-

tion. (The next Point of Information box explains how to nest try blocks.)

In reviewing this program, pay particular attention to this statement:

while((chƒ=ƒinFile.get())!=ƒEOF)

This statement reads a value from the input stream continuously until the EOF value is

detected. As long as the returned value doesn’t equal the EOF value, the value is written to the

output object stream. The parentheses surrounding the expression (chƒ=ƒinFile.get())

Q_C7785_14.1c 646Q_C7785_14.1c 646 1/18/11 10:53 AM1/18/11 10:53 AM

647Chapter 14
Exceptions and File Checking

Point of Information
Nesting try Blocks

When more than one file stream is involved, opening each file stream in its own try block
permits isolating and identifying exactly which file caused an exception, if one occurs. The
try blocks can be nested, however. For example, Program 14.17 has been rewritten with
nested try blocks. Notice that the catch block for the inner try block must be nested
in the same block scope as the try block:

#includeƒ<iostream>
#includeƒ<fstream>
#includeƒ<cstdlib>ƒƒƒ//ƒneededƒforƒexit()
#includeƒ<string>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒstringƒfileOneƒ=ƒ“info.txt”;ƒƒ//ƒputƒtheƒfilenameƒupƒfront
ƒƒstringƒfileTwoƒ=ƒ“info.bak”;
ƒƒcharƒch;
ƒƒifstreamƒinFile;
ƒƒofstreamƒoutFile;

ƒƒtryƒƒ//thisƒblockƒtriesƒtoƒopenƒtheƒinputƒfile
ƒƒ{
ƒƒƒƒ//ƒopenƒaƒbasicƒinputƒstream
ƒƒƒƒinFile.open(fileOne.c_str());
ƒƒƒƒifƒ(inFile.fail())ƒthrowƒfileOne;
ƒƒƒƒtryƒƒ//ƒthisƒblockƒtriesƒtoƒopenƒtheƒoutputƒfileƒand
ƒƒƒƒ{ƒƒƒƒ//ƒperformƒallƒfileƒprocessing
ƒƒƒƒƒƒƒƒƒ//ƒopenƒaƒbasicƒoutputƒstream
ƒƒƒƒƒƒoutFile.open(fileTwo.c_str());
ƒƒƒƒƒƒifƒ(outFile.fail())throwƒfileTwo;
ƒƒƒƒƒƒwhileƒ((chƒ=ƒinFile.get())ƒ!=ƒEOF)
ƒƒƒƒƒƒƒƒoutFile.put(ch);

ƒƒƒƒƒƒinFile.close();
ƒƒƒƒƒƒoutFile.close();
ƒƒƒƒ}ƒƒ//ƒendƒofƒinnerƒtryƒblock
ƒƒƒƒcatchƒ(stringƒout)ƒƒ//ƒcatchƒforƒinnerƒtryƒblock
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒ“Theƒbackupƒfileƒ“ƒ<<ƒout
ƒƒƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened.”ƒ<<ƒendl;
ƒƒƒƒƒƒexit(1);
ƒƒƒƒ}

☞

Q_C7785_14.1c 647Q_C7785_14.1c 647 1/18/11 10:53 AM1/18/11 10:53 AM

648 The string Class and Exception Handling

are necessary to make sure a value is read and then assigned to the variable ch before the

retrieved value is compared with the EOF value. Without parentheses, the complete expression

would be chƒ=ƒinFile.get()!=ƒEOF. Given the precedence of operations, the relational

expression inFile.get()!=ƒEOF would be executed first. Because it’s a relational expres-

sion, its result is a Boolean true or false value based on the data the get() method retrieves.

Attempting to assign this Boolean result to the character variable ch is an invalid conversion

across an assignment operator.

 EXERCISES 14.4

1. (Practice) List two conditions that cause a fail condition when a file is opened for input.

2. (Practice) List two conditions that cause a fail condition when a file is opened for output.

3. (Practice) If an existing file is opened for output in write mode, what happens to the data

currently in the file?

4. (Modify) Modify Program 14.15 to use an identifier of your choice, in place of the letter e, for

the catch block’s exception parameter name.

Nesting try Blocks (continued)

ƒƒ}ƒƒ//ƒendƒofƒouterƒtryƒblock
ƒƒcatchƒ(stringƒin)ƒƒ//ƒcatchƒforƒouterƒtryƒblock
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Theƒinputƒfileƒ“ƒ<<ƒin
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒwasƒnotƒsuccessfullyƒopened.”ƒ<<ƒendl
ƒƒƒƒƒƒƒƒƒ<<ƒ“ƒNoƒbackupƒwasƒmade.”ƒ<<ƒendl;
ƒƒƒƒexit(1);
ƒƒ}

ƒƒcoutƒ<<ƒ“Aƒsuccessfulƒbackupƒofƒ“ƒ<<ƒfileOne
ƒƒƒƒƒƒƒ<<ƒ“ƒnamedƒ“ƒ<<ƒfileTwoƒ<<ƒ“wasƒmade.”ƒ<<ƒendl;

ƒƒreturnƒ0;
}

The important point to notice is nesting the try blocks. If the two try blocks aren’t
nested and the input stream declaration, ifstream inFile;, is placed in the first
block, it can’t be used in the second try block without producing a compiler error. The
reason is that all variables declared in a block of code (defined by an opening and clos-
ing brace pair) are local to the block in which they’re declared.

Point of Information

Q_C7785_14.1c 648Q_C7785_14.1c 648 1/18/11 10:53 AM1/18/11 10:53 AM

649Chapter 14
Input Data Validation

5. (Practice) Enter and run Program 14.16.

6. (Debug) Determine why the two unnested try blocks in Program 14.16 cause no problems

in compilation or execution. (Hint : Place the declaration for the filename in the first try block

and compile the program.)

7. (Debug) a. If the nested try blocks in the preceding Point of Information are separated into

unnested blocks, the program won’t compile. Determine why this is so.

b. What additional changes have to be made to the program in Exercise 7a to allow it to be

written with unnested blocks? (Hint : See Exercise 6.)

8. (Program) Enter the data for the info.txt file in Figure 14.11 or download it from this

book’s Web site (see this book’s introduction for the URL). Then enter and run Program 14.17

and verify that the backup file was written.

9. (Modify) Modify Program 14.17 to use a getline() method in place of the get() method

currently in the program.

14.5 Input Data Validation

One of the major uses of strings in programs is for user-input validation. Validating user input

is essential: Even though a program prompts the user to enter a specific type of data, such as

an integer, the prompt doesn’t ensure that the user will comply. What a user enters is, in fact,

totally out of the programmer’s control. What is in your control is how you deal with the

entered data.

It certainly does no good to tell a frustrated user that “The program clearly tells you to

enter an integer, and you entered a date.” Successful programs anticipate invalid data and

prevent it from being accepted and processed. Typically, this is accomplished by first validat-

ing that input data is of the correct type. If it is, the data is accepted; otherwise, the user is

prompted to reenter the data, with an explanation of why the entered data was invalid.

A common method of validating numerical input data is accepting all numbers as strings.

Each character in the string can then be checked to make sure it complies with the requested

data type. After this check is made and data is verified to be the correct type, the string is

converted to an integer or double-precision value by using the conversion functions listed in

Table 14.7. (For data accepted with string class objects, the c_str() method must be

applied to the string before the conversion function is called.)

As an example, consider inputting an integer number. To be valid, the data entered must

adhere to the following conditions:

• The data must contain at least one character.

• If the first character is a + or - sign, the data must contain at least one digit.

• Only digits from 0 to 9 are acceptable following the first character.

Q_C7785_14.1c 649Q_C7785_14.1c 649 1/18/11 10:53 AM1/18/11 10:53 AM

650 The string Class and Exception Handling

Table 14.7 C-String Conversion Functions

Function Description Example
intƒatoi(stringExp) Converts stringExp to an

integer. Conversion stops at
the first non-integer character.

atoi(“1234”)

doubleƒatof(stringExp) Converts stringExp to a
double-precision number.
Conversion stops at the first
character that can’t be inter-
preted as a double.

atof(“12.34”)

char[]ƒitoa(integerExp) Converts integerExp to a
character array. The space allo-
cated for the returned charac-
ters must be large enough for
the converted value.

itoa(1234)

The following function, isvalidInt(), can be used to check that an entered string com-

plies with these conditions. This function returns the Boolean value true if the conditions are

satisfied; otherwise, it returns a Boolean false value.

boolƒisvalidInt(stringƒstr)
{
ƒƒintƒstartƒ=ƒ0;
ƒƒintƒi;
ƒƒboolƒvalidƒ=ƒtrue;ƒƒ//ƒassumeƒaƒvalid
ƒƒboolƒsignƒ=ƒfalse;ƒƒ//ƒassumeƒnoƒsign

ƒƒ//ƒcheckƒforƒanƒemptyƒstring
ƒƒifƒ(int(str.length())ƒ==ƒ0)ƒƒvalidƒ=ƒfalse;

ƒƒ//ƒcheckƒforƒaƒleadingƒsign
ƒƒifƒ(str.at(0)ƒ==ƒ'-'||ƒstr.at(0)ƒ==ƒ'+')
ƒƒ{
ƒƒƒƒsignƒ=ƒtrue;
ƒƒƒƒstartƒ=ƒ1;ƒƒ//ƒstartƒcheckingƒforƒdigitsƒafterƒtheƒsign
ƒƒ}

ƒƒ//ƒcheckƒthatƒthereƒisƒatƒleastƒoneƒcharacterƒafterƒtheƒsign
ƒƒifƒ(signƒ&&ƒint(str.length()ƒ==ƒ1))ƒvalidƒ=ƒfalse;

ƒƒ//ƒnowƒcheckƒtheƒstring,ƒwhichƒyouƒknowƒhasƒatƒleastƒoneƒnon-signƒchar
ƒƒiƒ=ƒstart;
ƒƒwhile(validƒ&&ƒiƒ<ƒint(str.length()))

Q_C7785_14.1c 650Q_C7785_14.1c 650 1/18/11 10:53 AM1/18/11 10:53 AM

651Chapter 14
Input Data Validation

ƒƒ{
ƒƒƒƒif(!isdigit(str.at(i)))ƒvalidƒ=ƒfalse;ƒ//foundƒaƒnon-digitƒcharacter
ƒƒƒƒi++;ƒƒ//ƒmoveƒtoƒnextƒcharacter
ƒƒ}
ƒƒreturnƒvalid;
}

In the code for this function, pay attention to the conditions being checked. They are

commented in the code and consist of the following:

• The string is not empty.

• A valid sign (+ or -) is present.

• If a sign is present, at least one digit follows it.

• All remaining characters in the string are digits.

Only if all these conditions are met does the function return a Boolean true value. After

this value is returned, the string can be converted into an integer safely with the assurance that

no unexpected value will result to hamper further data processing. Program 14.18 uses this

function in the context of a complete program.

 Program 14.18

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

boolƒisvalidInt(string);ƒƒ//ƒfunctionƒprototypeƒ(declaration)
intƒmain()
{
ƒƒstringƒvalue;
ƒƒintƒnumber;

ƒƒcoutƒ<<ƒ“Enterƒanƒinteger:ƒ“;
ƒƒgetline(cin,ƒvalue);

ƒƒifƒ(!isvalidInt(value))
ƒƒƒƒcoutƒ<<ƒ“Theƒnumberƒyouƒenteredƒisƒnotƒaƒvalidƒinteger.”;
ƒƒelse
ƒƒ{
ƒƒƒƒnumberƒ=ƒatoi(value.c_str());
ƒƒƒƒcoutƒ<<ƒ“Theƒintegerƒyouƒenteredƒisƒ“ƒ<<ƒnumber;
ƒƒ}

ƒƒreturnƒ0;
}

☞

Q_C7785_14.1c 651Q_C7785_14.1c 651 1/18/11 10:53 AM1/18/11 10:53 AM

652 The string Class and Exception Handling

boolƒisvalidInt(stringƒstr)
{
ƒƒintƒstartƒ=ƒ0;
ƒƒintƒi;
ƒƒboolƒvalidƒ=ƒtrue;ƒƒ//ƒassumeƒaƒvalid
ƒƒboolƒsignƒ=ƒfalse;ƒƒ//ƒassumeƒnoƒsign

ƒƒ//ƒcheckƒforƒanƒemptyƒstring
ƒƒifƒ(int(str.length())ƒ==ƒ0)ƒƒvalidƒ=ƒfalse;

ƒƒ//ƒcheckƒforƒaƒleadingƒsign
ƒƒifƒ(str.at(0)ƒ==ƒ'-'||ƒstr.at(0)ƒ==ƒ'+')
ƒƒ{
ƒƒƒƒsignƒ=ƒtrue;
ƒƒƒƒstartƒ=ƒ1;ƒƒ//ƒstartƒcheckingƒforƒdigitsƒafterƒtheƒsign
ƒƒ}

ƒƒ//ƒcheckƒthatƒthereƒisƒatƒleastƒoneƒcharacterƒafterƒtheƒsign
ƒƒifƒ(signƒ&&ƒint(str.length())ƒ==ƒ1)ƒvalidƒ=ƒfalse;

ƒƒ//ƒnowƒcheckƒtheƒstring,ƒwhichƒyouƒknowƒhasƒatƒleastƒoneƒnon-signƒchar
ƒƒiƒ=ƒstart;
ƒƒwhile(validƒ&&ƒiƒ<ƒint(str.length()))
ƒƒ{
ƒƒƒƒif(!isdigit(str.at(i)))ƒvalidƒ=ƒfalse;ƒ//foundƒaƒnon-digitƒcharacter
ƒƒƒƒi++;ƒƒ//ƒmoveƒtoƒnextƒcharacter
ƒƒ}
ƒƒreturnƒvalid;
}

Two sample runs of Program 14.18 produced the following output:

Enterƒanƒinteger:ƒ12e45
Theƒnumberƒyouƒenteredƒisƒnotƒaƒvalidƒinteger.

and

Enterƒanƒinteger:ƒ-12345
Theƒintegerƒyouƒenteredƒisƒ-12345

As this output shows, the program determines that an invalid character was entered in the

first run.

A second line of defense is to use exception-handling code, which typically allows the user to

correct a problem, such as invalid data entry, by reentering new data until a valid value is supplied

or an entry is made that ends the program. Using exception handling and the isvalidInt()

Q_C7785_14.1c 652Q_C7785_14.1c 652 1/18/11 10:53 AM1/18/11 10:53 AM

653Chapter 14
Input Data Validation

function in Program 14.18, you can develop a more comprehensive function named getanInt()

that accepts user input continuously until a string corresponding to a valid integer is detected. After

the string is entered, getanInt() converts it to an integer and returns the integer value. This

technique ensures that a program requesting an integer actually receives an integer and prevents

any undesirable effects, such as a program crash caused by an invalid data type being entered. The

algorithm used to perform this task is as follows:

Set a Boolean variable named notanint to true
while (notanint is true)
 try
 Accept a string value
 If the string value doesn’t correspond to an integer, throw an exception
 catch the exception
 Display the error message “Invalid integer - Please reenter: ”
 Send control back to the while statement
 Set notanint to false (causes the loop to terminate)
 End while
 Return the integer corresponding to the entered string

The code corresponding to this algorithm is shaded in Program 14.19.

 Program 14.19

#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

intƒgetanInt();ƒƒ//ƒfunctionƒprototype)
intƒmain()
{
ƒƒintƒvalue;

ƒƒcoutƒ<<ƒ“Enterƒanƒintegerƒvalue:ƒ“;
ƒƒvalueƒ=ƒgetanInt();
ƒƒcoutƒ<<ƒ“Theƒintegerƒenteredƒis:ƒ“ƒ<<ƒvalueƒ<<ƒendl;

ƒƒreturnƒ0;
}

intƒgetanInt()
{
ƒƒboolƒisvalidInt(string);ƒƒ//ƒfunctionƒprototype
ƒƒboolƒnotanintƒ=ƒtrue;
ƒƒstringƒsvalue;

☞

Q_C7785_14.1c 653Q_C7785_14.1c 653 1/18/11 10:53 AM1/18/11 10:53 AM

654 The string Class and Exception Handling

ƒƒwhileƒ(notanint)
ƒƒ{
ƒƒƒƒtry
ƒƒƒƒ{
ƒƒƒƒƒƒcinƒ>>ƒsvalue;ƒƒ//ƒacceptƒaƒstringƒinput
ƒƒƒƒƒƒifƒ(!isvalidInt(svalue))ƒthrowƒsvalue;
ƒƒƒƒƒƒ}
ƒƒƒƒcatchƒ(stringƒe)
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒ“Invalidƒintegerƒ-ƒPleaseƒreenter:ƒ“;
ƒƒƒƒƒƒƒƒcontinue;ƒ//ƒsendƒcontrolƒtoƒtheƒwhileƒstatement
ƒƒƒƒ}
ƒƒƒƒnotanintƒ=ƒfalse;
ƒƒ}
ƒƒreturnƒatoi(svalue.c_str());ƒƒ//ƒconvertƒtoƒanƒinteger
}

ƒboolƒisvalidInt(stringƒstr)
ƒ{
ƒƒƒintƒstartƒ=ƒ0;
ƒƒƒintƒi;
ƒƒƒboolƒvalidƒ=ƒtrue;ƒƒ//ƒassumeƒaƒvalid
ƒƒƒboolƒsignƒ=ƒfalse;ƒƒ//ƒassumeƒnoƒsign

ƒƒƒ//ƒcheckƒforƒanƒemptyƒstring
ƒƒƒifƒ(int(str.length())ƒ==ƒ0)ƒƒvalidƒ=ƒfalse;

ƒƒƒ//ƒcheckƒforƒaƒleadingƒsign
ƒƒƒifƒ(str.at(0)ƒ==ƒ'-'||ƒstr.at(0)ƒ==ƒ'+')
ƒƒƒ{
ƒƒƒƒƒsignƒ=ƒtrue;
ƒƒƒƒƒstartƒ=ƒ1;ƒƒ//ƒstartƒcheckingƒforƒdigitsƒafterƒtheƒsign
ƒƒƒ}

ƒƒƒ//ƒcheckƒthatƒthereƒisƒatƒleastƒoneƒcharacterƒafterƒtheƒsign
ƒƒƒifƒ(signƒ&&ƒint(str.length())ƒ==ƒ1)ƒvalidƒ=ƒfalse;

ƒƒƒ//ƒnowƒcheckƒtheƒstring,ƒwhichƒyouƒknowƒhasƒatƒleastƒoneƒnon-signƒchar
ƒƒƒiƒ=ƒstart;
ƒƒƒwhile(validƒ&&ƒiƒ<ƒint(str.length()))
ƒƒƒ{
ƒƒƒƒƒif(!isdigit(str.at(i)))ƒvalidƒ=ƒfalse;ƒ//foundƒaƒnon-digitƒcharacter
ƒƒƒƒƒi++;ƒƒ//ƒmoveƒtoƒnextƒcharacter
ƒƒƒ}
ƒƒreturnƒvalid;
}

Q_C7785_14.1c 654Q_C7785_14.1c 654 1/18/11 10:53 AM1/18/11 10:53 AM

655Chapter 14
Input Data Validation

Following is a sample output produced by Program 14.19:

Enterƒanƒintegerƒvalue:ƒabc
Invalidƒintegerƒ-ƒPleaseƒreenter:ƒ12.
Invalidƒintegerƒ-ƒPleaseƒreenter:ƒ12e
Invalidƒintegerƒ-ƒPleaseƒreenter:ƒ120
Theƒintegerƒenteredƒis:ƒ120

As this output shows, the getanInt() function works correctly. It requests input continu-

ously until a valid integer is entered.

 EXERCISES 14.5

1. (Practice) Write a C++ program that prompts the user to enter an integer. Have your program

use cin to accept the number as an integer and use cout to display the value your program

actually accepted from the data entered. Run your program four times. The first time you run

the program, enter a valid integer number; the second time, enter a double-precision number;

the third time, enter a character; and the fourth time, enter the value 12e34.

2. (Modify) Modify the program you wrote for Exercise 1 to prompt for and accept a double-

precision number. Run the program four times: First, enter an integer; second, enter a decimal

number; third, enter a decimal number with an “f” as the last character entered; and fourth,

enter a character. Using the output display, keep track of the number your program actually

accepted from the data you entered. What happened, if anything, and why?

3. (For thought) a. Why do you think successful application programs contain extensive data

input validity checks? (Hint: Review Exercises 1 and 2.)

b. What do you think the difference is between a data-type check and a data-reasonableness

check?

c. A program requests that the user enter a month, day, and year. What are some reasonable

checks that could be made on the data entered?

4. (Practice) a. Enter and run Program 14.18.

b. Run Program 14.18 four times, using the data listed in Exercise 1 for each run.

5. (Modify) Modify Program 14.18 to display any invalid characters that were entered.

6. (Modify) Modify Program 14.18 to request an integer continuously until a valid number is

entered.

7. (Modify) Modify Program 14.18 to remove all leading and trailing spaces from the entered

string before it’s checked for validity.

8. (Useful utility) Write a function that checks each digit as it’s entered, instead of checking the

completed string, as in Program 14.18.

9. (Practice) Enter and run Program 14.19.

Q_C7785_14.1c 655Q_C7785_14.1c 655 1/18/11 10:53 AM1/18/11 10:53 AM

656 The string Class and Exception Handling

10. (For thought) Discuss whether the isvalidInt() function used in Program 14.19 should be

modified to accept a string that ends in a decimal point. For example, should the input 12. be

accepted and converted to the integer number 12 or simply be rejected as noninteger input?

11. (Useful utility) a. Write a C++ function named isvalidReal() that checks for a valid

double-precision number. This kind of number can have an optional + or - sign, at most one

decimal point (which can be the first character), and at least one digit between 0 and 9. The

function should return the Boolean value true if the entered number is a real number; other-

wise, it should return the Boolean value false.

b. Modify the isvalidReal() function written for Exercise 11a to remove all leading and

trailing blank spaces from its string argument before determining whether the string cor-

responds to a valid real number.

12. (Useful utility) Write and test a C++ function named getaReal() that uses exception han-

dling to accept an input string continuously until a string that can be converted to a real num-

ber is entered. This function should return a double value corresponding to the string value

the user enters.

14.6 Common Programming Errors

Here are the common errors associated with defining and processing strings:

1. Forgetting to include the string header file when using string class objects.

2. Forgetting that the newline character, '\n', is a valid data input character.

3. Forgetting to convert a string class object by using c_str() when converting

string class objects to numerical data types.

4. Not defining a catch block with the correct parameter data type for each thrown

exception.

5. Attempting to declare an exception parameter in a catch block as a string class

variable.

14.7 Chapter Summary
1. A string literal is any sequence of characters enclosed in quotation marks. It’s referred to as

a string value, a string constant, and, more conventionally, a string.

2. A string can be constructed as an object of the string class.

3. The string class is commonly used for constructing strings for input and output purposes,

as for prompts and displayed messages. Because of its capabilities, this class is used when

strings need to be compared or searched or specific characters in a string need to be exam-

ined or extracted as a substring. It’s also used in more advanced situations when characters

in a string need to be replaced, inserted, or deleted regularly.

4. Strings can be manipulated by using the functions of the class they’re objects of or by using

the general-purpose string and character methods.

Q_C7785_14.1c 656Q_C7785_14.1c 656 1/18/11 10:53 AM1/18/11 10:53 AM

657Chapter 14
Chapter Supplement: Namespaces and Creating
a Personal Library

5. The cin object, by itself, tends to be of limited usefulness for string input because it ter-

minates input when a blank is encountered.

6. For string class data input, use the getline() method.

7. The cout object can be used to display string class strings.

8. In exception handling, information about the error that caused the exception is sent to an

exception handler.

9. The process of generating and passing an exception at the point the error is detected is

referred to as throwing an exception.

10. The general syntax of the code for throwing and catching an exception is as follows:

try
{
ƒƒ//ƒoneƒorƒmoreƒstatements,
ƒƒ//ƒatƒleastƒoneƒofƒwhichƒshould
ƒƒ//ƒthrowƒanƒexception
}
catch(exceptionDataTypeƒparameterName)
{
ƒƒ//ƒoneƒorƒmoreƒstatements
}

11. The catch block is the exception handler that identifies a thrown exception by its data

type. The exception’s data type must match the parameter data type inside the parentheses

of the catch statement.

12. Multiple catch blocks can be used as long as each block catches a unique data type. The

only requirement is providing at least one catch block for each try block.

14.8 Chapter Supplement: Namespaces and Creating a
Personal Library

Until the introduction of PCs in the early 1980s, with their extensive use of integrated circuits

and microprocessors, computer speed and available memory were severely restricted. For exam-

ple, the most advanced computers had speeds measured in milliseconds (one-thousandth of a

second); current computers have speeds measured in nanoseconds (one-billionth of a second)

and higher. Similarly, the memory capacity of early desktop computers consisted of 4000 bytes,

but today’s computer memories are in the gigabit range and even higher.

With these early hardware restrictions, programmers had to use every possible trick to

save memory space and make programs run more efficiently. Almost every program was

hand-crafted and included what was called “clever code” to minimize runtime and maximize

use of memory storage. Unfortunately, this individualized code became a liability. New pro-

grammers had to spend considerable time to understand existing code; even the original

programmer had trouble figuring out code written only months before. This complexity in

Q_C7785_14.1c 657Q_C7785_14.1c 657 1/18/11 10:53 AM1/18/11 10:53 AM

658 The string Class and Exception Handling

code made modifications time consuming and costly and precluded cost-effective reuse of

existing code for new installations.

The inability to reuse code efficiently, combined with expanded hardware capabilities,

prompted the discovery of more efficient programming. This discovery began with structured

programming concepts incorporated into procedural languages, such as C and Pascal, and led

to the object-oriented techniques that form the basis of C++. Although an early criticism of

C++ was that it didn’t have a comprehensive library of classes, this is no longer the case.

No matter how many useful classes and functions the standard library provides, however,

each major type of programming application, such as engineering, commercial, and financial,

has its own specialized requirements. For example, the ctime header file in C++ provides

good date and time functions. However, for specialized needs, such as scheduling problems,

these functions must be expanded to include finding the number of working days between

two dates, taking into account weekends and holidays, and implementing previous-day and

next-day algorithms to account for leap years and the actual days in each month.

To meet these specialized needs, programmers create and share their own libraries of

classes and functions with other programmers working on the same or similar projects. After

the classes and functions have been tested, they can be incorporated into any program without

further coding time.

At this stage in your programming career, you can begin building your own library of spe-

cialized functions and classes. Section 14.5 described how to do this with the input validation

functions, isvalidInt() and getanInt(), which are reproduced here for convenience:

boolƒisvalidInt(stringƒstr)
{
ƒƒƒintƒstartƒ=ƒ0;
ƒƒƒintƒi;
ƒƒƒboolƒvalidƒ=ƒtrue;ƒƒ//ƒassumeƒaƒvalid
ƒƒƒboolƒsignƒ=ƒfalse;ƒƒ//ƒassumeƒnoƒsign

ƒƒƒ//ƒcheckƒforƒanƒemptyƒstring
ƒƒƒifƒ(int(str.length())ƒ==ƒ0)ƒƒvalidƒ=ƒfalse;

ƒƒƒ//ƒcheckƒforƒaƒleadingƒsign
ƒƒƒifƒ(str.at(0)ƒ==ƒ'-'||ƒstr.at(0)ƒ==ƒ'+')
ƒƒƒ{
ƒƒƒƒƒsignƒ=ƒtrue;
ƒƒƒƒƒstartƒ=ƒ1;ƒƒ//ƒstartƒcheckingƒforƒdigitsƒafterƒtheƒsign
ƒƒƒ}

ƒƒƒ//ƒcheckƒthatƒthere'sƒatƒleastƒoneƒcharacterƒafterƒtheƒsign
ƒƒƒifƒ(signƒ&&ƒint(str.length())ƒ==ƒ1)ƒvalidƒ=ƒfalse;

ƒƒƒ//ƒcheckƒtheƒstring,ƒwhichƒhasƒatƒleastƒoneƒnon-signƒchar
ƒƒƒiƒ=ƒstart;
ƒƒƒwhile(validƒ&&ƒiƒ<ƒint(str.length()))

Q_C7785_14.1c 658Q_C7785_14.1c 658 1/18/11 10:53 AM1/18/11 10:53 AM

659Chapter 14
Chapter Supplement: Namespaces and Creating
a Personal Library

ƒƒƒ{
ƒƒƒƒƒif(!isdigit(str.at(i)))ƒvalidƒ=ƒfalse;ƒ//foundƒaƒnondigitƒcharacter
ƒƒƒƒƒi++;ƒƒ//ƒmoveƒtoƒnextƒcharacter
ƒƒƒ}
ƒƒreturnƒvalid;
}

intƒgetanInt()
{
ƒƒboolƒisvalidInt(string);ƒƒ//ƒfunctionƒprototype
ƒƒboolƒnotanintƒ=ƒtrue;
ƒƒstringƒsvalue;

ƒƒwhileƒ(notanint)
ƒƒ{
ƒƒƒƒtry
ƒƒƒƒ{
ƒƒƒƒƒƒcinƒ>>ƒsvalue;ƒƒ//ƒacceptƒaƒstringƒinput
ƒƒƒƒƒƒifƒ(!isvalidInt(svalue))ƒthrowƒsvalue;
ƒƒƒƒ}
ƒƒƒƒcatchƒ(stringƒe)
ƒƒƒƒ{
ƒƒƒƒƒƒcoutƒ<<ƒ“Invalidƒintegerƒ-ƒPleaseƒreenter:ƒ“;
ƒƒƒƒƒƒƒƒƒcontinue;ƒ//ƒsendƒcontrolƒtoƒtheƒwhileƒstatement
ƒƒƒƒ}
ƒƒƒƒnotanintƒ=ƒfalse;
ƒƒ}
ƒƒreturnƒatoi(svalue.c_str());ƒƒ//ƒconvertƒtoƒanƒinteger
}

The first step in creating a library is to encapsulate all the specialized functions and

classes into one or more namespaces and then store the complete code in one or more files.

For example, you can create one namespace, dataChecks, and save it in a file named

dataChecks.cpp. Note that the namespace’s filename need not be the same as the

namespace name used in the code.

The following is the syntax for creating a namespace:

namespaceƒname
{
ƒƒƒ//ƒfunctionsƒand/orƒclassesƒinƒhere
}ƒƒ//ƒendƒofƒnamespace

The following code includes the two functions isvalidInt() and getanInt() in the

namespace dataChecks and adds the #include and using statements the new namespace

needs. The syntax required to create the namespace has been shaded:

#includeƒ<iostream>
#includeƒ<string> ☞

Q_C7785_14.1c 659Q_C7785_14.1c 659 1/18/11 10:53 AM1/18/11 10:53 AM

660 The string Class and Exception Handling

usingƒnamespaceƒstd;

namespaceƒdataChecks
{
ƒƒƒboolƒisvalidInt(stringƒstr)
ƒƒƒ{
ƒƒƒƒƒintƒstartƒ=ƒ0;
ƒƒƒƒƒintƒi;
ƒƒƒƒƒboolƒvalidƒ=ƒtrue;ƒƒ//ƒassumeƒaƒvalid
ƒƒƒƒƒboolƒsignƒ=ƒfalse;ƒƒ//ƒassumeƒnoƒsign

ƒƒƒƒƒ//ƒcheckƒforƒanƒemptyƒstring
ƒƒƒƒƒifƒ(int(str.length())ƒ==ƒ0)ƒƒvalidƒ=ƒfalse;

ƒƒƒƒƒ//ƒcheckƒforƒaƒleadingƒsign
ƒƒƒƒƒifƒ(str.at(0)ƒ==ƒ'-'||ƒstr.at(0)ƒ==ƒ'+')
ƒƒƒƒƒ{
ƒƒƒƒƒƒƒsignƒ=ƒtrue;
ƒƒƒƒƒƒƒstartƒ=ƒ1;ƒƒ//ƒstartƒcheckingƒforƒdigitsƒafterƒtheƒsign
ƒƒƒƒƒ}

ƒƒƒƒƒ//ƒcheckƒthatƒthere'sƒatƒleastƒoneƒcharacterƒafterƒtheƒsign
ƒƒƒƒƒifƒ(signƒ&&ƒint(str.length())ƒ==ƒ1)ƒvalidƒ=ƒfalse;

ƒƒƒƒƒ//ƒcheckƒtheƒstring,ƒwhichƒhasƒatƒleastƒoneƒnon-signƒchar
ƒƒƒƒƒiƒ=ƒstart;
ƒƒƒƒƒwhile(validƒ&&ƒiƒ<ƒint(str.length()))
ƒƒƒƒƒ{
ƒƒƒƒƒif(!isdigit(str.at(i)))ƒvalidƒ=ƒfalse;ƒ//foundƒaƒnondigit
ƒƒƒƒƒ//ƒcharacter
ƒƒƒƒƒƒƒi++;ƒƒ//ƒmoveƒtoƒnextƒcharacter
ƒƒƒƒƒ}
ƒƒƒƒƒreturnƒvalid;
ƒƒ}

ƒƒintƒgetanInt()
ƒƒ{
ƒƒƒƒboolƒisvalidInt(string);ƒƒ//ƒfunctionƒprototype
ƒƒƒƒboolƒnotanintƒ=ƒtrue;
ƒƒƒƒstringƒsvalue;

ƒƒƒƒwhileƒ(notanint)
ƒƒƒƒ{
ƒƒƒƒƒƒtry
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒcinƒ>>ƒsvalue;ƒƒ//ƒacceptƒaƒstringƒinput

Q_C7785_14.1c 660Q_C7785_14.1c 660 1/18/11 10:53 AM1/18/11 10:53 AM

661Chapter 14
Chapter Supplement: Namespaces and Creating
a Personal Library

ƒƒƒƒƒƒƒƒifƒ(!isvalidInt(svalue))ƒthrowƒsvalue;
ƒƒƒƒƒƒ}
ƒƒƒƒƒƒcatchƒ(stringƒe)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒcoutƒ<<ƒ“Invalidƒintegerƒ-ƒPleaseƒreenter:ƒ“;
ƒƒƒƒƒƒƒƒcontinue;ƒ//ƒsendƒcontrolƒtoƒtheƒwhileƒstatement
ƒƒƒƒƒƒ}
ƒƒƒƒƒƒnotanintƒ=ƒfalse;
ƒƒƒƒ}
ƒƒƒƒreturnƒatoi(svalue.c_str());ƒƒ//ƒconvertƒtoƒanƒinteger
ƒƒ}
}ƒƒ//ƒendƒofƒdataChecksƒnamespace

After the namespace has been created and stored in a file, it can be included in another

file by supplying a preprocessor directive to inform the compiler where the namespace file is

found and by adding an #include statement and a using directive that tell the compiler

which namespace in the file to use. For the dataChecks namespace, which is stored in a file

named dataChecks.cpp, the following statements perform these tasks:

#includeƒ<c:\\mylibrary\\dataChecks>
usingƒnamespaceƒdataChecks;

The first statement provides the full pathname for the source code file. Notice that two

backslashes are used to separate items in pathnames. The double backslashes are required

when providing a relative or full pathname. The only time backslashes aren’t required is

when the library code is in the same folder as the program being executed. As indicated, the

dataChecks source file is saved in the mylibrary folder. The second statement tells the

compiler to use the dataChecks namespace in the designated file. Program 14.20 includes

these two statements in an executable program.

 Program 14.20

#includeƒ<c:\\mylibrary\\dataChecks.cpp>
usingƒnamespaceƒdataChecks;

intƒmain()
{
ƒƒintƒvalue;

ƒƒcoutƒ<<ƒ“Enterƒanƒintegerƒvalue:ƒ“;
ƒƒvalueƒ=ƒgetanInt();
ƒƒcoutƒ<<ƒ“Theƒintegerƒenteredƒis:ƒ“ƒ<<ƒvalueƒ<<ƒendl;

ƒƒreturnƒ0;
}

Q_C7785_14.1c 661Q_C7785_14.1c 661 1/18/11 10:53 AM1/18/11 10:53 AM

662 The string Class and Exception Handling

The only requirement for the #include statement in Program 14.20 is that the filename

and location must correspond to an existing file with the same name in the designated path;

otherwise, a compiler error occurs. If you want to name the source code file with a file exten-

sion, any extension can be used as long as these rules are followed:

• The filename under which the code is stored includes the extension.

• The same filename, including extension, is used in the #include statement.

Therefore, if the filename used to store the functions is dataLib.cpp, the #include

statement in Program 14.20 would be the following:

#includeƒ<c::\\mylibrary\\dataLib.cpp>

Note that a namespace isn’t required in the file. Using a namespace enables you to isolate

specific code in one named area and add more namespaces to the file as needed. Designating

a namespace in the using statement tells the compiler to include only the code in the speci-

fied namespace rather than all the code in the file. In Program 14.20, if the data-checking

functions weren’t enclosed in a namespace, the using statement for the dataChecks

namespace would have to be omitted.

Including the previously written and tested data-checking functions in Program 14.20 as

a separate file allows you to focus on the code using these functions for the task being pro-

grammed instead of being concerned with the namespace’s code. In Program 14.20, the

main() function exercises the data-checking functions and produces the same output as

Program 14.19. In creating the dataChecks namespace, you have included source code for the

two functions. Including this code isn’t required, and a compiled version of the source code

can be saved instead. Finally, one namespace can access another by the same technique of

adding #include and using statements.

 EXERCISES 14.8

1. (Practice) Enter and compile Program 14.20. (Hint : The namespace file dataChecks and the

program file are available with the source code provided on this book’s Web site. See this

book’s introduction for the URL.)

2. (For thought) a. What is an advantage of namespaces?

b. What is a possible disadvantage of namespaces?

3. (For thought) What types of classes and functions would you include in a personal

library? Why?

4. (For thought) Why would a programmer supply a namespace file in its compiled form rather

than as source code?

5. (Useful utility) a. Write a C++ function named whole() that returns the integer part of any

number passed to the function. (Hint: Assign the passed argument to an integer variable.)

b. Include the function written in Exercise 5a in a working program. Make sure your function

is called from main() and correctly returns a value to main(). Have main() use a cout

statement to display the returned value. Test the function by passing various data to it.

Q_C7785_14.1c 662Q_C7785_14.1c 662 1/18/11 10:53 AM1/18/11 10:53 AM

663Chapter 14
Chapter Supplement: Namespaces and Creating
a Personal Library

c. When you’re confident that the whole() function written for Exercise 5a works correctly,

save it in a namespace and a personal library of your choice.

6. (Useful utility) a. Write a C++ function named fracpart() that returns the fractional part

of any number passed to the function. For example, if the number 256.879 is passed to

fracpart(), the number .879 should be returned. Have the fracpart() function call the

whole() function you wrote in Exercise 5a. The number returned can then be determined as

the number passed to fracpart() less the returned value when the same argument is passed

to whole().

b. Include the function written in Exercise 6a in a working program. Make sure the function

is called from main() and correctly returns a value to main(). Have main() use a cout

statement to display the returned value. Test the function by passing various data to it.

c. When you’re confident the fracpart() function written for Exercise 6a works correctly,

save it in the same namespace and personal library selected for Exercise 5c.

Q_C7785_14.1c 663Q_C7785_14.1c 663 1/18/11 10:53 AM1/18/11 10:53 AM

15 15.1 C-String Fundamentals

 15.2 Pointers and C-String Library
Functions

 15.3 C-String Definitions and
Pointer Arrays

 15.4 Common Programming Errors

 15.5 Chapter Summary

C++ has two different ways of storing and manipulating strings. The newer way, using the string class,
was explained in Chapter 14. The original procedure for storing a string, and the one described in this
chapter, is as an array of characters terminated by a sentinel value, which is the escape sequence '\0'.
This representation allows manipulating strings with standard element-by-element array-processing
techniques. Strings stored in this manner are now referred to as character strings—or C-strings, for short.
Additionally, the character-based methods previously discussed in Chapter 14, which can also be used to
process elements of C-strings, are summarized in this chapter.

Chapter

Strings as Character
Arrays

P_C7785_15.1c 665P_C7785_15.1c 665 1/18/11 11:20 AM1/18/11 11:20 AM

666 Strings as Character Arrays

15.1 C-String Fundamentals

A C-string, which is short for “character string,” is an array of characters terminated by a special

end-of-string marker called the NULL character.1 The NULL character, represented by the

escape sequence '\0', is the sentinel marking the end of the string.

C-strings can be created in a number of ways. For example, each of the following declara-

tions creates the same C-string.

charƒtest[5]ƒ=ƒ“abcd”;
charƒtest[]ƒ=ƒ“abcd”;
charƒtest[5]ƒ=ƒ{'a',ƒ'b',ƒ'c',ƒ'd',ƒ'\0'};
charƒtest[]ƒ=ƒ{'a',ƒ'b',ƒ'c',ƒ'd',ƒ'\0'};

Each declaration creates storage for an array of exactly five characters and initializes this

storage with the characters 'a', 'b', 'c', 'd', and '\0'. When a string literal is used for ini-

tialization, as in the first two declarations, the compiler automatically supplies the end-of-

string NULL character. Figure 15.1 shows how the string created by each of these declarations

is stored in memory.

a b c d \0

Figure 15.1 Storing a string in memory

As shown in Figure 15.1, this string uses five storage locations, and the last character in the

string is the end-of-string marker '\0'. As indicated, the quotation marks surrounding the

string in the first two declarations aren’t stored as part of the string. Because it’s an array, char-

acters can be input, manipulated, or output by using standard array-handling techniques,

including subscript and pointer notation.

C-String Input and Output
Inputting a C-string from the keyboard and displaying it require using a standard library func-

tion or class method. In addition to the standard input and output streams, cin and cout,

library functions for both character-by-character and complete C-string input/output are avail-

able. Table 15.1 lists commonly used methods, which require the iostream header file.

1This method of storing a string is derived from the C language, in which a string could be stored only as a character array.

P_C7785_15.1c 666P_C7785_15.1c 666 1/18/11 11:20 AM1/18/11 11:20 AM

667Chapter 15
C-String Fundamentals

Table 15.1 String and Character I/O Methods (Require the Header File iostream)

C++ Method Description Example
cin.getline(str,n,ch) Inputs a C-string (str)

from the keyboard, up to a
maximum of n characters,
that’s terminated by the
character ch (typically the
newline character, '\n')

cin.getline(str,ƒ81,ƒ'\n');

cin.get() Extracts the next character
from the input stream

nextKeyƒ=ƒcin.get();

cin.peek() Returns the next charac-
ter from the input stream
without extracting the
character from the stream

nextKeyƒ=ƒcin.peek();

cout.put(charExp) Places the character value
of charExp on the output
stream

cout.put('A');

Point of Information
Should You Use a C-String or a string Class Object?

The reasons for using a C-string are as follows:
• The programmer has control over how the C-string is stored and manipulated.
• Many useful functions are available for entering, examining, and processing

C-strings.
• C-strings are an excellent way to explore advanced programming techniques with

pointers (see Section 15.2).
• You’ll encounter them throughout your programming career, as they’re embedded

in almost all existing C++ code.
• They’re fun to program.

The reasons for using a string class object are as follows:
• The string class does an automatic bounds check on every index used to access

string elements. This isn’t true for C-strings, and using an invalid C-string subscript
can result in a system crash.

• The string class automatically expands and contracts storage as needed. C-strings
are fixed in length and subject to overrunning the allocated storage space.

• The string class provides extensive methods for operating on a string. C-strings
almost always require a subsidiary set of functions.

• When necessary, it’s easy to convert to a C-string with the string class’s c_str()
method. Conversely, a C-string can be converted to a string class object easily by
simply assigning it to a string object.

P_C7785_15.1c 667P_C7785_15.1c 667 1/18/11 11:20 AM1/18/11 11:20 AM

668 Strings as Character Arrays

C++ Method Description Example
cin.putback(charExp) Pushes the character value

of charExp back onto the
input stream

cin.putback(cKey);

cin.ignore(n,ƒchar) Ignores a maximum of the
next n input characters,
up to and including the
detection of char; if no
arguments are specified,
ignores the next single
character on the input
stream

cin.ignore(80,'\n');cin.ignore();

The methods cin.getline(), cin.get(), and cin.peek() listed in Table 15.1 are

provided for input. (They aren’t the same as the methods with the same names defined for the

string class.) The character output functions put() and putback(), however, are the same

as those for the string class.

Program 15.1 shows using cin.getline() and cout to input and output a string entered

at the user’s keyboard.

 Program 15.1

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmainƒ()
{
ƒƒconstƒintƒMAXCHARSƒƒ=ƒƒ81;
ƒƒcharƒmessageƒ[MAXCHARS];ƒ//ƒanƒarrayƒofƒcharactersƒwith
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒenoughƒstorageƒforƒaƒcompleteƒline
ƒƒcoutƒ<<ƒ“Enterƒaƒstring:\n”;
ƒƒcin.getline(message,MAXCHARS,ƒ'\n');
ƒƒcoutƒ<<ƒ“Theƒstringƒjustƒenteredƒis:\n”
ƒƒƒƒƒƒƒ<<ƒmessageƒ<<ƒendl;

ƒƒreturnƒ0;
}

Table 15.1 String and Character I/O Methods (Require the Header File iostream) (continued)

P_C7785_15.1c 668P_C7785_15.1c 668 1/18/11 11:20 AM1/18/11 11:20 AM

669Chapter 15
C-String Fundamentals

The following is a sample run of Program 15.1:

Enterƒaƒstring:
This is a test input of a string of characters.
Theƒstringƒjustƒenteredƒis:
Thisƒisƒaƒtestƒinputƒofƒaƒstringƒofƒcharacters.

The cin.getline() method used in Program 15.1 continuously accepts and stores

characters typed at the keyboard into the character array named message until 80 characters

are entered (the 81st character is then used to store the end-of string NULL character, '\0'),

or the Enter key is detected. Pressing the Enter key generates a newline character, '\n',

which cin.getline() interprets as the end-of-line entry. All the characters cin.getline()

encounters, except the newline character, are stored in the message array. Before returning,

cin.getline() appends a NULL character, '\0', to the stored set of characters, as shown in

Figure 15.2. The cout object is then used to display the C-string.

 characters \0characters \n cin.getline()

cin.getline() substitutes \0 for the entered \n

Figure 15.2 Inputting a C-string with cin.getline()

Although the cout object is used in Program 15.1 for C-string output, the cin object can’t

be used in place of cin.getline() for C-string input because it stops reading characters

when it encounters a blank space or a newline character. The cin.getline() method has this

syntax:

cin.getline(str,ƒterminatingLength,ƒterminatingChar)

str is a C-string or a pointer to a character (discussed in Chapter 8), terminatingLength

is an integer constant or variable indicating the maximum number of characters that can be

input, and terminatingChar is an optional character constant or variable specifying the ter-

minating character. If this optional third argument is omitted, the default terminating character

is the newline ('\n') character. Therefore, the statement

cin.getline(message,ƒMAXCHARS);

can be used in place of this longer statement:

cin.getline(message,ƒMAXCHARS,ƒ'\n');

Both method calls stop reading characters when the Enter key is pressed or until

MAXCHARS characters have been read, whichever comes first. Because cin.getline() permits

specifying any terminating character for the input stream, a statement such as cin.getline

P_C7785_15.1c 669P_C7785_15.1c 669 1/18/11 11:20 AM1/18/11 11:20 AM

670 Strings as Character Arrays

(message,ƒMAXCHARS,ƒ'x'); is also valid. This statement stops accepting characters

when the x key is pressed. In all future programs, assume that input is terminated by press-

ing Enter, which generates a newline character. So the optional third argument passed to

getline(), which is the terminating character, is omitted.

C-String Processing
C-strings can be manipulated with standard library functions or as subscripted array variables.

(Pointers can also be used, as discussed in Section 15.2.) For now, concentrate on processing a

C-string in a character-by-character fashion with subscripts. (The library functions typically

available for use are also discussed in Section 15.2.)

For a specific example, look at the strcopy() function that copies the contents of

string2 to string1:

//ƒcopyƒstring2ƒtoƒstring1
voidƒstrcopy(charƒstring1[],ƒcharƒstring2[])
{
ƒƒintƒiƒ=ƒ0;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒiƒisƒusedƒasƒaƒsubscript

ƒƒwhileƒ(ƒstring2[i]ƒ!=ƒ'\0')ƒƒ//ƒcheckƒforƒendƒofƒstring
ƒƒ{
ƒƒƒƒstring1[i]ƒ=ƒstring2[i];ƒƒƒ//ƒcopyƒtheƒelementƒtoƒstring1
ƒƒƒƒi++;
ƒƒ}
ƒƒstring1[i]ƒ=ƒ'\0';ƒƒƒƒƒƒƒƒƒƒƒ//ƒterminateƒtheƒfirstƒstring
ƒƒreturn;
}

The strcopy() function is used to copy the characters from one character array to

another, one character at a time. As written, the subscript i in the function is used to access

each character in theƒstring2 array by “marching along” the string one character at a time.

As each character is accessed from the string2 array, it’s copied to the string1 array.

Although this function can be shortened considerably and written more compactly, which is

done in Section 15.2, it does illustrate the main features of C-string manipulation:

• Accessing array elements by using subscripts (pointers can also be used)

• Using the end-of-string NULL character to determine when to stop processing

In reviewing strcopy(), note that the two C-strings are passed to the function as arrays.

Each element of string2 is then assigned to the equivalent element of string1 until the

end-of-string marker is encountered. The detection of the NULL character forces the termina-

tion of the while loop that controls the copying of elements. Because the NULL character isn’t

copied from string2 to string1, the last statement in strcopy() appends an end-of-string

character to string1. In using strcopy(), you must ensure that enough space has been allo-

cated for the string1 array to be able to store the string2 array’s elements.

Program 15.2 includes the strcopy() function in a complete program. Note that its func-

tion prototype declares that it expects to receive two character arrays.

P_C7785_15.1c 670P_C7785_15.1c 670 1/18/11 11:20 AM1/18/11 11:20 AM

671Chapter 15
C-String Fundamentals

 Program 15.2

#includeƒ<iostream>
usingƒnamespaceƒstd;

voidƒstrcopy(charƒ[],ƒcharƒ[]);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒconstƒintƒMAXCHARSƒ=ƒ81;
ƒƒcharƒmessage[MAXCHARS];ƒƒƒƒƒ//ƒenoughƒstorageƒforƒaƒcompleteƒline
ƒƒcharƒnewMessage[MAXCHARS];ƒƒ//ƒenoughƒstorageƒforƒaƒcopyƒofƒmessage
ƒƒintƒi;

ƒƒcoutƒ<<ƒ“Enterƒaƒsentence:ƒ“;
ƒƒcin.getline(message,MAXCHARS);ƒƒƒ//ƒgetƒtheƒstring
ƒƒstrcopy(newMessage,message);ƒƒƒƒƒ//ƒpassƒtwoƒarrayƒaddresses
ƒƒcoutƒ<<ƒnewMessageƒ<<ƒendl;

ƒƒreturnƒ0;
}

voidƒstrcopy(charƒstring1[],ƒcharƒstring2[])ƒƒ//ƒcopyƒstring2ƒtoƒstring1
{
ƒƒintƒiƒ=ƒ0;ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒiƒisƒusedƒasƒaƒsubscript

ƒƒwhileƒ(string2[i]ƒ!=ƒ'\0')ƒƒƒƒƒ//ƒcheckƒforƒendƒofƒstring
ƒƒ{
ƒƒƒƒstring1[i]ƒ=ƒstring2[i];ƒƒƒƒƒ//ƒcopyƒtheƒelementƒtoƒstring1
ƒƒƒƒi++;
ƒƒ}
ƒƒstring1[i]ƒ=ƒ'\0';ƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒterminateƒtheƒfirstƒstring

ƒƒreturn;
}

The following is a sample run of Program 15.2:

Enterƒaƒsentence:ƒHow much wood could a woodchuck chuck.
Howƒmuchƒwoodƒcouldƒaƒwoodchuckƒchuck.

Character-by-Character Input Just as C-strings can be processed by using character-by-

character techniques, they can also be entered and displayed in this manner. For example,

take a look at Program 15.3, which uses the character input function cin.get() to accept a

string one character at a time. The shaded portion of Program 15.3 essentially replaces the

cin.getline() function used in Program 15.1.

P_C7785_15.1c 671P_C7785_15.1c 671 1/18/11 11:20 AM1/18/11 11:20 AM

672 Strings as Character Arrays

 Program 15.3

#includeƒ<iostream>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXCHARSƒ=ƒ81;
ƒƒcharƒmessage[MAXCHARS],ƒc;

ƒƒcoutƒ<<ƒ“Enterƒaƒsentence:\n”;

ƒƒintƒiƒ=ƒ0;
ƒƒwhile(iƒ<ƒMAXCHARSƒ&&ƒ(cƒ=ƒcin.get())ƒ!=ƒ'\n')
ƒƒ{
ƒƒƒƒmessage[i]ƒ=ƒc;ƒƒƒƒƒƒƒ//ƒstoreƒtheƒcharacterƒentered
ƒƒƒƒi++;
ƒƒ}
ƒƒmessage[i]ƒ=ƒ'\0';ƒƒƒƒƒƒ//ƒterminateƒtheƒstring

ƒƒcoutƒ<<ƒ“Theƒsentenceƒjustƒenteredƒis:\n”;
ƒƒcoutƒ<<ƒmessageƒ<<ƒendl;

ƒƒreturnƒ0;
}

The following is a sample run of Program 15.3:

Enterƒaƒsentence:
This is a test input of a string of characters.
Theƒsentenceƒjustƒenteredƒis:
Thisƒisƒaƒtestƒinputƒofƒaƒstringƒofƒcharacters.

The while statement in Program 15.3 causes characters to be read and assigned to the

variable c. Each entered character is stored correctly in the message array, provided the num-

ber of characters entered is less than 81 and the character returned by cin.get() isn’t the

newline character. The parentheses surrounding the expression cƒ=ƒcin.get() are necessary

to assign the character returned by cin.get() to the variable c before comparing it with the

newline escape sequence. Without the parentheses, the comparison operator, !=, which takes

precedence over the assignment operator, causes the entire expression to be equivalent to the

following, which is an invalid application of cin.get():2

(cƒ=ƒ(cin.get()ƒ!=ƒ'\n'))

2The equivalent statement in C is cƒ=ƒ(getchar()ƒ!=ƒ'\n'), which is a valid expression that produces an unexpected result for

most beginning programmers. The reason is that the character returned by cin.get() is compared with '\n', and the value of the

comparison is 0 or 1, depending on whether cin.get() received the newline character. This value (0 or 1) is then assigned to c.

P_C7785_15.1c 672P_C7785_15.1c 672 1/18/11 11:20 AM1/18/11 11:20 AM

673Chapter 15
C-String Fundamentals

Program 15.3 also shows a useful technique for developing functions. The shaded state-

ments constitute a self-contained unit for entering a complete line of characters from the key-

board. These statements can be removed from main() and placed together as a new function.

In Program 15.4, the shaded statements from Program 15.3 are placed in a separate func-

tion named getaline(). Notice that in the process, the MAXCHARS constant has been placed

above the main() function. This placement gives the constant a global scope, which makes it

available to both the main() and getaline() functions.

 Program 15.4

#includeƒ<iostream>
usingƒnamespaceƒstd;

constƒintƒMAXCHARSƒ=ƒ81;ƒƒƒ//ƒglobalƒsymbolicƒconstant
voidƒgetaline(charƒ[]);ƒƒƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒcharƒmessage[MAXCHARS];ƒƒ//ƒenoughƒstorageƒforƒaƒcompleteƒline

ƒƒcoutƒ<<ƒ“Enterƒaƒsentence:\n”;
ƒƒgetaline(message);
ƒƒcoutƒ<<ƒ“Theƒsentenceƒjustƒenteredƒis:\n”;
ƒƒcoutƒ<<ƒmessageƒ<<ƒendl;
}

voidƒgetaline(charƒstrng[])
{
ƒƒintƒiƒ=ƒ0;
ƒƒcharƒc;
ƒƒwhile(iƒ<ƒMAXCHARSƒ&&ƒ(cƒ=ƒcin.get())ƒ!=ƒ'\n')
ƒƒ{
ƒƒƒƒstrng[i]ƒ=ƒc;ƒƒƒƒ//ƒstoreƒtheƒcharacterƒentered
ƒƒƒƒi++;
ƒƒ}
ƒƒstrng[i]ƒ=ƒ'\0';ƒƒƒ//ƒterminateƒtheƒstring

ƒƒreturn;
}

P_C7785_15.1c 673P_C7785_15.1c 673 1/18/11 11:20 AM1/18/11 11:20 AM

674 Strings as Character Arrays

 EXERCISES 15.1

1. (Program) a. The following function can be used to select and display all vowels in a user-

entered string:

voidƒvowels(charƒstrng[])
{
ƒƒintƒiƒ=ƒ0;
ƒƒcharƒc;
ƒƒwhileƒ((cƒ=ƒstrng[i++])ƒ!=ƒ'\0')
ƒƒƒƒswitch(c)
ƒƒƒƒ{
ƒƒƒƒƒƒƒcaseƒ'a':
ƒƒƒƒƒƒƒcaseƒ'e':
ƒƒƒƒƒƒƒcaseƒ'i':
ƒƒƒƒƒƒƒcaseƒ'o':
ƒƒƒƒƒƒƒcaseƒ'u':
ƒƒƒƒƒƒƒƒƒcoutƒ<<ƒc;
ƒƒƒƒ}ƒ//ƒendƒofƒswitch
ƒƒcoutƒ<<ƒendl;
ƒƒreturn;
}

 Note that the switch statement in vowels() uses the fact that selected cases “drop through”

in the absence of break statements. Therefore, all selected cases result in a cout object call.

Include vowels() in a working program that accepts a user-entered string and then displays

all vowels in the string. In response to the input Howƒmuchƒisƒtheƒlittleƒworthƒworth?,

your program should display ouieieoo.

b. Modify vowels() to count and display the total number of vowels in the string passed to it.

2. (Modify) Modify the vowels() function in Exercise 1a to count and display the numbers of

each vowel in the string.

3. (Program) a. Write a C++ function to count the total number of characters, including blanks,

in a string. Don’t include the end-of-string marker in the count.

b. Include the function written for Exercise 3a in a complete working program.

4. (Program) Write a program that accepts a string of characters from the keyboard and displays

the hexadecimal equivalent of each character.

5. (Program) Write a C++ program that accepts a string of characters from the keyboard and

displays the string with one word per line.

P_C7785_15.1c 674P_C7785_15.1c 674 1/18/11 11:20 AM1/18/11 11:20 AM

675Chapter 15
Pointers and C-String Library Functions

6. (Program) Write a function that reverses the characters in a string. (Hint: It can be considered

a string copy, starting from the back end of the first string.)

7. (Program) Write a function called delChar() that can be used to delete characters from a

string. The function should take three arguments: the string name, the number of characters to

delete, and the starting position in the string where characters should be deleted. For example,

the call delChar(strng,13,5), when applied to the string allƒenthusiasticƒpeople,

should result in the string allƒpeople.

8. (Program) Write a function called addChar() to insert one string of characters into another

string. The function should take three arguments: the string to be inserted, the original string,

and the position in the original string where the insertion should begin. For example, the call

addChar(“forƒall”,message,6) should insert the characters forƒall in message, starting

at message[5].

9. (Program) a. Write a C++ function named toUpper() that converts lowercase letters to

uppercase letters. The expression cƒ-ƒ'a'ƒ+ƒ'A' can be used to make the conversion for any

lowercase character stored in c.

b. Add a data input check to the function written in Exercise 9a to verify that a valid lowercase

letter is passed to the function. A character in ASCII is lowercase if it’s greater than or

equal to a and less than or equal to z. If the character isn’t a valid lowercase letter, have

the toUpper() function return the passed character unaltered.

c. Write a C++ program that accepts a string from the keyboard and converts all lowercase

letters in the string to uppercase letters.

10. (Program) Write a C++ program that accepts a string from the keyboard and converts all

uppercase letters in the string to lowercase letters.

11. (Program) Write a C++ program that counts the number of words in a string. A word is

encountered whenever there’s a transition from a blank space to a nonblank character. Assume

the string contains only words separated by blank spaces.

15.2 Pointers and C-String Library Functions

Pointers are exceptionally useful in constructing functions that manipulate C-strings. When

pointer notation is used in place of subscripts to access characters in a C-string, the resulting

statements are more compact and more efficient. This section describes the equivalence

between subscripts and pointers when accessing characters in a C-string.

P_C7785_15.1c 675P_C7785_15.1c 675 1/18/11 11:20 AM1/18/11 11:20 AM

676 Strings as Character Arrays

Take another look at the strcopy() function introduced in Section 15.1. It was used to

copy the characters of one C-string to a second C-string. For convenience, this function is

repeated here:

//ƒaƒfunctionƒtoƒcopyƒstring2ƒtoƒstring1
voidƒstrcopy(charƒstring1[],ƒcharƒstring2[])
{
ƒƒintƒiƒ=ƒ0;

ƒƒwhileƒ(string2[i]ƒ!=ƒ'\0')ƒƒƒƒ//ƒcheckƒforƒendƒofƒstring
ƒƒ{
ƒƒƒƒstring1[i]ƒ=ƒstring2[i];ƒƒƒƒ//ƒcopyƒtheƒelementƒtoƒstring1
ƒƒƒƒi++;
ƒƒ}
ƒƒstring1[i]ƒ=ƒ'\0';ƒƒƒƒƒƒƒƒƒƒƒƒ//ƒterminateƒtheƒfirstƒstring

ƒƒreturn;
}

Before you see how to write a pointer version of strcopy(), two modifications should be

made to the function to make it more efficient. The first modification has to do with the

expression in the function’s while statement. As written, it tests each character to ensure that

the end of the C-string hasn’t been reached. Like all relational expressions, the tested expres-

sion, string2[i]ƒ!=ƒ'\0', is true or false. Take the string thisƒisƒaƒstring shown in

Figure 15.3 as an example. As long as string2[i] doesn’t access the end-of-C-string charac-

ter, the expression’s value is non-zero and considered to be true. The expression is false only

when the expression’s value is zero, which occurs when the last element in the C-string is

accessed.

Recall that C++ defines false as zero and true as anything else. Therefore, the expression

string2[i]ƒ!=ƒ'\0' becomes zero (false) when the end of the string is reached. It’s non-

zero (true) everywhere else. The NULL character has an internal value of zero, so the compari-

son with '\0' isn’t necessary. When string2[i] accesses the end-of-C-string character, the

value of string2[i] is zero. When string2[i] accesses any other character, the value of

string2[i] is the value of the code used to store the character and is non-zero. Figure 15.4

lists the ASCII codes for the string thisƒisƒaƒstring. As the figure shows, each element has

a non-zero value except the NULL character.

P_C7785_15.1c 676P_C7785_15.1c 676 1/18/11 11:20 AM1/18/11 11:20 AM

677Chapter 15
Pointers and C-String Library Functions

t

h

i

s

i

s

a

s

t

r

i

n

g

\0

string2[0]!='\0'

string2[1]!='\0'

string2[2]!='\0'

string2[15]!='\0'

string2[16]!='\0'

.

.

.

 1

 1

 1

 1

 0

.

.

.

.

.

.

Zeroth element

First element

Second element

Fifteenth element

Sixteenth element

End-of-string
marker

Element
String
array Expression Value

Figure 15.3 The while test becomes false at the end of the string

P_C7785_15.1c 677P_C7785_15.1c 677 1/18/11 11:20 AM1/18/11 11:20 AM

678 Strings as Character Arrays

string2[0]

string2[1]

string2[2]

string2[15]

string2[16]

.

.

.

116

104

105

103

0

.

.

.

Stored
codes Expression Value

t

h

i

s

i

s

a

s

t

r

i

n

g

\0

String
array

116

104

105

115

32

105

115

32

97

32

115

116

114

105

110

103

0

Figure 15.4 The ASCII codes used to store thisƒisƒaƒstring

Because the expression string2[i] is zero only at the end of a C-string and non-zero for

every other character, the expression whileƒ(string2[i]ƒ!=ƒ'\0') can be replaced by the

simpler expression while(string2[i]). Although it might seem confusing at first, the revised

test expression is certainly more compact than the longer version. Advanced C++ programmers

often write end-of-C-string tests in this shorter form, so being familiar with this expression is

worthwhile. Including this expression in strcopy() results in the following version:

//ƒaƒfunctionƒtoƒcopyƒstring2ƒtoƒstring1
voidƒstrcopy(charƒstring1[],ƒcharƒstring2[])
{
ƒƒintƒiƒ=ƒ0;

☞

P_C7785_15.1c 678P_C7785_15.1c 678 1/18/11 11:20 AM1/18/11 11:20 AM

679Chapter 15
Pointers and C-String Library Functions

ƒƒwhileƒ(string2[i])
ƒƒ{
ƒƒƒƒstring1[i]ƒ=ƒstring2[i];ƒƒ//ƒcopyƒtheƒelementƒtoƒstring1
ƒƒƒƒi++;
ƒƒ}

ƒƒƒstring1[i]ƒ=ƒ'\0';ƒƒƒƒƒƒƒƒƒ//ƒterminateƒtheƒfirstƒstring

ƒƒreturn;
}

The second modification that can be made to this C-string copy function is to include the

assignment inside the test portion of the while statement. The new version of strcopy() is

as follows:

//ƒaƒfunctionƒtoƒcopyƒstring2ƒtoƒstring1
voidƒstrcopy(charƒstring1[],ƒcharƒstring2[])
{
ƒƒintƒiƒ=ƒ0;

ƒƒwhileƒ(string1[i]ƒ=ƒstring2[i])
ƒƒƒƒi++;

ƒƒreturn;
}

Note that including the assignment statement in the test part of the while statement

eliminates the necessity of terminating the copied string separately with the NULL character.

The assignment in parentheses ensures that the NULL character is copied from string2 to

string1. The value of the assignment expression becomes zero only after the NULL character

is assigned to string1, at which point the while loop is terminated.

Converting strcopy() from subscript notation to pointer notation is now straightforward.

Although each subscript version of strcopy() can be rewritten with pointer notation, the fol-

lowing is the equivalent of the previous subscript version:

//ƒaƒfunctionƒtoƒcopyƒstring2ƒtoƒstring1
voidƒstrcopy(charƒ*string1,ƒcharƒ*string2)
{
ƒƒwhileƒ(*string1ƒ=ƒ*string2)
ƒƒ{
ƒƒƒƒstring1++;
ƒƒƒƒstring2++;
ƒƒ}

ƒƒreturn;
}

P_C7785_15.1c 679P_C7785_15.1c 679 1/18/11 11:20 AM1/18/11 11:20 AM

680 Strings as Character Arrays

In both subscript and pointer versions of strcopy(), the function receives the name of

the array being passed. Recall that passing an array name to a function actually passes the

address of the array’s first location. In the pointer version of strcopy(), the two passed

addresses are stored in the pointer parameters string1 and string2.

The declarations charƒ*string1; and charƒ*string2; used in the pointer version of

strcopy() indicate that string1 and string2 are pointers containing the address of a char-

acter. This notation emphasizes that two addresses are actually being passed. (Remember that

an array name is a pointer constant.) These declarations are equivalent to the declarations

charƒstring1[]; and charƒstring2[];.

Inside strcopy(), the pointer expression *string1, which refers to “the element whose

address is in string1,” replaces the equivalent subscript expression string1[i]. Similarly,

the pointer expression *string2 replaces the equivalent subscript expression string2[i].

The expression *string1ƒ=ƒ*string2 causes the element pointed to by string2 to be

assigned to the element pointed to by string1. Because the starting addresses of both

C-strings are passed to strcopy() and stored in string1 and string2, the expression

*string1 initially refers to string1[0], and the expression *string2 initially refers to

string2[0].

Consecutively incrementing both pointers in strcopy() with the expressions string1++

and string2++ simply causes each pointer to “point to” the next consecutive character in the

C-string. As with the subscript version, the pointer version of strcopy() steps along, copying

element by element, until the end of the string is copied. One final change to the C-string copy

function can be made by including the pointer increments as postfix operators in the test part

of the while statement. The final form of this function is as follows:

//ƒaƒfunctionƒtoƒcopyƒstring2ƒtoƒstring1
voidƒstrcopy(charƒ*string1,ƒcharƒ*string2)
{
ƒƒwhileƒ(*string1++ƒ=ƒ*string2++)
ƒƒƒƒ;
ƒreturn;
}

There’s no ambiguity in the expression *string1++ƒ=ƒ*string2++, even though the

indirection operator, *, and increment operator, ++, have the same precedence. Here the char-

acter pointed to is accessed before the pointer is incremented. It’s not until the assignment

*string1ƒ=ƒ*string2 is completed that the pointers are incremented to point correctly to

the next characters in the respective C-strings.

The C-string copy function included in the standard library supplied with C++ compilers

is typically written exactly like the pointer version of strcopy().

P_C7785_15.1c 680P_C7785_15.1c 680 1/18/11 11:20 AM1/18/11 11:20 AM

681Chapter 15
Pointers and C-String Library Functions

Library Functions
Because a C-string is an array and C++ doesn’t provide built-in operations for arrays, such as

array assignment and relational comparisons, these operations aren’t provided for C-strings.

Extensive collections of C-string-handling functions, however, are included with all C++ com-

pilers. They effectively supply C-string assignment, comparison, and other useful C-string

operations. Table 15.2 lists the more common C-string library functions, which are called in the

same manner as all C++ functions. The declarations for these functions are in the standard

header file cstring and must be included in your program before the function is called.

Table 15.2 C-String Library Functions (Require the Header File cstring)

Name Description Example
strcpy(stringVar,ƒstringExp) Copies stringExp to

stringVar, including
theƒ'\0'.

strcpy(test,ƒ“efgh”)

strcat(stringVar,ƒstringExp) Appends stringExp to the
end of the string value
contained in stringVar.

strcat(test,ƒ“there”)

strlen(stringExp) Returns the length of the
string. Does not include
the '\0' in the length
count.

strlen(“HelloƒWorld!”)

Point of Information
Processing C-Strings

C-string variables can’t be assigned values after being declared. For example, if test has
been declared as a C-string with the declaration statement

charƒtest[]ƒ=ƒ“abcd”;

a subsequent assignment, such as testƒ=ƒ“efgh”;, is invalid.
In place of an assignment, you can use the strcpy() function, such as

strcpy(test,ƒ“efgh”). The only restriction on using strcpy() is that the size of
the declared array (five elements, in this case) can’t be exceeded. Attempting to copy a
larger C-string value into test causes the copy to overflow the destination array, begin-
ning with the memory area immediately after the last array element. This memory over-
flow overwrites whatever was in these memory locations and typically causes a runtime
crash when the overwritten areas are accessed via their legitimate identifier names.

The same problem can happen when using the strcat() function. It’s your respon-
sibility to ensure that the concatenated C-string fits into the original string.

An interesting situation arises when C-string variables are defined with pointers (see
the Point of Information in Section 15.3). In these situations, assignments can be made
after the declaration statement.

P_C7785_15.1c 681P_C7785_15.1c 681 1/18/11 11:20 AM1/18/11 11:20 AM

682 Strings as Character Arrays

Name Description Example
strcmp(stringExp1,stringExp2) Compares stringExp1

with stringExp2. Returns
a negative integer if
stringExp1ƒ <ƒstringExp2, 0
if stringExp1ƒ==ƒstringExp2,
and a positive integer if
stringExp1ƒ>ƒstringExp2.

strcmp(“Bebop”,”Beehive”)

strncpy(stringVar,stringExp,n) Copies at most n char-
acters of stringExp to
stringVar. If stringExp has
fewer than n characters, it
pads stringVar with '\0's.

strncpy(str1,ƒstr2,ƒ5)

strncmp(stringExp1,stringExp2,ƒn) Compares at most n char-
acters of stringExp1 with
stringExp2. Returns the
same values as strcmp()
based on the number of
characters compared.

strncmp(“Bebop”,Beehive”,2)

strchr(stringExp,ƒcharacter) Locates the first occur-
rence of the character in
the string. Returns the
address of the character.

strchr(“Hello”,ƒ'l')

strtok(string1,ƒcharacter) Parses string1 into tokens.
Returns the next sequence
of characters contained
in string1, up to but not
including the delimiter
character character.

strtok(“HelloƒthereƒWorld!",'')

The first four functions listed in Table 15.2 are used most often. The strcpy() func-

tion copies a source C-string expression, which consists of a string literal or the contents of

a C-string variable, into a destination C-string variable. For example, in the function call

strcpy(string1,ƒ“HelloƒWorld!”), the source string literal “HelloƒWorld!” is cop-

ied into the destination C-string variable string1. Similarly, if the source string is a

C-string variable named src_string, the function call strcpy(string1,ƒsrc_string)

copies the contents of src_string into string1. In both cases, it’s the programmer’s

responsibility to ensure that string1 is large enough to contain the source C-string (see

the previous Point of Information).

The strcat() function appends a string expression to the end of a C-string variable. For

example, if the contents of a C-string variable named dest_string is “Hello”, the function

call strcat(dest_string,ƒ“ƒthereƒWorld!”) results in assigning the string value

Table 15.2 C-String Library Functions (Require the Header File cstring) (continued)

P_C7785_15.1c 682P_C7785_15.1c 682 1/18/11 11:20 AM1/18/11 11:20 AM

683Chapter 15
Pointers and C-String Library Functions

“HelloƒthereƒWorld!” to dest_string. As with the strcpy() function, it’s the program-

mer’s responsibility to ensure that the destination C-string is defined as large enough to hold

the additional concatenated characters.

The strlen() function returns the number of characters in its C-string parameter but

doesn’t include the terminating NULL character in the count. For example, the value returned

by the function call strlen(“HelloƒWorld!”) is 12.

Finally, two string expressions can be compared for equality by using the strcmp()

function. This comparison is done character by character in the same manner described in

Section 14.1 for string class objects. Program 15.5 uses these C-string functions in the

context of a complete program.

 Program 15.5

#includeƒ<iostream>
#includeƒ<cstring>ƒƒ//ƒrequiredƒforƒtheƒstringƒfunctionƒlibrary
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒconstƒintƒMAXELSƒ=ƒ50;
ƒƒcharƒstring1[MAXELS]ƒ=ƒ“Hello”;
ƒƒcharƒstring2[MAXELS]ƒ=ƒ“Helloƒthere”;
ƒƒintƒn;

ƒƒnƒ=ƒstrcmp(string1,ƒstring2);

ƒƒifƒ(nƒ<ƒ0)
ƒƒƒƒcoutƒ<<ƒstring1ƒ<<ƒ“ƒisƒlessƒthanƒ“ƒ<<ƒstring2ƒ<<ƒendl;
ƒƒelseƒifƒ(nƒ==ƒ0)
ƒƒƒƒcoutƒ<<ƒstring1ƒ<<ƒ“ƒisƒequalƒtoƒ“ƒ<<ƒstring2ƒ<<ƒendl;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒstring1ƒ<<ƒ“ƒisƒgreaterƒthanƒ“ƒ<<ƒstring2ƒ<<ƒendl;

ƒƒcoutƒ<<ƒ“\nTheƒlengthƒofƒstring1ƒisƒ“ƒ<<ƒstrlen(string1)
ƒƒƒƒƒƒƒ<<ƒ“ƒcharacters”ƒ<<ƒendl;
ƒƒcoutƒ<<ƒ“Theƒlengthƒofƒstring2ƒisƒ“ƒ<<ƒstrlen(string2)
ƒƒƒƒƒƒƒ<<ƒ“ƒcharacters”ƒ<<ƒendl;

ƒƒstrcat(string1,”ƒthereƒWorld!”);

ƒƒcoutƒ<<ƒ“\nAfterƒconcatenation,ƒstring1ƒcontainsƒ“
ƒƒƒƒƒƒƒ<<ƒ“theƒstringƒvalue\n”ƒ<<ƒstring1
ƒƒƒƒƒƒƒ<<ƒ“\nTheƒlengthƒofƒthisƒstringƒisƒ“
ƒƒƒƒƒƒƒ<<ƒstrlen(string1)ƒ<<ƒ“ƒcharacters”ƒ<<ƒendl;

☞

P_C7785_15.1c 683P_C7785_15.1c 683 1/18/11 11:20 AM1/18/11 11:20 AM

684 Strings as Character Arrays

ƒƒcoutƒ<<ƒ“\nTypeƒinƒaƒsequenceƒofƒcharactersƒforƒstring2:ƒ“;
ƒƒcin.getline(string2,ƒMAXELS);

ƒƒstrcpy(string1,ƒstring2);

ƒƒcoutƒ<<ƒ“Afterƒcopyingƒstring2ƒtoƒstring1,ƒ“
ƒƒƒƒƒƒƒ<<ƒ“theƒstringƒvalueƒinƒstring1ƒis:\n”ƒ<<ƒstring2
ƒƒƒƒƒƒƒ<<ƒ“\nTheƒlengthƒofƒthisƒstringƒisƒ“
ƒƒƒƒƒƒƒ<<ƒstrlen(string1)ƒ<<ƒ“ƒcharacters”ƒ<<ƒendl;

ƒƒreturnƒ0;
}

Following is a sample output produced by Program 15.5:

HelloƒisƒlessƒthanƒHelloƒthere

Theƒlengthƒofƒstring1ƒisƒ5ƒcharacters
Theƒlengthƒofƒstring2ƒisƒ11ƒcharacters

Afterƒconcatenation,ƒstring1ƒcontainsƒtheƒstringƒvalue
HelloƒthereƒWorld!
Theƒlengthƒofƒthisƒstringƒisƒ18ƒcharacters

Typeƒinƒaƒsequenceƒofƒcharactersƒforƒstring2:ƒIt's a wonderful day
Afterƒcopyingƒstring2ƒtoƒstring1,ƒtheƒstringƒvalueƒinƒstring1ƒis:
It'sƒaƒwonderfulƒday
Theƒlengthƒofƒthisƒstringƒisƒ20ƒcharacters

Character-Handling Functions
In addition to C-string manipulation functions, all C++ compilers include the character-

handling functions covered previously in Section 14.2 and repeated in Table 15.3 for conve-

nience. The prototypes for these functions are in the header file cctype, which should be

included in any program using these functions.

Table 15.3 Character Library Functions (Require the Header Files string and cctype)

Function Prototype Description Example
intƒisalpha(charExp) Returns a true (non-zero

integer) if charExp evalu-
ates to a letter; otherwise,
it returns a false (zero
integer)

isalpha('a')

P_C7785_15.1c 684P_C7785_15.1c 684 1/18/11 11:20 AM1/18/11 11:20 AM

685Chapter 15
Pointers and C-String Library Functions

Function Prototype Description Example
intƒisalnum(charExp) Returns a true (non-zero

integer) if charExp evaluates
to a letter or a digit; other-
wise, it returns a false (zero
integer)

isalnum(key);

intƒisupper(charExp) Returns a true (non-zero
integer) if charExp evalu-
ates to an uppercase letter;
otherwise, it returns a false
(zero integer)

isupper('a')

intƒislower(charExp) Returns a true (non-zero
integer) if charExp evaluates
to a lowercase letter; other-
wise, it returns a false (zero
integer)

islower('a')

intƒisdigit(charExp) Returns a true (non-zero
integer) if charExp evalu-
ates to a digit (0 through 9);
otherwise, it returns a false
(zero integer)

isdigit('5')

intƒisascii(charExp) Returns a true (non-zero
integer) if charExp evalu-
ates to an ASCII character;
otherwise, returns a false
(zero integer)

isascii('a')

intƒisspace(charExp) Returns a true (non-zero
integer) if charExp evaluates
to a space; otherwise, returns
a false (zero integer)

isspace('ƒ')

intƒisprint(charExp) Returns a true (non-zero
integer) if charExp evalu-
ates to a printable character;
otherwise, returns a false
(zero integer)

isprint('a')

Table 15.3 Character Library Functions (Require the Header Files string and cctype)
(continued)

P_C7785_15.1c 685P_C7785_15.1c 685 1/18/11 11:20 AM1/18/11 11:20 AM

686 Strings as Character Arrays

Function Prototype Description Example
intƒisctrl(charExp) Returns a true (non-zero

integer) if charExp evaluates
to a control character; other-
wise, it returns a false (zero
integer)

isctrl('a')

intƒispunct(charExp) Returns a true (non-zero
integer) if charExp evaluates
to a punctuation character;
otherwise, returns a false
(zero integer)

ispunct('!')

intƒisgraph(charExp) Returns a true (non-zero
integer) if charExp evaluates
to a printable character other
than white space; other-
wise, returns a false (zero
integer)

isgraph('ƒ')

intƒtoupper(charExp) Returns the uppercase equiv-
alent if charExp evaluates to
a lowercase character; oth-
erwise, returns the character
code without modification

toupper('a')

intƒtolower(charExp) Returns the lowercase equiva-
lent if charExp evaluates to
an uppercase character; other-
wise, returns the character
code without modification

tolower('A')

Because all the istype() functions listed in Table 15.3 return a non-zero integer (inter-

preted as a Boolean true value) when the character meets the condition and return a zero

integer (interpreted as a Boolean false value) when the condition isn’t met, these functions

can be used in an if statement. For example, take a look at the following code segment:

charƒch;
chƒ=ƒcin.get();ƒƒ//ƒgetƒaƒcharacterƒfromƒtheƒkeyboard

if(isdigit(ch))
ƒƒcoutƒ<<ƒ“Theƒcharacterƒjustƒenteredƒisƒaƒdigit”ƒ<<ƒendl;
elseƒif(ispunct(ch))
ƒƒcoutƒ<<ƒ“Theƒcharacterƒjustƒenteredƒisƒaƒpunctuationƒmark”ƒ<<ƒendl;

Table 15.3 Character Library Functions (Require the Header Files string and cctype)
(continued)

P_C7785_15.1c 686P_C7785_15.1c 686 1/18/11 11:20 AM1/18/11 11:20 AM

687Chapter 15
Pointers and C-String Library Functions

Note that the character function is included as a condition in the if statement. This is

possible because the function returns a Boolean true (non-zero) or false (zero) value.

Program 15.6 shows using the toupper() function in the ConvertToUpper() function,

which converts all lowercase string characters to their uppercase form.

 Program 15.6

#includeƒ<iostream>
usingƒnamespaceƒstd;
ƒ
voidƒConvertToUpper(charƒ[]);ƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒconstƒintƒMAXCHARSƒ=ƒ100;
ƒƒcharƒmessage[MAXCHARS];

ƒƒcoutƒ<<ƒ“\nTypeƒinƒanyƒsequenceƒofƒcharacters:ƒ“;
ƒƒcin.getline(message,MAXCHARS);

ƒƒConvertToUpper(message);

ƒƒcoutƒ<<ƒ“Theƒcharactersƒjustƒenteredƒinƒuppercaseƒare:ƒ“
ƒƒƒƒƒƒƒ<<ƒmessageƒ<<ƒendl;

ƒƒreturnƒ0;
}

//ƒthisƒfunctionƒconvertsƒallƒlowercaseƒcharactersƒtoƒuppercase
voidƒConvertToUpper(charƒmessage[])
{
ƒƒfor(intƒiƒ=ƒ0;ƒmessage[i]ƒ!=ƒ'\0';ƒi++)
ƒƒƒƒmessage[i]ƒ=ƒtoupper(message[i]);

ƒƒreturn;
}

P_C7785_15.1c 687P_C7785_15.1c 687 1/18/11 11:20 AM1/18/11 11:20 AM

688 Strings as Character Arrays

The output produced when Program 15.6 runs is as follows:

Typeƒinƒanyƒsequenceƒofƒcharacters:ƒthis is a test OF 12345.
Theƒcharactersƒjustƒenteredƒinƒuppercaseƒare:ƒTHISƒISƒAƒTESTƒOFƒ12345.

Note that the toupper() library function converts only lowercase letters; all other char-

acters are unaffected.

Conversion Functions
The last group of standard string library functions, listed in Table 15.4, is used to convert

C-strings to and from integer and double-precision data types. The prototypes for these func-

tions are in the header file cstdlib, which must be included in any program using these

functions. Program 15.7 shows using theƒatoi() and atof() functions.

Table 15.4 String Conversion Functions (Require the Header File cstdlib)

Function Prototype Description Example
intƒatoi(stringExp) Converts stringExp (an

ASCII string) to an integer.
Conversion stops at the first
non-integer character.

atoi(“1234”)

doubleƒatof(stringExp) Converts stringExp (an
ASCII string) to a double-
precision number. Conversion
stops at the first character
that can’t be interpreted as a
double.

atof(“12.34”)

char[]ƒitoa(integerExp) Converts integerExp (an
integer) to a character array.
The space allocated for the
returned characters must be
large enough for the con-
verted value.

itoa(1234)

Program 15.7 produces the following output:

Theƒstringƒ“12345”ƒasƒanƒintegerƒnumberƒis:ƒ12345
Thisƒnumberƒdividedƒbyƒ3ƒis:ƒ4115
Theƒstringƒ“12345.96”ƒasƒaƒdoubleƒnumberƒis:ƒ12345.96
Thisƒnumberƒdividedƒbyƒ3ƒis:ƒ4115.32

As this output shows, after a string has been converted to an integer or a double-precision

value, mathematical operations on the numerical value are valid.

P_C7785_15.1c 688P_C7785_15.1c 688 1/18/11 11:20 AM1/18/11 11:20 AM

689Chapter 15
Pointers and C-String Library Functions

 Program 15.7

#includeƒ<iostream>
#includeƒ<cstring>
#includeƒ<cstdlib>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

intƒmain()
{
ƒƒconstƒintƒMAXELSƒ=ƒ20;
ƒƒcharƒstring[MAXELS]ƒ=ƒ“12345”;
ƒƒintƒnum;
ƒƒdoubleƒdnum;

ƒƒnumƒ=ƒatoi(string);

ƒƒcoutƒ<<ƒ“Theƒstringƒ\””ƒ<<ƒstringƒ<<ƒ“\”ƒasƒanƒintegerƒnumberƒis:ƒ“
ƒƒƒƒƒƒƒ<<ƒnum;
ƒƒcoutƒ<<ƒ“\nThisƒnumberƒdividedƒbyƒ3ƒis:ƒ“ƒ<<ƒnumƒ/ƒ3ƒ<<ƒendl;

ƒƒstrcat(string,ƒ“.96”);

ƒƒdnumƒ=ƒatof(string);

ƒƒcoutƒ<<ƒ“Theƒstringƒ\””ƒ<<ƒstringƒ<<ƒ“\”ƒasƒaƒdoubleƒnumberƒis:ƒ“
ƒƒƒƒƒƒƒ<<ƒfixedƒ<<ƒsetprecision(2)ƒ<<ƒdnum;
ƒƒcoutƒ<<ƒ“\nThisƒnumberƒdividedƒbyƒ3ƒis:ƒ“ƒ<<ƒdnumƒ/ƒ3ƒ<<ƒendl;

ƒƒreturnƒ0;
}

 EXERCISES 15.2

1. (Practice) Determine the value of *text, *(textƒ+ƒ3), and *(textƒ+ƒ10), assuming text

is an array of characters and the following has been stored in the array:

a. Be of good purpose

b. Harry Houdini was a magician

c. What a great movie

d. Oops, my bad!

P_C7785_15.1c 689P_C7785_15.1c 689 1/18/11 11:20 AM1/18/11 11:20 AM

690 Strings as Character Arrays

2. (Program) a. The following function, convert(), “marches along” the C-string passed to it

and sends each character in the string one at a time to the ToUpper() function until the NULL

character is encountered:

//ƒconvertƒaƒstringƒtoƒuppercaseƒletters
voidƒconvert(charƒstrng[])
{
ƒƒintƒiƒ=ƒ0;
ƒƒwhileƒ(strng[i]ƒ!=ƒ'\0')
ƒƒ{
ƒƒƒƒstrng[i]ƒ=ƒToUpper(strng[i]);
ƒƒƒƒi++;
ƒƒ}

ƒƒreturn;
}

charƒToUpper(charƒletter)ƒ//ƒconvertƒaƒcharacterƒtoƒuppercase
{
ƒƒif(ƒ(letterƒ>=ƒ'a')ƒ&&ƒ(letterƒ<=ƒ'z')ƒ)
ƒƒƒƒreturnƒ(letterƒ-ƒ'a'ƒ+ƒ'A');
ƒƒelse
ƒƒƒƒreturnƒ(letter);
}

 The ToUpper() function takes each character passed to it and examines it to determine

whether the character is a lowercase letter (any character from a to z). Assuming that characters

are stored with the standard ASCII character codes, the expression letterƒ-ƒ'a'ƒ+ƒ'A'

converts a lowercase letter to its uppercase equivalent. Rewrite the convert() function with

pointers.

b. Include the convert() and ToUpper() functions in a working program. The program

should prompt the user for a string and display the string in uppercase letters.

3. (Program) Using pointers, repeat Exercise 1 from Section 15.1.

4. (Program) Using pointers, repeat Exercise 2 from Section 15.1.

5. (Program) Using pointers, repeat Exercise 3 from Section 15.1.

6. (Program) Write a function named remove() that returns nothing and deletes all occur-

rences of a character from a C-string. The function should take two arguments: the string name

and the character to remove. For example, if message contains the string HappyƒHolidays,

the function call remove(message,'H') should place the string appyƒolidays in message.

7. (Program) Using pointers, repeat Exercise 6 from Section 15.1.

8. (Program) Write a program using the cin.get() and toupper() library functions, along

with a cout stream object to display each entered letter in its uppercase form. The program

should terminate when the 1 key (the digit) is pressed.

P_C7785_15.1c 690P_C7785_15.1c 690 1/18/11 11:20 AM1/18/11 11:20 AM

691Chapter 15
C-String Definitions and Pointer Arrays

9. (Program) Write a function that uses pointers to add a single character at the end of an exist-

ing C-string. The function should replace the existing '\0' character with the new character

and add a new \0 at the end of the string. The function returns nothing.

10. (Program) Write a function that uses pointers to delete a single character from the end of a

C-string, which is achieved by moving the '\0' character one position closer to the start of

the string. The function returns nothing.

11. (Program) Write a function named trimfrnt() that deletes all leading blanks from a

C-string and returns nothing. Write the function by using pointers.

12. (Program) Write a function named trimrear() that deletes all trailing blanks from a

C-string and returns nothing. Write the function using pointers.

13. (Program) Write a function named strlen() that returns the number of characters in a

C-string. Don’t include the \0 character in the returned count.

15.3 C-String Definitions and Pointer Arrays

The definition of a C-string automatically involves a pointer. For example, the definition

charƒmessage1[80]; reserves storage for 80 characters and automatically creates a pointer

constant, message1, containing the address of message1[0]. As a pointer constant, the

address associated with the pointer can’t be changed; it must always “point to” the beginning

of the created array.

Instead of creating a C-string as an array, creating a C-string with a pointer is also possible.

For example, the definition charƒ*message2; creates a pointer to a character. In this case,

message2 is a true pointer variable. After a pointer to a character is defined, assignment state-

ments, such as message2ƒ=ƒ“thisƒisƒaƒstring”;, can be made. In this assignment,

message2, which is a pointer, receives the address of the first character in the string.

The main difference in the definitions of message1 as an array and message2 as a

pointer is the way the pointer is created. Defining message1 with the declaration

charƒmessage1[80]; explicitly calls for a fixed amount of storage for the array, which causes

the compiler to create a pointer constant. Defining message2 with the declaration

charƒ*message2; explicitly creates a pointer variable first. This pointer is then used to hold

the address of a C-string when the C-string is actually specified. This difference in definitions

has both storage and programming consequences.

From a programming perspective, defining message2 as a pointer to a character allows

making C-string assignments, such as message2ƒ=ƒ“thisƒisƒaƒstring”;, in a program.

Similar assignments aren’t allowed for C-strings defined as arrays, so the statement

message1ƒ=ƒ“thisƒisƒaƒstring”; isn’t valid. Both definitions, however, allow initializa-

tions to be made with a string literal. For example, both the following initializations are valid:

charƒmessage1[80]ƒ=ƒ“thisƒisƒaƒstring”;
charƒ*message2ƒ=ƒ“thisƒisƒaƒstring”;

From a storage perspective, the allocation of space for message1 is quite different from

that for message2. As shown in Figure 15.5, both initializations cause the computer to store

P_C7785_15.1c 691P_C7785_15.1c 691 1/18/11 11:20 AM1/18/11 11:20 AM

692 Strings as Character Arrays

the same C-string but in different locations. In the case of message1, a specific set of

80 storage locations is reserved, and the first 17 locations are initialized. Different C-strings

can be stored, but each string overwrites the previously stored characters. The same isn’t

true for message2.

t h i s i s a s t r i

= address of first array location&message[0]

a. Storage allocation for a C-string defined as an array

Address of first character location

b. Storage of a C-string using a pointer

Somewhere in memory:

Starting
string address

message2:

n g \0

t h i s i s a s t r i n g \0

message1 =

Figure 15.5 C-string storage allocation

The definition of message2 reserves enough storage for one pointer. The initialization

then causes the string literal to be stored in memory and the address of the string’s first

character—in this case, t’s address—to be loaded into the pointer. If a later assignment is

made to message2, the initial C-string remains in memory, and new storage locations are

allocated to the new C-string. For example, take a look at this sequence of instructions:

charƒ*message2ƒ=ƒ“thisƒisƒaƒstring”;
message2ƒ=ƒ“Aƒnewƒmessage”;

The first statement defines message2 as a pointer variable, stores the initialization

string in memory, and loads the starting address of the string (the address of the t in this)

into message2. The next assignment statement causes the computer to store the second

string and change the address in message2 to point to the starting location of this new string.

It’s important to realize that the second string assigned to message2 doesn’t overwrite

the first string but simply changes the address in message2 to point to the new string. As

Figure 15.6 shows, both strings are stored in the computer. Any additional string assignment

to message2 would result in additional storage of the new string and a corresponding change

in the address stored in message2. Doing so also means you no longer have access to the

original C-string memory location.

P_C7785_15.1c 692P_C7785_15.1c 692 1/18/11 11:20 AM1/18/11 11:20 AM

693Chapter 15
C-String Definitions and Pointer Arrays

A n e m s a g e \0

The address of this location is then stored in

The address of this location is initially stored in

An address

message2 is a pointer variable

t h i s i s a s t r i n g \0

message2

message2

First the
address
points
here

Then the
address is
changed to
point here

w e s

Figure 15.6 Storage allocation for Figure 15.5

Pointer Arrays
The declaration of an array of character pointers is a useful extension to single string pointer

declarations. For example, the following declaration creates an array of four elements, in which

each element is a pointer to a character:

charƒ*seasons[4];

Each pointer can be assigned to point to a string by using string assignment statements.

Therefore, the following statements set appropriate addresses in the pointers:

seasons[0]ƒ=ƒ“Winter”;
seasons[1]ƒ=ƒ“Spring”;
seasons[2]ƒ=ƒ“Summer”;
seasons[3]ƒ=ƒ“Fall”;ƒƒ//ƒstringƒlengthsƒcanƒdiffer

Figure 15.7 shows the addresses loaded into the pointers for these assignments. As shown,

the seasons array doesn’t contain the actual strings assigned to the pointers. These strings are

stored in the normal data area allocated to the program, elsewhere in the computer. The array

of pointers contains only the addresses of the starting location for each string.

P_C7785_15.1c 693P_C7785_15.1c 693 1/18/11 11:20 AM1/18/11 11:20 AM

694 Strings as Character Arrays

W i n t r \0Address of
W in Winter

seasons

S p r i g \0

S u m m r \0

F a l l

Address of
S in Spring

Address of
S in Summer

Address of
F in Fall

array

seasons[0]:

seasons[1]:

seasons[2]:

seasons[3]:

Somewhere in memory:

e

n

e

\0

Figure 15.7 The addresses in the seasons[] pointers

Point of Information
Allocating Space for a String

Although both the following declarations

charƒtest[5]ƒ=ƒ“abcd”;
charƒ*testƒ=ƒ“abcd”;

create storage for the characters 'a', 'b', 'c', 'd', and '\0', there’s a subtle differ-
ence between the two declarations and in how values can be assigned to test. An
array declaration, such as charƒtest[5];, precludes subsequent use of an assignment
expression, such as testƒ=ƒ“efgh”, to assign values to the array. Using the
strcpy() function, as in strcpy(test,”efgh”), however, is valid. The only restric-
tion on strcpy() is the array size, which in this case is five elements. This situation is
reversed when a pointer is created. A pointer declaration, such as charƒ*test;, pre-
cludes using strcpy() to initialize the memory locations pointed to by the pointer, but
it does allow assignments. For example, the following sequence of statements is valid:

charƒ*test;
testƒ=ƒ“abcd”;
testƒ=ƒ“hereƒisƒaƒlongerƒstring”;

The difference in use is explained by the fact that the compiler automatically allocates
enough new memory space for any C-string pointed to by a pointer variable but doesn’t
do so for an array of characters. The array size is fixed by the definition statement.

Formally, any expression yielding a value that can be used on the left side of an
assignment expression is said to be an lvalue. (Similarly, any expression yielding a value
that can be used on the right side of an assignment statement is said to be an rvalue.)
Therefore, a pointer variable can be an lvalue, but an array name can’t.

P_C7785_15.1c 694P_C7785_15.1c 694 1/18/11 11:20 AM1/18/11 11:20 AM

Chapter 15
C-String Definitions and Pointer Arrays

The initialization of the seasons array can also be incorporated into the definition of the

array, as follows:

charƒ*seasons[4]ƒ=ƒ{“Winter”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Spring”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Summer”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Fall”};

This declaration both creates an array of pointers and initializes the pointers with appro-

priate addresses. After addresses have been assigned to the pointers, each pointer can be used

to access its corresponding string. Program 15.8 uses the seasons array to display each season

by using a for loop.

 Program 15.8

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒconstƒintƒNUMSEASONSƒ=ƒ4;
ƒƒintƒn;
ƒƒcharƒ*seasons[]ƒ=ƒ{“Winter”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Spring”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Summer”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Fall”};

ƒƒfor(ƒnƒ=ƒ0;ƒnƒ<ƒNUMSEASONS;ƒn++)
ƒƒcoutƒ<<ƒ“\nTheƒseasonƒisƒ“ƒ<<ƒseasons[n];

ƒƒreturnƒ0;
}

The output of Program 15.8 is as follows:

TheƒseasonƒisƒWinter
TheƒseasonƒisƒSpring
TheƒseasonƒisƒSummer
TheƒseasonƒisƒFall

The advantage of using a list of pointers is that logical groups of data headings can be col-

lected and accessed with one array name. For example, the months in a year can be grouped

in one array called months, and the days in a week can be grouped in an array called days. The

grouping of like headings enables the programmer to access and print a corresponding heading

simply by specifying the heading’s correct position in the array. Program 15.9 uses the seasons

array to identify and display the season corresponding to a user-entered month.

695

P_C7785_15.1c 695P_C7785_15.1c 695 1/18/11 11:20 AM1/18/11 11:20 AM

696 Strings as Character Arrays

 Program 15.9

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒn;
ƒƒcharƒ*seasons[]ƒ=ƒ{“Winter”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Spring”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Summer”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Fall”};

ƒƒcoutƒ<<ƒ“\nEnterƒaƒmonthƒ(useƒ1ƒforƒJan.,ƒ2ƒforƒFeb.,ƒetc.):ƒ“;
ƒƒcinƒƒ>>ƒn;
ƒƒnƒ=ƒ(nƒ%ƒ12)ƒ/ƒ3;ƒƒ//ƒcreateƒtheƒcorrectƒsubscript
ƒƒcoutƒ<<ƒ“Theƒmonthƒenteredƒisƒaƒ“<<ƒseasons[n]ƒ<<ƒ“ƒmonth.”;

ƒƒreturnƒ0;
}

Except for the expression nƒ=ƒ(nƒ%ƒ12)ƒ/ƒ3, Program 15.9 is rather straightforward.

The program requests the user to enter a month and accepts the number corresponding to the

month, using a cin object to display the selected month. The expression nƒ=ƒ(nƒ%ƒ12)ƒ/ƒ3

uses a common programming “trick” to scale a set of numbers into a more useful set. Using

subscripts, the four elements of the seasons array must be accessed via a subscript from 0

through 3. Therefore, the months of the year, which correspond to the numbers 1 through 12,

must be adjusted to correspond to the correct season subscript by using the expression

nƒ=ƒ(nƒ%ƒ12)ƒ/ƒ3. The expression nƒ%ƒ12 adjusts the user-entered month to lie in the

range 0 through 11, with 0 corresponding to December, 1 to January, and so on. Dividing by 3

causes the resulting number to range between 0 and 3, corresponding to the possible seasons

elements. The result of the division by 3 is assigned to the integer variable n. The months 0,

1, and 2, when divided by 3, are set to 0; the months 3, 4, and 5 are set to 1; the months 6, 7,

and 8 are set to 2; and the months 9, 10, and 11 are set to 3. It’s equivalent to the following

assignments:

 Months Season
December, January, February Winter
March, April, May Spring
June, July, August Summer
September, October, November Fall

The following is a sample output from Program 15.9:

Enterƒaƒmonthƒ(useƒ1ƒforƒJan.,ƒ2ƒforƒFeb.,ƒetc.):ƒ12
TheƒmonthƒenteredƒisƒaƒWinterƒmonth.

P_C7785_15.1c 696P_C7785_15.1c 696 1/18/11 11:20 AM1/18/11 11:20 AM

697Chapter 15
C-String Definitions and Pointer Arrays

 EXERCISES 15.3

1. (Practice) Write two declaration statements that can be used in place of the declaration

charƒtext[]ƒ=ƒ“Hooray!”;.

2. (Desk check) Determine the value of *text, *(textƒ+ƒ3), and *(textƒ+ƒ7) for each of

the following sections of code:

a. charƒ*text;
 charƒmessage[]ƒ=ƒ“theƒcheckƒisƒinƒtheƒmail”;
 textƒ=ƒmessage;

b. charƒ*text;
 charƒformal[]ƒ=ƒ{'T','h','i','s','','i','s','','a','n','',ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'i','n','v','i','t','a','t','i','o','n','\0'};
 textƒ=ƒ&formal[0];

c. charƒ*text;
 charƒmore[]ƒ=ƒ“HappyƒHolidays”;
 textƒ=ƒ&more[4];

d. charƒ*text,ƒ*second;
 charƒblip[]ƒ=ƒ“Theƒgoodƒship”;
 secondƒ=ƒblip;
 textƒ=ƒ++second;

3. (Debug) Determine the error in the following program:

#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒintƒiƒ=ƒ0;
ƒƒcharƒmessage[]ƒ=ƒ{'H','e','l','l','o','\0'};

ƒƒfor(ƒ;ƒiƒ<ƒ5;ƒi++)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ*message;
ƒƒƒƒmessage++;
ƒƒ}

ƒƒreturnƒ0;
}

4. (Program) a. Write a C++ function that displays the day of the week corresponding to a user-

entered number between 1 and 7. That is, in response to the input 2, the program displays the

name Monday. Use an array of pointers in the function.

b. Include the function written for Exercise 4a in a complete working program.

P_C7785_15.1c 697P_C7785_15.1c 697 1/18/11 11:20 AM1/18/11 11:20 AM

698 Strings as Character Arrays

5. (Modify) Modify the function written in Exercise 4a so that it returns the address of the char-

acter string containing the correct day to be displayed.

6. (Program) Write a function that accepts 10 lines of user-entered text and stores them as

10 C-strings. Use a pointer array in your function.

15.4 Common Programming Errors

The following errors are frequently made when pointers to C-strings are used:

1. Using the pointer to “point to” a nonexistent data element. This error is, of course, the

same error you have already seen when using subscripts. C++ compilers don’t perform

bounds checking on arrays, so it’s the programmer’s responsibility to ensure that the

address in the pointer is the address of a valid data element.

2. Not providing enough space for the C-string to be stored. A simple variation of this

error is not providing space for the end-of-string NULL character when a C-string is

defined as an array of characters and not including the '\0' character when the array

is initialized. A more complicated variation of this error is declaring a character pointer,

such as charƒ*p, and then attempting to copy a C-string with a statement such as

strcpy(p,”Hello”);. Because no space has been allocated for the C-string, the

C-string overwrites the memory area pointed to by p.

3. Misunderstanding the terminology. For example, if message is defined as

charƒ*message;

 the variableƒmessage is sometimes referred to as a string. Therefore, you might see

wording such as “Store the characters HoorayƒforƒtheƒHoosiers in the string

named message.” Strictly speaking, calling message a string or a C-string variable is

incorrect. It’s a pointer containing the address of the first character in a C-string.

Nevertheless, referring to a character pointer as a C-string occurs often enough that

you should be aware of it.

15.5 Chapter Summary
1. A C-string is an array of characters terminated by the NULL character, '\0'.

2. C-strings can always be processed with standard array-processing techniques. Entering and

displaying a C-string, however, always require relying on standard library functions.

3. The cin object and the cin.get() and cin.getline() functions can be used to input a

C-string. The cin object tends to be of limited usefulness for C-string input because it

terminates input when encountering a blank.

4. The cout object can be used to display C-strings.

5. In place of subscripts, pointer notation and pointer arithmetic are especially useful for

manipulating C-string elements.

P_C7785_15.1c 698P_C7785_15.1c 698 1/18/11 11:20 AM1/18/11 11:20 AM

699Chapter 15
Chapter Summary

6. Many standard library functions are available for processing C-strings as a complete unit.

Internally, these functions manipulate C-strings in a character-by-character manner, gener-

ally using pointers.

7. C-string storage can be created by declaring an array of characters and by declaring and

initializing a pointer to a character.

8. Arrays can be initialized by using a string literal assignment in this form:

charƒ*arr_name[ƒ]ƒ=ƒ“text”;

 This initialization is equivalent to the following:

charƒ*arr_name[ƒ]ƒ=ƒ{'t','e','x','t','\0'};

9. A pointer to a character can be assigned a string literal. String literal assignment to an array

of characters is invalid except for initialization in a declaration statement.

P_C7785_15.1c 699P_C7785_15.1c 699 1/18/11 11:20 AM1/18/11 11:20 AM

16 16.1 Single Structures

 16.2 Arrays of Structures

 16.3 Structures as Function Arguments

 16.4 Dynamic Structure Allocation

 16.5 Unions

 16.6 Common Programming Errors

 16.7 Chapter Summary

A structure is a historical holdover from C. From a programmer’s perspective, a structure is equivalent
to a class having all public instance variables and no methods. In commercial applications, a structure
is referred to, and is the same thing as, a record. In C++, a structure provides a way to store values of
different data types, such as an integer part number, a character description, and a double-precision price.

For example, a store maintains a record of items in inventory, with the following data items main-
tained for each inventory item:

Part Number:
Description:
Quantity in Stock:
Price:

Each data item is a separate entity referred to as a data field. Taken together, the data fields form
a single unit referred to as a record, which in C++ is called a structure.

Although the store could keep track of hundreds of inventory items, the form of each item’s structure
is identical. In dealing with structures, distinguishing between a structure’s form and its contents is

Chapter

Data Structures

Q_C7785_16.1c 701Q_C7785_16.1c 701 1/18/11 11:22 AM1/18/11 11:22 AM

702 Data Structures

important. A structure’s form consists of the symbolic names, data types, and arrangement of data fields
in the structure. The structure’s contents refer to the actual data stored in the symbolic names. The follow-
ing list shows acceptable contents for the structure form shown previously:

Part Number: 23421
Description: Stapler
Quantity in Stock: 3
Price: $5.98

This chapter describes the C++ statements required to create, fill, and manipulate
structures.

16.1 Single Structures

Creating and using a structure involves the same two steps for creating and using any variable.

First, the structure must be declared. Second, specific values can be assigned to the structure

elements. Declaring a structure requires listing the data types, data names, and arrangement

of data items. For example, the definition

struct
{
ƒƒintƒmonth;
ƒƒintƒday;
ƒƒintƒyear;
}ƒbirth;

gives the form of a structure called birth and reserves storage for the data items listed in the

structure. The birth structure consists of three data items or fields, which are called structure

members.

Assigning actual data values to structure members is referred to as populating the structure,

which is a straightforward procedure. Each structure member is accessed by giving the struc-

ture name and data item name, separated by a period. For example, birth.month refers to the

first member of the birth structure, birth.day refers to the second member of the structure,

and birth.year refers to the third member. The period in these names is called the member
access operator or dot operator. (Both terms are used.) Program 16.1 shows assigning values to

members of the birth structure.

Q_C7785_16.1c 702Q_C7785_16.1c 702 1/18/11 11:22 AM1/18/11 11:22 AM

703Chapter 16
Single Structures

 Program 16.1

//ƒaƒprogramƒthatƒdefinesƒandƒpopulatesƒaƒstructure
#includeƒ<iostream>
usingƒnamespaceƒstd;
intƒmain()
{
ƒƒstruct
ƒƒ{
ƒƒƒƒintƒmonth;
ƒƒƒƒintƒday;
ƒƒƒƒintƒyear;
ƒƒ}ƒƒbirth;

ƒƒbirth.monthƒ=ƒ12;
ƒƒbirth.dayƒ=ƒ28;
ƒƒbirth.yearƒ=ƒ1992;

ƒƒcoutƒ<<ƒ“Myƒbirthƒdateƒisƒ“
ƒƒƒƒƒƒƒ<<ƒbirth.monthƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒbirth.dayƒƒƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒbirth.yearƒƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 16.1 produces the following output:

Myƒbirthƒdateƒisƒ12/28/1992

As in most C++ statements, the spacing of a structure definition isn’t rigid. For example,

the birth structure could just as well have been defined as the following:

structƒ{intƒmonth;ƒintƒday;ƒintƒyear;}ƒbirth;

Also, as with all C++ definition statements, multiple variables can be defined in the same

statement. For example, the following definition statement creates two structure variables

having the same form:

struct
{
ƒƒintƒmonth;
ƒƒintƒday;
ƒƒintƒyear;
}ƒbirth,ƒcurrent;

Q_C7785_16.1c 703Q_C7785_16.1c 703 1/18/11 11:22 AM1/18/11 11:22 AM

704 Data Structures

The members of the first structure are referenced by the names birth.month, birth.
day, and birth.year, and the members of the second structure are referenced by the names

current.month, current.day, and current.year. Notice that the form of this structure

definition statement is identical to the form for defining any program variable: The data type

is followed by a list of variable names.

The most commonly used modification for defining structure types is listing the struc-

ture’s form with no variable names following. In this case, however, the list of structure mem-

bers must be preceded by a user-selected data type name. For example, in the declaration

structƒDate
{
ƒƒintƒmonth;
ƒƒintƒday;
ƒƒintƒyear;
};

the term Date is a structure type name: It defines a new data type that’s a data structure of the

declared form.1 By convention, the first letter of a user-selected data type name is uppercase,

as in the name Date, which helps identify it when it’s used in subsequent definition state-

ments. This declaration for the Date structure creates a new data type without actually reserv-

ing any storage locations.2 Therefore, it’s not a definition statement. It simply declares a Date

structure type and describes how data items are arranged in the structure. Actual storage for

the structure members is reserved only when variable names are assigned. For example, the

definition statement

Dateƒbirth,ƒcurrent;

reserves storage for two Date structure variables named birth and current. Each structure

has the form declared previously for the Date structure.3

The declaration of structure data types, like all declarations, can be global or local.

Program 16.2 shows the global declaration of a Date data type. In main(), the variable

birth is defined as a local variable of Date type. The output Program 16.2 produces is iden-

tical to the output of Program 16.1.

1For completeness, it should be mentioned that a C++ structure can also be declared as a class with no member methods and all pub-

lic data members. Similarly, a C++ class can be declared as a structure having all private data members and all public member methods.

Therefore, C++ provides two syntaxes for structures and classes. The convention, however, is to not mix notations; in other words,

always use structures for creating record types, and use classes for providing true information and implementation hiding.
2The struct declaration is equivalent to the class declaration section.
3The declaration Dateƒbirth,ƒcurrent; is equivalent to creating two objects.

Q_C7785_16.1c 704Q_C7785_16.1c 704 1/18/11 11:22 AM1/18/11 11:22 AM

705Chapter 16
Single Structures

 Program 16.2

#includeƒ<iostream>
usingƒnamespaceƒstd;
structƒDateƒƒƒƒƒ//ƒthisƒisƒaƒglobalƒdeclaration
{
ƒƒintƒmonth;
ƒƒintƒday;
ƒƒintƒyear;
};

intƒmain()
{
ƒƒDateƒbirth;

ƒƒbirth.monthƒ=ƒ12;
ƒƒbirth.dayƒ=ƒ28;
ƒƒbirth.yearƒ=ƒ1992;

ƒƒcoutƒ<<ƒ“Myƒbirthƒdateƒisƒ“
ƒƒƒƒƒƒƒ<<ƒbirth.monthƒƒƒƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒbirth.dayƒƒƒƒƒƒ<<ƒ'/'
ƒƒƒƒƒƒƒ<<ƒbirth.yearƒƒƒƒƒ<<ƒendl;

ƒƒreturnƒ0;
}

The initialization of structures follows the same rules as the initialization of arrays does:

Global and local structures can be initialized by following the definition with a list of initial-

izers. For example, the definition statement

Dateƒbirthƒ=ƒ{12,ƒ28,ƒ1992};

can be used to replace the first four statements in main() in Program 16.2. Notice that the

initializers are separated by commas, not semicolons.

Structure members aren’t restricted to integer data types, as in the Date structure. Any

valid C++ data type can be used. For example, an employee record consists of the following

data items:

Name:
IdentificationƒNumber:
RegularƒPayƒRate:
OvertimeƒPayƒRate:

Q_C7785_16.1c 705Q_C7785_16.1c 705 1/18/11 11:22 AM1/18/11 11:22 AM

706 Data Structures

The following is a suitable declaration for these data items:

structƒPayRecord
{
ƒƒstringƒname;
ƒƒintƒidNum;
ƒƒdoubleƒregRate;
ƒƒdoubleƒotRate;
};

After the PayRecord data type is declared, a structure variable using this type can be

defined and initialized. For example, the definition

PayRecordƒemployeeƒ=ƒ{“H.ƒPrice”,12387,15.89,25.50};

creates a structure named employee of the PayRecord data type. The members of employee

are initialized with the data listed between braces in the definition statement.

Notice that a single structure is simply a convenient method for combining and storing

related items under a common name. Although a single structure is useful in identifying the

relationship among its members, the members could be defined as separate variables. One of

the real advantages of using structures is realized only when the same data type is used in a

list many times over. Creating lists with the same data type is discussed in Section 16.2.

Before leaving single structures, it’s worth noting that structure members can be any valid

C++ data type, including both arrays and structures. Accessing an element of a member array

requires giving the structure’s name, followed by a period and the array designation.

Including a structure inside a structure follows the same rules for including any data type

in a structure. For example, a structure is to consist of a name and a birth date, and a Date

structure has been declared as follows:

structƒDate
{
ƒƒintƒmonth;
ƒƒintƒdate;
ƒƒintƒyear;
};

A suitable definition of a structure that includes a name and a Date structure is as follows:

struct
{
ƒƒstringƒname;
ƒƒDateƒbirth;
}ƒperson;

Notice that in declaring the Date structure, the term Date is a data type name, so it appears

before the braces in the declaration statement. In defining the person structure variable, person

is a variable name, so it’s the name of a specific structure. The same is true of the variable birth;

it’s the name of a specific Date structure. Members in the person structure are accessed by using

the structure name, followed by a period and the structure member. For example, person.birth.
month refers to the month variable in the birth structure contained in the person structure.

Q_C7785_16.1c 706Q_C7785_16.1c 706 1/18/11 11:22 AM1/18/11 11:22 AM

707Chapter 16
Single Structures

 EXERCISES 16.1

1. (Practice) Declare a structure data type named Stemp for each of the following records:

a. A student record consisting of a student identification number, number of credits com-

pleted, and cumulative grade point average

b. A student record consisting of a student’s name, birth date, number of credits completed,

and cumulative grade point average

c. A mailing list consisting of last name, first name, street address, city, state, and zip code

d. A stock record consisting of the stock’s name, the stock’s price, and the date of purchase

e. An inventory record consisting of an integer part number, a part description, the number of

parts in inventory, and an integer reorder number

2. (Practice) For the data types declared in Exercise 1, define a suitable structure variable name,

and initialize each structure with the following data:

a. Identification Number: 4672
Number of Credits Completed: 68
Grade Point Average: 3.01

b. Name: Rhona Karp
Birth Date: 8/4/1980
Number of Credits Completed: 96
Grade Point Average: 3.89

c. Name: Kay Kingsley
Street Address: 614 Freeman Street
City: Indianapolis
State: IN
Zip Code: 07030

Point of Information
Homogeneous and Heterogeneous Data Structures

Both arrays and records are structured data types. The difference between these two
data structures is the types of elements they contain. An array is a homogeneous data
structure, which means all its components must be of the same data type. A record is a
heterogeneous data structure, which means its components can be of different data
types. Therefore, an array of records is a homogeneous data structure with elements of
the same heterogeneous type.

Q_C7785_16.1c 707Q_C7785_16.1c 707 1/18/11 11:22 AM1/18/11 11:22 AM

708 Data Structures

d. Stock Name: IBM
Stock Price: 134.5
Date Purchased: 10/1/2010

e. Part Number: 16879
Part Description: Battery
Number in Stock: 10
Reorder Number: 3

3. (Program) a. Write a C++ program that prompts a user to enter the current month, day, and

year. Store the entered data in a suitably defined record and display the date in an appropriate

manner.

b. Modify the program written in Exercise 3a to use a record that accepts the current time in

hours, minutes, and seconds.

4. (Program) Write a C++ program that uses a structure for storing a stock name, its estimated

earnings per share, and its estimated price-to-earnings ratio. Have the program prompt the user

to enter these items for five different stocks, each time using the same structure to store the

entered data. When data has been entered for a particular stock, have the program compute

and display the anticipated stock price based on the entered earnings and price-per-earnings

values. For example, if a user enters the data XYZƒ1.56ƒ12, the anticipated price for a share

of XYZ stock is (1.56) × (12) = $18.72.

5. (Program) Write a C++ program that accepts a user-entered time in hours and minutes. Have

the program calculate and display the time 1 minute later.

6. (Program) a. Write a C++ program that accepts a user-entered date. Have the program calcu-

late and display the date of the next day. For the purposes of this exercise, assume all months

consist of 30 days.

b. Modify the program written in Exercise 6a to account for the actual number of days in

each month.

16.2 Arrays of Structures

The real power of structures is realized when the same structure is used for lists of data. For

example, the data shown in Figure 16.1 must be processed. Clearly, the employee numbers can

be stored together in an array of integers, the names in an array of strings, and the pay rates in

an array of double-precision numbers. In organizing the data in this fashion, each column in

Figure 16.1 is considered a separate list stored in its own array. The correspondence between

data items for each employee is maintained by storing an employee’s data in the same array

position in each array.

Q_C7785_16.1c 708Q_C7785_16.1c 708 1/18/11 11:22 AM1/18/11 11:22 AM

709Chapter 16
Arrays of Structures

Employee
Number

Employee
Name

Employee
Pay Rate

32479
33623
34145
35987
36203
36417
37634
38321
39435
39567

Abrams, B.
Bohm, P.
Donaldson, S.
Ernst, T.
Gwodz, K.
Hanson, H.
Monroe, G.
Price, S.
Robbins, L.
Williams, B.

16.72
17.54
15.56
15.43
18.72
17.64
15.29
19.67
18.50
17.20

Figure 16.1 A list of employee data

The separation of the list into three arrays is unfortunate because all the items relating

to a single employee constitute a single record. Using a structure, you can make the program

maintain and reflect the integrity of the data as a record. With this approach, the list in

Figure 16.2 can be processed as a single array of 10 structures.

Employee
Number

Employee
Name

Employee
Pay Rate

32479
33623
34145
35987
36203
36417
37634
38321
39435
39567

Abrams, B.
Bohm, P.
Donaldson, S.
Ernst, T.
Gwodz, K.
Hanson, H.
Monroe, G.
Price, S.
Robbins, L.
Williams, B.

16.72
17.54
15.56
15.43
18.72
17.64
15.29
19.67
18.50
17.20

1st structure
2nd structure

10th structure

3rd structure
4th structure
5th structure
6th structure
7th structure
8th structure
9th structure

Figure 16.2 A list of structures

Declaring an array of structures is the same as declaring an array of any other variable type.

For example, if the data type PayRecord is declared as

structƒPayRecord
{
ƒƒintƒidnum;
ƒƒstringƒname;
ƒƒdoubleƒrate;
};

Q_C7785_16.1c 709Q_C7785_16.1c 709 1/18/11 11:22 AM1/18/11 11:22 AM

710 Data Structures

then an array of 10 such structures can be defined as follows:

PayRecordƒemployee[10];

This definition statement constructs an array of 10 elements, and each element is a

structure of the data type PayRecord. Notice that creating an array of 10 structures has the

same form as creating any other array. For example, creating an array of 10 integers named

employee requires the following declaration:

intƒemployee[10];

In this declaration, the data type is integer; in the previous declaration for employee, the

data type is PayRecord.

After an array of structures is declared, a data item is referenced by giving the position of

the structure in the array, followed by a period and the structure member. For example, the

variable employee[0].rate references the rate member of the first employee structure in

the employee array. Including structures as elements of an array makes it possible to process

a list of structures by using standard array programming techniques. Program 16.3 displays the

first five employee records in Figure 16.2.

 Program 16.3

#includeƒ<iostream>
#includeƒ<iomanip>
#includeƒ<string>
usingƒnamespaceƒstd;

structƒPayRecordƒƒƒƒƒƒƒƒƒ//ƒthisƒisƒaƒglobalƒdeclaration
{
ƒƒintƒid;
ƒƒstringƒname;
ƒƒdoubleƒrate;
};

intƒmain()
{

constƒintƒNUMRECSƒ=ƒ5;ƒƒƒ//ƒmaximumƒnumberƒofƒrecords

ƒƒintƒi;
ƒƒPayRecordƒemployee[NUMRECS]ƒ=ƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒ32479,ƒ“Abrams,ƒB.”,ƒ16.72},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒ33623,ƒ“Bohm,ƒP.”,ƒ17.54},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒ34145,ƒ“Donaldson,ƒS.”,ƒ15.56},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒ35987,ƒ“Ernst,ƒT.”,ƒ15.43},
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ{ƒ36203,ƒ“Gwodz,ƒK.”,ƒ18.72}
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ}; ☞

Q_C7785_16.1c 710Q_C7785_16.1c 710 1/18/11 11:22 AM1/18/11 11:22 AM

711Chapter 16
Arrays of Structures

ƒƒcoutƒ<<ƒendl;ƒƒƒ//ƒstartƒonƒaƒnewƒline
ƒƒcoutƒ<<ƒsetiosflags(ios::left);ƒƒ//ƒleft-justifyƒtheƒoutput
ƒƒforƒ(iƒ=ƒ0;ƒiƒ<ƒNUMRECS;ƒi++)
ƒƒƒƒcoutƒ<<ƒsetw(7)ƒƒ<<ƒemployee[i].id
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(15)ƒ<<ƒemployee[i].name
ƒƒƒƒƒƒƒƒƒ<<ƒsetw(6)ƒƒ<<ƒemployee[i].rateƒ<<ƒendl;

ƒƒreturnƒ0;
}

Program 16.3 displays the following output:

32479ƒƒAbrams,ƒB.ƒƒƒƒƒ16.72
33623ƒƒBohm,ƒP.ƒƒƒƒƒƒƒ17.54
34145ƒƒDonaldson,ƒS.ƒƒ15.56
35987ƒƒErnst,ƒT.ƒƒƒƒƒƒ15.43
36203ƒƒGwodz,ƒK.ƒƒƒƒƒƒ18.72

In reviewing Program 16.3, notice the initialization of the array of structures. Although the

initializers for each structure have been enclosed in inner braces, they aren’t strictly necessary

because all members have been initialized. As with all external and static variables, in the

absence of explicit initializers, the numeric elements of static and external arrays or structures

are initialized to 0, and their character elements are initialized to NULLs. The

setiosflags(ios::left) manipulator included in the cout object stream forces each name

to be displayed left-justified in its designated field width.

 EXERCISES 16.2

1. (Practice) Define arrays of 100 structures for each of the data types described in Exercise 1

of Section 16.1.

2. (Program) a. Using the data type

structƒDaysInMonth
{
ƒƒstringƒname;
ƒƒintƒdays;
};

 define an array of 12 structures of type DaysInMonth. Name the array convert[], and initial-

ize the array with the names of the 12 months in a year and the number of days in each month.

b. Include the array created in Exercise 2a in a program that displays the names of months and

number of days in each month.

3. (Program) Using the data type declared in Exercise 2a, write a C++ program that accepts a

month from a user in numerical form and displays the name of the month and the number of

days in the month. For example, in response to an input of 3, the program would display

Marchƒhasƒ31ƒdays.

Q_C7785_16.1c 711Q_C7785_16.1c 711 1/18/11 11:22 AM1/18/11 11:22 AM

712 Data Structures

4. (Program) a. Declare a single structure data type suitable for an employee structure of the

type shown in the following chart:

Number Name Rate Hours

3462 Jones 9.62 40
6793 Robbins 8.83 38
6985 Smith 8.22 45
7834 Swain 9.89 40
8867 Timmins 8.43 35
9002 Williams 9.75 42

b. Using the data type declared in Exercise 4a, write a C++ program that interactively accepts

the chart’s data in an array of six structures. After the data has been entered, the program

should create a payroll report listing each employee’s name, number, and gross pay. Include

the total gross pay of all employees at the end of the report.

5. (Program) a. Declare a single structure data type suitable for a car structure of the type

shown in the following chart:

Car Number Miles Driven Gallons Used

25 1450 62
36 3240 136
44 1792 76
52 2360 105
68 2114 67

b. Using the data type declared for Exercise 5a, write a C++ program that interactively accepts

the chart’s data in an array of five structures. After the data has been entered, the program

should create a report listing each car number and the car’s miles per gallon. At the end of

the report, include the average miles per gallon for the entire fleet of cars.

16.3 Structures as Function Arguments

Structure members can be passed to a function in the same manner as any scalar variable. For

example, given the structure definition

struct
{
ƒƒintƒidNum;
ƒƒdoubleƒpayRate;
ƒƒdoubleƒhours;
}ƒemp;

Q_C7785_16.1c 712Q_C7785_16.1c 712 1/18/11 11:22 AM1/18/11 11:22 AM

713Chapter 16
Structures as Function Arguments

the following statement passes a copy of the structure member emp.idNum to a function

named display():

display(emp.idNum);

Similarly, the statement

calcPay(emp.payRate,emp.hours);

passes copies of the values stored in structure members emp.payRate and emp.hours to the

calcPay() function. Both functions, display() and calcPay(), must declare the correct

data types for their parameters.

Copies of all structure members can also be passed to a function by including the name of

the structure as an argument to the called function. For example, this function call passes a

copy of the emp structure to calcNet():

calcNet(emp);

Inside calcNet(), a declaration must be made to receive the structure. Program 16.4

declares a global data type for an employee structure. The main() and calcNet() functions

then use this data type to define structures with the names emp and temp, respectively.

 Program 16.4

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;
structƒEmployeeƒƒƒƒ//ƒdeclareƒaƒglobalƒdataƒtype
{
ƒƒintƒidNum;
ƒƒdoubleƒpayRate;
ƒƒdoubleƒhours;
};

doubleƒcalcNet(Employee);ƒƒƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒEmployeeƒempƒ=ƒ{6782,ƒ8.93,ƒ40.5};
ƒƒdoubleƒnetPay;

ƒƒnetPayƒ=ƒcalcNet(emp);ƒƒƒƒƒ//ƒpassƒcopiesƒofƒtheƒvaluesƒinƒemp

☞

Q_C7785_16.1c 713Q_C7785_16.1c 713 1/18/11 11:22 AM1/18/11 11:22 AM

714 Data Structures

ƒƒƒƒ//ƒsetƒoutputƒformats
ƒƒcoutƒ<<ƒsetw(10)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2);

ƒƒcoutƒ<<ƒ“Theƒnetƒpayƒforƒemployeeƒ“ƒ<<ƒemp.idNum
ƒƒƒƒƒƒƒ<<ƒ“ƒisƒ$”ƒ<<ƒnetPayƒ<<ƒendl;

ƒƒreturnƒ0;
}

doubleƒcalcNet(Employeeƒtemp)ƒƒ//ƒtempƒisƒofƒdataƒtypeƒEmployee
{
ƒƒreturnƒ(temp.payRateƒ*ƒtemp.hours);
}

The output produced by Program 16.4 is as follows:

Theƒnetƒpayƒforƒemployeeƒ6782ƒisƒ$361.66

In reviewing Program 16.4, observe that both main() and calcNet() use the same data

type to define their structure variables. The structure variable defined in main() and the

structure variable defined in calcNet() are two different structures. Any changes made to the

local temp variable in calcNet() aren’t reflected in the emp variable of main(). In fact,

because both structure variables are local to their functions, the same structure variable name

could have been used in both functions with no ambiguity.

When calcNet() is called by main(), copies of emp’s structure values are passed to the

temp structure. calcNet() then uses two of the passed member values to calculate a number,

which is returned to main(). An alternative to the pass-by-value function call in Program 16.4,

in which the called function receives a copy of a structure, is a pass by reference that passes a

reference to a structure. Doing so allows the called function to access and alter values directly

in the calling function’s structure variable. For example, in Program 16.4, the prototype of

calcNet() can be modified to the following:

doubleƒcalcNet(Employeeƒ&);

If this function prototype is used and the calcNet() function is rewritten to conform to

it, the main() function in Program 16.4 can be used as is. Program 16.4a shows these changes

in the context of a complete program, with the two changed statements shaded.

Q_C7785_16.1c 714Q_C7785_16.1c 714 1/18/11 11:22 AM1/18/11 11:22 AM

715Chapter 16
Structures as Function Arguments

 Program 16.4a

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;
structƒEmployeeƒƒƒƒ//ƒdeclareƒaƒglobalƒdataƒtype
{
ƒƒintƒidNum;
ƒƒdoubleƒpayRate;
ƒƒdoubleƒhours;
};

doubleƒcalcNet(Employee&);ƒƒƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒEmployeeƒempƒ=ƒ{6782,ƒ8.93,ƒ40.5};
ƒƒdoubleƒnetPay;

ƒƒnetPayƒ=ƒcalcNet(emp);ƒƒƒƒ//ƒpassƒaƒreference

ƒƒƒƒ//ƒsetƒoutputƒformats
ƒƒcoutƒ<<ƒsetw(10)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2);

ƒƒcoutƒ<<ƒ“Theƒnetƒpayƒforƒemployeeƒ“ƒ<<ƒemp.idNum
ƒƒƒƒƒƒƒ<<ƒ“ƒisƒ$”ƒ<<ƒnetPayƒ<<ƒendl;

ƒƒreturnƒ0;
}

doubleƒcalcNet(Employee&ƒtemp)ƒƒƒ//ƒtempƒisƒaƒreferenceƒvariable
{
ƒƒreturnƒ(temp.payRateƒ*ƒtemp.hours);
}

Program 16.4a produces the same output as Program 16.4, except the calcNet() function

in Program 16.4a receives direct access to the emp structure instead of a copy of it. This means

the variable name temp in calcNet() is an alternative name for the variable emp in main(),

and any changes to temp are direct changes to emp. Although the same function call,

calcNet(emp), is made in both programs, the call in Program 16.4a passes a reference, and the

call in Program 16.4 passes values.

Q_C7785_16.1c 715Q_C7785_16.1c 715 1/18/11 11:22 AM1/18/11 11:22 AM

716 Data Structures

Passing a Pointer
Instead of passing a reference, a pointer can be used. Using a pointer requires modifying the

function’s prototype and header and modifying the call to calcNet() in Program 16.4 to the

following:

calcNet(&emp);

This function call clearly indicates that an address is being passed (which isn’t the case

in Program 16.4a). The disadvantage is the dereferencing notation required inside the func-

tion. However, as pointers are widely used in practice, becoming familiar with this notation

is worthwhile.

To store the passed address, calcNet() must declare its parameter as a pointer. The fol-

lowing function definition for calcNet() is suitable:

calcNet(Employeeƒ*pt)

This definition declares the pt parameter as a pointer to a structure of type Employee. The

pt pointer receives the starting address of a structure when calcNet() is called. In calcNet(),

this pointer is used to access any member in the structure. For example, (*pt).idNum refers to

the idNum structure member, (*pt).payRate refers to the payRate structure member, and

(*pt).hours refers to the hours structure member. These relationships are illustrated in

Figure 16.3.

idNum

Starting
address
of emp

pt:

emp:

payRate hours

(*pt).hours
(*pt).payRate
(*pt).idNum=*pt

Figure 16.3 A pointer can be used to access structure members

The parentheses around the expression *pt in Figure 16.3 are necessary to access “the

structure whose address is in pt.” The (*pt) is followed by an identifier to access the struc-

ture member. In the absence of parentheses, the structure member operator, ., takes prece-

dence over the indirection operator, *. Therefore, the expression *pt.hours is another way of

writing *(pt.hours), which would mean “the variable whose address is in the pt.hours

variable.” This expression makes no sense because there’s no structure named pt and hours

doesn’t contain an address.

As shown in Figure 16.3, the starting address of the emp structure is also the address of the

first structure member. Using pointers in this manner is so common that a special notation

exists for it. The general expression (*pointer).member can always be replaced with the

notation pointer->member. The -> operator is a hyphen followed by a greater-than symbol.

Q_C7785_16.1c 716Q_C7785_16.1c 716 1/18/11 11:22 AM1/18/11 11:22 AM

717Chapter 16
Structures as Function Arguments

Either expression can be used to locate the member. For example, the following expressions

are equivalent:

(*pt).idNum can be replaced by pt->idNum
(*pt).payRate can be replaced by pt->payRate
(*pt).hours can be replaced by pt->hours

Program 16.5 shows passing a structure’s address and using a pointer with the new nota-

tion to reference the structure directly. The name of the pointer parameter declared in

Program 16.5 is, of course, selected by the programmer. When calcNet() is called, emp’s start-

ing address is passed to the function. Using this address as a starting point, structure members

are accessed by including their names with the pointer.

 Program 16.5

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

structƒEmployeeƒƒ//ƒdeclareƒaƒglobalƒdataƒtype
{
ƒƒintƒidNum;
ƒƒdoubleƒpayRate;
ƒƒdoubleƒhours;
};

doubleƒcalcNet(Employeeƒ*);ƒƒƒƒ//functionƒprototype

intƒmain()
{
ƒƒEmployeeƒempƒ=ƒ{6782,ƒ8.93,ƒ40.5};
ƒƒdoubleƒnetPay;

ƒƒnetPayƒ=ƒcalcNet(&emp);ƒƒƒƒ//ƒpassƒanƒaddress

ƒƒƒƒƒ//ƒsetƒoutputƒformats
ƒƒcoutƒ<<ƒsetw(10)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::fixed)
ƒƒƒƒƒƒƒ<<ƒsetiosflags(ios::showpoint)
ƒƒƒƒƒƒƒ<<ƒsetprecision(2);

ƒƒcoutƒ<<ƒ“Theƒnetƒpayƒforƒemployeeƒ“ƒ<<ƒemp.idNum
ƒƒƒƒƒƒƒ<<ƒ“ƒisƒ$”ƒ<<ƒnetPayƒ<<ƒendl;

☞

Q_C7785_16.1c 717Q_C7785_16.1c 717 1/18/11 11:22 AM1/18/11 11:22 AM

718 Data Structures

ƒƒreturnƒ0;
}

doubleƒcalcNet(Employeeƒ*pt)ƒƒ//ƒptƒisƒaƒpointerƒtoƒa
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstructureƒofƒEmployeeƒtype
ƒƒreturnƒ(pt->payRateƒ*ƒpt->hours);
}

As with all C++ expressions that access a variable, the increment (++) and decrement (--)

operators can also be applied to them. For example, the expression

++pt->hours

adds 1 to the hours member of the emp structure. Because the -> operator has a higher prior-

ity than the increment operator, the hours member is accessed first, and then the increment

is applied. Alternatively, the expression (++pt)->hours uses the prefix increment operator to

increment the address in pt before the hours member is accessed. Similarly, the expression

(pt++)->hours uses the postfix increment operator to increment the address in pt after the

hours member is accessed. In both cases, however, there must be enough defined structures

to ensure that the incremented pointers actually point to legitimate structures.

As an example, Figure 16.4 shows an array of three structures of type Employee. Assuming

the address of emp[1] is stored in the pointer variable pt, the expression ++pt changes the

address in pt to the starting address of emp[2], and the expression --pt changes the address

to point to emp[0].

&emp[1]

pt

Decrementing the address in pt
causes the pointer to point here

emp[0].idNum emp[0].payRate emp[0].hours

emp[1].idNum emp[1].payRate emp[1].hours

emp[2].idNum emp[2].payRate emp[2].hours

Incrementing the
address in pt
causes the pointer
to point here

The address in pt currently points to emp[1]

Figure 16.4 Changing pointer addresses

Returning Structures
In practice, most structure-handling functions get direct access to a structure by receiving a

structure reference or address. Then any changes to the structure can be made directly from

inside the function. If you want to have a function return a separate structure, however, you

must follow the same procedures for returning data structures as for returning scalar values.

Q_C7785_16.1c 718Q_C7785_16.1c 718 1/18/11 11:22 AM1/18/11 11:22 AM

719Chapter 16
Structures as Function Arguments

These procedures include declaring the function appropriately and alerting any calling func-

tion to the type of data structure being returned. For example, the getValues() function in

Program 16.6 returns a data structure to main().

 Program 16.6

#includeƒ<iostream>
#includeƒ<iomanip>
usingƒnamespaceƒstd;

structƒEmployeeƒƒƒƒ//ƒdeclareƒaƒglobalƒdataƒtype
{
ƒƒintƒidNum;
ƒƒdoubleƒpayRate;
ƒƒdoubleƒhours;
};

EmployeeƒgetValues();ƒƒƒƒ//ƒfunctionƒprototype

intƒmain()
{
ƒƒEmployeeƒemp;

ƒƒempƒ=ƒgetValues();
ƒƒcoutƒ<<ƒ“\nTheƒemployeeƒIDƒnumberƒisƒ“ƒ<<ƒemp.idNum
ƒƒƒƒƒƒƒ<<ƒ“\nTheƒemployeeƒpayƒrateƒisƒ$”ƒ<<ƒemp.payRate
ƒƒƒƒƒƒƒ<<ƒ“\nTheƒemployeeƒhoursƒareƒ“ƒ<<ƒemp.hoursƒ<<ƒendl;

ƒƒreturnƒ0;
}

EmployeeƒgetValues()ƒ//ƒreturnƒanƒemployeeƒstructure
{
ƒƒEmployeeƒnext;

ƒƒnext.idNumƒ=ƒ6789;
ƒƒnext.payRateƒ=ƒ16.25;
ƒƒnext.hoursƒ=ƒ38.0;

ƒƒreturn(next);
}

Q_C7785_16.1c 719Q_C7785_16.1c 719 1/18/11 11:22 AM1/18/11 11:22 AM

720 Data Structures

The following output is displayed when Program 16.6 runs:

TheƒemployeeƒIDƒnumberƒisƒ6789
Theƒemployeeƒpayƒrateƒisƒ$16.25
Theƒemployeeƒhoursƒareƒ38

The getValues() function returns a structure, so the function header for getValues()

must specify the type of structure being returned. Because getValues() doesn’t receive any

arguments, the function header has no parameter declarations and consists of this line:

EmployeeƒgetValues();

In getValues(), the variable next is defined as a structure of the type to be returned.

After values have been assigned to the next structure, the structure values are returned by

including the structure name in the parentheses of the return statement.

On the receiving side, main() must be alerted that the getValues() function will be

returning a structure. This alert is handled by including a function declaration for getValues()
in main(). Notice that these steps for returning a structure from a function are identical to the

procedures for returning scalar data types, described in Chapter 6.

 EXERCISES 16.3

1. (Program) Write a C++ function named days() that determines the number of days since

January 1, 1900 for any date passed as a structure. Use the Date structure:

structƒDate
{
ƒƒintƒmonth;
ƒƒintƒday;
ƒƒintƒyear;
};

 In writing the days() function, follow the convention that all years have 360 days and each

month consists of 30 days. The function should return the number of days for any Date struc-

ture passed to it.

2. (Program) Write a C++ function named difDays() that calculates and returns the difference

between two dates. Each date is passed to the function as a structure by using the following

global data type:

structƒDate
{
ƒƒintƒmonth;
ƒƒintƒday;
ƒƒintƒyear;
};

 The difDays() function should make two calls to the days() function written for

Exercise 1.

Q_C7785_16.1c 720Q_C7785_16.1c 720 1/18/11 11:22 AM1/18/11 11:22 AM

721Chapter 16
Dynamic Structure Allocation

3. (Modify) a. Rewrite the days() function written for Exercise 1 to receive a reference to a

Date structure rather than a copy of the structure.

b. Redo Exercise 3a, using a pointer rather than a reference.

4. (Program) a. Write a C++ function named larger() that returns the later date of any two

dates passed to it. For example, if the dates 10/9/2010 and 11/3/2012 are passed to larger(),

the second date is returned.

b. Include the larger() function written for Exercise 4a in a complete program. Store the

Date structure returned by larger() in a separate Date structure and display the member

values of the returned Date.

5. (Modify) a. Modify the days() function written for Exercise 1 to account for the actual num-

ber of days in each month. Assume, however, that each year contains 365 days (that is, don’t

account for leap years).

b. Modify the function written for Exercise 5a to account for leap years.

16.4 Dynamic Structure Allocation

You have already learned about allocating and deallocating memory space with the new and

delete operators (see Section 8.2). For convenience, Table 16.1 repeats the description of

these operators.

Table 16.1 Operators for Dynamic Allocation and Deallocation

Operator Name Description

new Reserves the number of bytes requested by the declaration.
Returns the address of the first reserved location or NULL if not
enough memory is available.

delete Releases a block of bytes reserved previously. The address of the
first reserved location is required by the operator.

Dynamic allocation of memory is especially useful when dealing with a list of structures

because it permits expanding the list as new records are added and contracting the list as

records are deleted. In requesting additional storage space, the user must provide the new

operator with an indication of the amount of storage needed for a particular data type. For

example, the expression new(int) or newƒint (the two forms can be used interchangeably)

requests enough storage to store an integer number. A request for enough storage for a data

structure is made in the same fashion. For example, by using the declaration

structƒTeleType
{
ƒƒstringƒname;
ƒƒstringƒphoneNo;
};

Q_C7785_16.1c 721Q_C7785_16.1c 721 1/18/11 11:22 AM1/18/11 11:22 AM

722 Data Structures

both the expressions newƒTeleType and new(TeleType) reserve enough storage for one

TeleType data structure.

In allocating storage dynamically, you have no advance indication where the computer will

physically reserve the requested number of bytes, and you have no explicit name to access the

newly created storage locations. To provide access to these locations, new returns the address

of the first location that has been reserved. This address must, of course, be assigned to a

pointer. The return of an address by new is especially useful for creating a linked list of data

structures. As each new structure is created, the address that new returns to the structure can

be assigned to a member of the previous structure in the list. Program 16.7 shows using new to

create a structure dynamically in response to a user-entered request.

 Program 16.7

//ƒaƒprogramƒillustratingƒdynamicƒstructureƒallocation
#includeƒ<iostream>
#includeƒ<string>
usingƒnamespaceƒstd;

structƒTeleType
{
ƒƒstringƒname;
ƒƒstringƒphoneNo;
};

voidƒpopulate(TeleTypeƒ*);ƒ//ƒfunctionƒprototypeƒneededƒbyƒmain()
voidƒdispOne(TeleTypeƒ*);ƒƒ//ƒfunctionƒprototypeƒneededƒbyƒmain()

intƒmain()
{
ƒƒcharƒkey;
ƒƒTeleTypeƒ*recPoint;ƒƒ//ƒrecPointƒisƒaƒpointerƒtoƒa
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstructureƒofƒtypeƒTeleType

ƒƒcoutƒ<<ƒ“Doƒyouƒwantƒtoƒcreateƒaƒnewƒrecordƒ(respondƒyƒorƒn):ƒ“;
ƒƒkeyƒ=ƒcin.get();
ƒƒifƒ(keyƒ==ƒ'y')
ƒƒ{
ƒƒƒƒkeyƒ=ƒcin.get();ƒƒƒ//ƒgetƒtheƒEnterƒkeyƒinƒbufferedƒinput
ƒƒƒƒrecPointƒ=ƒnewƒTeleType;
ƒƒƒƒpopulate(recPoint);
ƒƒƒƒdispOne(recPoint);
ƒƒ}

☞

Q_C7785_16.1c 722Q_C7785_16.1c 722 1/18/11 11:22 AM1/18/11 11:22 AM

723Chapter 16
Dynamic Structure Allocation

ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“\nNoƒrecordƒhasƒbeenƒcreated.”;

ƒƒreturnƒ0;
}
ƒƒ//ƒinputƒaƒnameƒandƒphoneƒnumber
voidƒpopulate(TeleTypeƒ*record)ƒƒ//ƒrecordƒisƒaƒpointerƒtoƒa
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstructureƒofƒtypeƒTeleType
ƒƒcoutƒ<<ƒ“Enterƒaƒname:ƒ“;
ƒƒgetline(cin,ƒrecord->name);
ƒƒcoutƒ<<ƒ“Enterƒtheƒphoneƒnumber:ƒ“;
ƒƒgetline(cin,ƒrecord->phoneNo);

ƒƒreturn;
}
ƒƒ//ƒdisplayƒtheƒcontentsƒofƒoneƒrecord
voidƒdispOne(TeleTypeƒ*contents)ƒƒ//ƒcontentsƒisƒaƒpointerƒtoƒa
{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstructureƒofƒtypeƒTeleType
ƒƒƒƒcoutƒ<<ƒ“\nTheƒcontentsƒofƒtheƒrecordƒjustƒcreatedƒare:”
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nName:ƒ“ƒ<<ƒcontents->name
ƒƒƒƒƒƒƒƒƒ<<ƒ“\nPhoneƒNumber:ƒ“ƒ<<ƒcontents->phoneNoƒ<<ƒendl;

ƒƒƒƒreturn;
}

A sample run of Program 16.7 is as follows:

Doƒyouƒwantƒtoƒcreateƒaƒnewƒrecordƒ(respondƒyƒorƒn):ƒy
Enterƒaƒname:ƒMonroe,ƒJames
Enterƒtheƒphoneƒnumber:ƒ(555)ƒ617-1817
Theƒcontentsƒofƒtheƒrecordƒjustƒcreatedƒare:
Name:ƒMonroe,ƒJames
PhoneƒNumber:ƒ(555)ƒ617-1817

In reviewing Program 16.7, notice that only two variable declarations are made in main().

The variable key is declared as a character variable, and the variable recPoint is declared as

a pointer to a structure of the TeleType type. Because the declaration for the TeleType type

is global, TeleType can be used in main() to define recPoint as a pointer to a structure of

the TeleType type.

If a user enters y in response to the first prompt in main(), a call to new is made for the

required memory to store the designated structure. After recPoint has been loaded with the

correct address, this address can be used to access the newly created structure.

The populate() function is used to prompt the user for data needed in filling the struc-

ture and to store the user-entered data in the correct structure members. The argument passed

to populate() in main() is the pointer recPoint. Like all passed arguments, the value in

Q_C7785_16.1c 723Q_C7785_16.1c 723 1/18/11 11:22 AM1/18/11 11:22 AM

724 Data Structures

recPoint is passed to the function. The value in recPoint is an address, so populate()

receives the address of the newly created structure and can access the structure members

directly.

In populate(), the value it receives is stored in the argument record. Because the value

to be stored in record is the address of a structure, record must be declared as a pointer to a

structure. This declaration is provided by the statement TeleTypeƒ*record;. The state-

ments in populate() use the address in record to locate the structure members.

The dispOne() function displays the contents of the newly created and populated struc-

ture. The address passed to dispOne() is the same address that was passed to populate().

Because this passed value is the address of a structure, the parameter name used to store the

address is declared as a pointer to the correct structure type.

 EXERCISES 16.4

1. (Modify) As described in Table 16.1, the new operator returns the address of the first new

storage area allocated or NULL if not enough storage is available. Modify Program 16.7 to check

that a valid address has been returned before a call to populate() is made. Display an appro-

priate message if not enough storage is available.

2. (Program) Write a C++ function named modify() that modifies an existing structure in a list

of structures consisting of names and phone numbers. The argument passed to modify()

should be the address of the structure to be modified. The modify() function should display

the existing name and phone number in the selected structure, request a new name and phone

number, and then display the final structure.

3. (Program) Write a function named insert() that inserts a structure in a linked list of struc-

tures consisting of names and phone numbers. The argument passed to insert() should be

the address of the structure preceding the structure to be inserted. The inserted structure

should follow this current structure. The insert() function should create a new structure

dynamically, call the populate() function used in Program 16.7, and adjust all pointer values

accordingly.

16.5 Unions4

A union is a data type that reserves the same area in memory for two or more variables that can

be different data types. A variable declared as a union data type can be used to hold a charac-

ter variable, an integer variable, a double-precision variable, or any other valid C++ data type.

Each of these types, but only one at a time, can be assigned to the union variable.

4This topic can be omitted on first reading with no loss of subject continuity.

Q_C7785_16.1c 724Q_C7785_16.1c 724 1/18/11 11:22 AM1/18/11 11:22 AM

725Chapter 16
Unions

The definition of a union has the same form as a structure definition, with the keyword

union used in place of the keyword struct. For example, the following declaration creates a

union variable named val:

union
{
ƒƒcharƒkey;
ƒƒintƒnum;
ƒƒdoubleƒprice;
}ƒval;

If val were a structure, it would consist of three members. As a union, however, val con-

tains a single member that can be a character variable named key, an integer variable named

num, or a double-precision variable named price. In effect, a union reserves enough memory

locations to accommodate its largest member’s data type. This same set of locations is then

referenced by different variable names, depending on the data type of the value currently

stored in the reserved locations. Each value stored overwrites the previous value, using as

many bytes of the reserved memory area as necessary.

Union members are referenced by using the same notation as structure members. For

example, if the val union is currently being used to store a character, the correct variable name

to access the stored character is val.key. Similarly, if the union is used to store an integer, the

value is accessed by the name val.num, and a double-precision value is accessed by the name

val.price. In using union members, it’s the programmer’s responsibility to make sure the

correct member name is used for the data type currently stored in the union.

Typically, a second variable is used to keep track of the current data type stored in the

union. For example, the following code could be used to select the appropriate member of val

for display. The value in the uType variable determines the currently stored data type in the

val union:

switch(uType)
{
ƒƒcaseƒ'c':ƒcoutƒ<<ƒval.key;
ƒƒƒƒƒƒƒƒƒƒƒƒbreak;
ƒƒcaseƒ'i':ƒcoutƒ<<ƒval.num;
ƒƒƒƒƒƒƒƒƒƒƒƒbreak;
ƒƒcaseƒ'd':ƒcoutƒ<<ƒval.price;
ƒƒƒƒƒƒƒƒƒƒƒƒbreak;
ƒƒdefaultƒ:ƒcoutƒ<<ƒ“InvalidƒtypeƒinƒuTypeƒ:ƒ“ƒ<<ƒuType;
}

As in structures, a data type can be associated with a union. For example, the declaration

unionƒDateTime
{
ƒƒintƒdays;
ƒƒdoubleƒtime;
};

Q_C7785_16.1c 725Q_C7785_16.1c 725 1/18/11 11:22 AM1/18/11 11:22 AM

726 Data Structures

provides a union data type without actually reserving any storage locations. This data type can

then be used to define any number of variables. For example, the definition

DateTimeƒfirst,ƒsecond,ƒ*pt;

creates a union variable named first, a union variable named second, and a pointer that can

be used to store the address of any union having the form DateTime. After a pointer to a union

has been declared, the same notation for accessing structure members can be used to access

union members. For example, if the assignment ptƒ=ƒ&first; is made, pt->date refer-

ences the dateƒmember of the union named first.

Unions can be members of structures or arrays, and structures, arrays, and pointers can be

members of unions. In each case, the notation used to access a member must be consistent

with the nesting used. For example, in the structure defined by

struct
{
ƒƒcharƒuType;
ƒƒunion
ƒƒ{
ƒƒƒƒcharƒ*text;
ƒƒƒƒfloatƒrate;
ƒƒ}ƒuTax;
}ƒƒflag;

the variable rate is referenced as

flag.uTax.rate

Similarly, the first character of the string whose address is stored in the pointer text is

referenced as follows:

*flag.uTax.text

 EXERCISES 16.5

1. (Practice) Assume the following definition has been made:

union
{
ƒƒdoubleƒrate;
ƒƒdoubleƒtaxes;
ƒƒintƒnum;
}ƒflag;

 For this union, write cout statements to display the members of the union.

Q_C7785_16.1c 726Q_C7785_16.1c 726 1/18/11 11:22 AM1/18/11 11:22 AM

727Chapter 16
Common Programming Errors

2. (Practice) Define a union variable named car containing an integer named year, an array of

10 characters named name, and an array of 10 characters named model.

3. (Practice) Define a union variable named factors that allows referencing a double-precision

number by the variable names watts and power.

4. (Practice) Define a union data type named Amt containing an integer variable named intAmt,

a double-precision variable named dblAmt, and a pointer to a character variable named ptKey.

5. (Desk check) a. What do you think the following section of code will display?

union
{
ƒƒcharƒch;
ƒƒdoubleƒbtype;
}ƒalt;
alt.chƒ=ƒ'y';
coutƒ<<ƒalt.btype;

b. Include the code in Exercise 5a in a program, and run the program to verify your answer to

Exercise 5a.

16.6 Common Programming Errors

Three common errors are often made when using structures or unions:

1. Structures and unions, as complete entities, can’t be used in relational expressions. For

example, even if TeleType and PhonType are two structures of the same type, the expres-

sion TeleTypeƒ==ƒPhonType is invalid. Members of a structure or union can, of course, be

compared if they’re of the same data type, using any of C++’s relational operators.

2. When a pointer is used to “point to” a structure or a union or is a member of a structure or

a union, take care to use the address in the pointer to access the correct data type. If you’re

confused about exactly what’s being pointed to, remember: “If in doubt, print it out.”

3. Because a union can store only one of its members at a time, you must be careful to keep

track of the currently stored variable. Storing one data type in a union and accessing it by

the wrong variable name can result in an error that’s particularly troublesome to locate.

Q_C7785_16.1c 727Q_C7785_16.1c 727 1/18/11 11:22 AM1/18/11 11:22 AM

728 Data Structures

16.7 Chapter Summary
1. A structure allows grouping variables under a common variable name. Each variable in a

structure is accessed by its structure variable name, followed by a period and then its vari-

able name. Another term for a data structure is a record. One form for declaring a structure

variable is as follows:

struct
{
ƒƒ//ƒmemberƒdeclarationsƒinƒhere
}ƒstructureName;

2. A named data type can be created from a structure by using this declaration form:

structƒDataType
{
ƒƒ//ƒmemberƒdeclarationsƒinƒhere
};

 Structure variables can then be defined as this DataType. By convention, the first letter of

the DataType name is always capitalized.

3. Structures are particularly useful as elements of arrays. Used in this manner, each structure

becomes one record in a list of records.

4. Complete structures can be used as function arguments, in which case the called function

receives a copy of each element in the structure. A structure’s address can also be passed as

a reference or a pointer, which gives the called function direct access to the structure.

5. Structure members can be any valid C++ data type, including other structures, unions,

arrays, and pointers. When a pointer is included as a structure member, a linked list can be

created. This list uses the pointer in one structure to “point to” (contain the address of) the

next logical structure in the list.

6. Unions are declared in the same manner as structures. The definition of a union creates a

memory overlay area, with each union member using the same memory storage locations.

Therefore, only one member of a union can be active at a time.

Q_C7785_16.1c 728Q_C7785_16.1c 728 1/18/11 11:22 AM1/18/11 11:22 AM

A

Table A.1 lists the symbols, precedence, descriptions, and associativity of C++’s operators.

Operators toward the top of the table have a higher precedence than those toward the bottom.

Operators in each section of the table have the same precedence and associativity.

Table A.1 Summary of C++ Operators

Operator Description Associativity
() Function call Left to right
[] Array element
–> Structure member pointer

reference
. Structure member

reference

Appendix

Operator Precedence
Table

R_C7785_AppA.1c 729R_C7785_AppA.1c 729 1/18/11 11:22 AM1/18/11 11:22 AM

730 Operator Precedence Table

Table A.1 Summary of C++ Operators (continued)

Operator Description Associativity
++ Increment Right to left
-- Decrement
– Unary minus
! Logical negation
~ One’s complement
(type) Type conversion (cast)
sizeof Storage size
& Address of
* Indirection
* Multiplication Left to right
/ Division
% Modulus (remainder)
+ Addition Left to right
– Subtraction
<< Left shift Left to right
>> Right shift
< Less than Left to right
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to Left to right
!= Not equal to
& Bitwise AND Left to right
^ Bitwise exclusive OR Left to right
| Bitwise inclusive OR Left to right
&& Logical AND Left to right
|| Logical OR Left to right
?: Conditional expression Right to left
= Assignment Right to left
+= –= *= Assignment
/= %= &= Assignment
^= |= Assignment
<<= >>= Assignment
, Comma Left to right

R_C7785_AppA.1c 730R_C7785_AppA.1c 730 1/18/11 11:22 AM1/18/11 11:22 AM

B

Key(s) Dec Oct Hex Key(s) Dec Oct Hex Key(s) Dec Oct Hex
Ctrl 1 0 0 0 Ctrl K 11 13 B Ctrl V 22 26 16
Ctrl A 1 1 1 Ctrl L 12 14 C Ctrl W 23 27 17
Ctrl B 2 2 2 Ctrl M 13 15 D

(Ret)
Ctrl X 24 30 18

Ctrl C 3 3 3 Ctrl N 14 16 E Ctrl Y 25 31 19
Ctrl D 4 4 4 Ctrl O 15 17 F Ctrl Z 26 32 1A
Ctrl E 5 5 5 Ctrl P 16 20 10 Esc 27 33 1B
Ctrl F 6 6 6 Ctrl Q 17 21 11 Ctrl < 28 34 1C
Ctrl G 7 7 7 Ctrl R 18 22 12 Ctrl / 29 35 1D
Ctrl H 8 10 8 Ctrl S 19 23 13 Ctrl = 30 36 1E
Ctrl I 9 11 9 Ctrl T 20 24 14 Ctrl - 31 37 1F
Ctrl J 10 12 A
(line feed)

Ctrl U 21 25 15 Space 32 40 20

Appendix

ASCII Character
Codes

S_C7785_AppB.1c 731S_C7785_AppB.1c 731 1/18/11 11:23 AM1/18/11 11:23 AM

732 ASCII Character Codes

Key(s) Dec Oct Hex Key(s) Dec Oct Hex Key(s) Dec Oct Hex
! 33 41 21 A 65 101 41 a 97 141 61
" 34 42 22 B 66 102 42 b 98 142 62
35 43 23 C 67 103 43 c 99 143 63
$ 36 44 24 D 68 104 44 d 100 144 64
% 37 45 25 E 69 105 45 e 101 145 65
& 38 46 26 F 70 106 46 f 102 146 66
' 39 47 27 G 71 107 47 g 103 147 67
(40 50 28 H 72 110 48 h 104 150 68
) 41 51 29 I 73 111 49 i 105 151 69
* 42 52 2A J 74 112 4A j 106 152 6A
+ 43 53 2B K 75 113 4B k 107 153 6B
, 44 54 2C L 76 114 4C l 108 154 6C
- 45 55 2D M 77 115 4D m 109 155 6D
. 46 56 2E N 78 116 4E n 110 156 6E
/ 47 57 2F O 79 117 4F o 111 157 6F
0 48 60 30 P 80 120 50 p 112 160 70
1 49 61 31 Q 81 121 51 q 113 161 71
2 50 62 32 R 82 122 52 r 114 162 72
3 51 63 33 S 83 123 53 s 115 163 73
4 52 64 34 T 84 124 54 t 116 164 74
5 53 65 35 U 85 125 55 u 117 165 75
6 54 66 36 V 86 126 56 v 118 166 76
7 55 67 37 W 87 127 57 w 119 167 77
8 56 70 38 X 88 130 58 x 120 170 78
9 57 71 39 Y 89 131 59 y 121 171 79
: 58 72 3A Z 90 132 5A z 122 172 7A
; 59 73 3B [91 133 5B { 123 173 7B
< 60 74 3C \ 92 134 5C | 124 174 7C
= 61 75 3D] 93 135 5D } 125 175 7D
> 62 76 3E ^ 94 136 5E ~ 126 176 7E
? 63 77 3F - 95 137 5F del 127 177 7F
@ 64 100 40 ' 96 140 60

Appendix C: Bit Operations
This appendix is available online at www.cengagebrain.com.

Appendix D: Floating-Point Number Storage
This appendix is available online at www.cengagebrain.com.

S_C7785_AppB.1c 732S_C7785_AppB.1c 732 1/18/11 11:23 AM1/18/11 11:23 AM

www.cengagebrain.com
www.cengagebrain.com

E

Chapter 1

 EXERCISES 1.1

1. Define the following terms:

a. computer program: A structured combination of data and instructions used to operate a

computer; another term for software.

b. programming language: The set of instructions, data, and rules used to construct a program.

c. programming: The process of writing a computer program in a language that the computer

can respond to and other programmers can understand.

d. algorithm: A step-by-step sequence of instructions describing how to perform a computation.

e. pseudocode: A means of describing an algorithm with English-like phrases.

f. flowchart: A diagram that uses symbols to depict an algorithm.

g. procedure: A logically consistent set of instructions that produce a specific result.

h. object: A specific case, or instance, of a class. An object consists of data and methods.

Appendix

Solutions to Selected
Exercises

V_C7785_AppE.1c 733V_C7785_AppE.1c 733 1/18/11 11:22 AM1/18/11 11:22 AM

734 Solutions to Selected Exercises

i. method: An operation or a procedure that can be applied to the data in a class; a member

function.

j. message: The means of activating a particular method in an object.

k. response: The predictable result of sending a message.

l. class: A broad category that defines the characteristics of the data an object can contain and

the methods that can be applied to the data; also a programmer-defined data type.

m. source program: A file consisting of a program’s statements in C++ or another programming

language.

n. compiler: The program that translates source code into machine language all at once, before

any code is executed.

o. object program: The result of compiling a source program. It’s created by the compiler and

is assigned the extension .obj.

p. executable program: A program that’s ready to be run.

q. interpreter: The program that translates source code into machine language, one line at a

time, as the source code is executed.

2. a. Fix a flat tire:

Stop vehicle in a safe, level location

Set the parking brake

Get jack, lug wrench, and spare tire

Check air pressure in spare tire

Use jack to raise vehicle so that damaged tire is clear of ground

Remove hubcap

Use lug wrench to loosen each lug nut

Use lug wrench to remove each lug nut

Place lug nuts into hubcap

Remove tire from axle

Place spare tire on axle

Restore each lug nut, and tighten by hand

Tighten all lug nuts securely with lug wrench

Replace hubcap

Release jack

Return jack, lug wrench, and damaged tire to trunk of vehicle

b. Make a phone call:

Lift phone receiver

Dial a number

Wait for answer

Speak to person, or respond to electronic instructions

V_C7785_AppE.1c 734V_C7785_AppE.1c 734 1/18/11 11:22 AM1/18/11 11:22 AM

735Appendix E

c. Go to the store and purchase a loaf of bread:

Transport yourself to the store

Find bakery department

Select a loaf of bread

Proceed to checkout area

Exchange money for the loaf of bread

3. Label cups #1, #2, and #3, with #3 being the empty cup

Rinse #3

Pour contents of #1 into #3

Rinse #1

Pour contents of #2 into #1

Rinse #2

Pour contents of #3 into #2

Rinse #3

 EXERCISES 1.2

1. 1m1234 Invalid; begins with a number

power Valid; mnemonic

add_5 Valid; mnemonic

newBalance Valid; mnemonic

newBal Valid; mnemonic

absVal Valid; mnemonic

taxes Valid; mnemonic

a2b3c4d5 Valid; not mnemonic

abcd Valid; not mnemonic

invoices Valid; mnemonic

netPay Valid; mnemonic

salesTax Valid; mnemonic

A12345 Valid; not mnemonic

do Invalid; C++ keyword

123435 Invalid; begins with a number

amount Valid; mnemonic

1A2345 Invalid; begins with a number

while Invalid; C++ keyword

int Invalid; C++ keyword

$taxes Invalid; begins with a special character

V_C7785_AppE.1c 735V_C7785_AppE.1c 735 1/18/11 11:22 AM1/18/11 11:22 AM

736 Solutions to Selected Exercises

2. a. getLength() get a length measurement

 getWidth() get a width measurement

 calcArea() calculate an area

 displayArea() display or print the area

b. getLength(), getWidth(), calcArea(), and displayArea()

3. a. inputPrice() input an amount of a sale

 calcSalestax() determine sales tax on the purchase

 calcBalance() calculate sum of the sale and the tax

b. inputPrice(), calcSalestax(), and calcBalance()

 EXERCISES 1.3

4. a. 5 (not including the lines under the column headings)

b. 1

5. Carriage return and line feed

 EXERCISES 1.4

1. a. Yes

b. It doesn’t represent good programming style, and it’s not easy to read.

2. a. #includeƒ<iostream>

ƒƒ usingƒnamespaceƒstd;
ƒƒ

ƒƒ intƒmain()

ƒƒ {

ƒƒƒƒcoutƒ<<ƒ“Theƒtimeƒhasƒcome.”;

ƒƒƒƒreturnƒ0;

ƒƒ }

b. #includeƒ<iostream>

ƒƒ usingƒnamespaceƒstd;
ƒƒ

ƒƒ intƒmain()

ƒƒ {

ƒƒƒƒcoutƒ<<ƒ“Newarkƒisƒaƒcity\n”;

ƒƒƒƒcoutƒ<<ƒ“inƒNewƒJersey.\n”;

ƒƒƒƒcoutƒ<<ƒ“Itƒisƒalsoƒaƒcity\n”;

ƒƒƒƒcoutƒ<<ƒ“inƒDelaware\n”;

ƒƒƒƒreturnƒ0;

ƒƒ }

V_C7785_AppE.1c 736V_C7785_AppE.1c 736 1/18/11 11:22 AM1/18/11 11:22 AM

737Appendix E

3. a. a backslash

b. \\ (two backslashes with no space between them)

 EXERCISES 1.7

1. a. One output is required: the dollar amount in the piggybank

b. Five: the number of half-dollars, quarters, dimes, nickels, and pennies

c. dollarsƒ=ƒ.50ƒ*ƒno.ƒofƒhalfƒdollarsƒ+ƒ.25ƒ*ƒno.ƒofƒquarters
ƒƒ+ƒ.10ƒ*ƒno.ƒofƒdimesƒ+ƒ.05ƒ*ƒno.ƒofƒnickelsƒ+.01ƒ*ƒno.ƒofƒpennies

 or

ƒƒdollarsƒ=ƒ(50ƒ*ƒno.ƒofƒhalfƒdollarsƒ+ƒ25ƒ*ƒno.ƒofƒquarters
ƒƒƒ+ƒ10ƒ*ƒno.ƒofƒdimesƒ+ƒ5ƒ*ƒno.ƒofƒnickelsƒ+ƒno.ƒofƒpennies)ƒ/ƒ100

d. dollars = .5(0) + .25(17) + .10(24) + .05(16) + .01(12) = 7.57

2. a. One output is required: distance

b. Two inputs are required: rate and (elapsed) time

c. distance = rate × time

d. distance = 55 mi/hr × 2.5 hr = 55(2.5) mi = 137.5 miles

e. Convert minutes to hours by dividing the minutes by 60.

3. a. One output is required: number of Ergies

b. Two inputs are required: number of Fergies and number of Lergies

c. Ergies = Fergies × Lergies

d. Ergies = 14.65 × 4 = 58.60

Chapter 2

 EXERCISES 2.1

1. a. float or double

b. int

c. float or double

d. int

e. float or double

f. char

4. Students should create a figure similar to Figure 2.3 that includes the following:

8ƒbytesƒofƒstorage
01001011ƒ01001001ƒ01001110ƒ01000111ƒ01010011ƒ01001100ƒ01000101ƒ01011001
--------ƒ--------ƒ--------ƒ--------ƒ--------ƒ--------ƒ--------ƒ--------
ƒƒƒƒKƒƒƒƒƒƒƒIƒƒƒƒƒƒƒƒƒNƒƒƒƒƒƒƒƒGƒƒƒƒƒƒƒƒSƒƒƒƒƒƒƒƒLƒƒƒƒƒƒƒƒEƒƒƒƒƒƒƒƒY

V_C7785_AppE.1c 737V_C7785_AppE.1c 737 1/18/11 11:22 AM1/18/11 11:22 AM

738 Solutions to Selected Exercises

 EXERCISES 2.2

1. a. (2ƒ*ƒ3)ƒ+ƒ(4ƒ*ƒ5)

b. (6ƒ+ƒ18)ƒ/ƒ2

c. 4.5ƒ/ƒ(12.2ƒ-ƒ3.1)

d. 4.6ƒ*ƒ(3.0ƒ+ƒ14.9)

e. (12.1ƒ+ƒ18.9)ƒ*ƒ(15.3ƒ-ƒ3.8)

2. a. 27 f. 20

b. 8 g. 6

c. 1 h. 2

d. 220 i. 10

e. 23 j. 1

3. a. 27.0 e. 23.0

b. 8.0 f. 20.0

c. 1.0 g. 6.0

d. 220.0 h. 2.0

 EXERCISES 2.3

1. prod_a valid

newbal valid

9ab6 invalid (begins with a number)

c1234 valid

while invalid (C++ keyword)

sum.of invalid (decimal point not allowed)

abcd valid

$total invalid (begins with special character)

average valid

_c3 invalid (begins with special character)

newƒbal invalid (contains a space)

grade1 valid

12345 invalid (begins with a number)

a1b2c3d4 valid

finGrad valid

V_C7785_AppE.1c 738V_C7785_AppE.1c 738 1/18/11 11:22 AM1/18/11 11:22 AM

739Appendix E

2. salestax valid

harry valid (not meaningful)

maximum valid

3sum invalid (begins with a number)

a243 valid (not meaningful)

sue valid (not meaningful)

okay valid

for invalid (C++ keyword)

r2d2 valid (not meaningful)

c3p0 valid (not meaningful)

a valid (not meaningful)

tot.al invalid (contains decimal point)

firstNum valid

average valid

awesome valid (not meaningful)

c$five invalid (contains a special character)

cc_al valid (not meaningful)

sum valid

goforit valid (not meaningful)

netpay valid

3. a. intƒcount;

b. floatƒgrade;

c. doubleƒyield;

d. charƒinitial;

Chapter 3

 EXERCISES 3.1

1. cƒ=ƒ2ƒ*ƒ3.1416ƒ*ƒ3.3;

2. aƒ=ƒ3.1416ƒ*ƒrƒ*ƒr;

3. celsiusƒ=ƒ(5ƒ/ƒ9)ƒ*ƒ(fahrenheitƒ-ƒ32);

V_C7785_AppE.1c 739V_C7785_AppE.1c 739 1/18/11 11:22 AM1/18/11 11:22 AM

740 Solutions to Selected Exercises

 EXERCISES 3.2

1. The corrections are as follows:

a. coutƒ<<ƒ“\n”ƒ<<ƒ15;ƒƒ//ƒQuotesƒmisplaced,ƒsubstitute
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒsemicolonƒforƒparenthesis

b. coutƒ<<ƒsetw(4)ƒ<<ƒƒ33;ƒ//ƒNoƒquotes

c. coutƒ<<ƒsetprecision(5)ƒ<<ƒƒ526.768;ƒ//ƒNoƒquotes

d. coutƒ<<ƒ“HelloƒWorld!”;ƒ//ƒStatementƒreversed

e. coutƒ<<ƒsetw(6)ƒ<<ƒ47;ƒ//ƒStatementƒoutƒofƒorder

f. coutƒ<<ƒsetw(10)ƒ<<ƒsetprecision(2)ƒ<<ƒ526.768;
ƒƒ//ƒsetƒshouldƒbeƒsetw,ƒstatementƒoutƒofƒorder

2. a. |5| e. |ƒ5.27|

b. |ƒƒƒ5| f. |53.26|

c. |56829| g. |534.26|

d. |ƒ5.26| h. |534.00|

3. a. Theƒnumberƒisƒ26.27
ƒƒƒƒTheƒnumberƒisƒ682.30
ƒƒƒƒTheƒnumberƒisƒƒƒ1.97

b. ƒ26.27
ƒƒ682.30
ƒƒƒƒ1.97
ƒƒ------
ƒƒ710.54

c. ƒ26.27
ƒƒ682.30
ƒƒƒƒ1.97
ƒƒ-----
ƒƒ710.54

d. 36.16
ƒƒ10.00
ƒƒ-----

 EXERCISES 3.3

1. a. sqrt(6.37)

b. sqrt(xƒ-ƒy)

c. sin(30ƒ*ƒ(3.1416/180))

d. sin(60ƒ*ƒ(3.1416/180))

e. abs(aƒ*ƒaƒ-ƒbƒ*ƒb) or abs(pow(a,2)ƒ-ƒpow(b,2))

f. exp(3)

V_C7785_AppE.1c 740V_C7785_AppE.1c 740 1/18/11 11:22 AM1/18/11 11:22 AM

741Appendix E

2. a. 10 g. 21

b. 13 h. 23.9

c. -3 i. 24

d. 24 j. 24.5

e. 20.48 k. 1.81659

f. 20.58

3. a. areaƒ=ƒ(cƒ*ƒbƒ*ƒsin(a))ƒ/ƒ2;

b. cƒ=ƒsqrt(pow(a,2)ƒ+ƒpow(b,2));

c. pƒ=ƒsqrt(abs(mƒ-ƒn));

d. sumƒ=ƒ(aƒ*ƒ(pow(r,n)ƒ-ƒ1))ƒ/ƒ(rƒ-ƒ1);

e. bƒ=ƒpow(sin(x),2)ƒ+ƒpow(cos(x),2);

 EXERCISES 3.4

1. a. cinƒ>>ƒfirstnum;

b. cinƒ>>ƒgrade;

c. cinƒ>>ƒsecnum;

d. cinƒ>>ƒkeyval;

e. cinƒ>>ƒmonthƒ>>ƒyearsƒ>>ƒaverage;

f. cinƒ>>ƒchƒ>>ƒnum1ƒ>>ƒnum2ƒ>>ƒgrade1ƒ>>ƒgrade2;

g. cinƒ>>ƒinterestƒ>>ƒprincipalƒ>>ƒcapitalƒ>>ƒpriceƒ>>ƒyield;

h. cinƒ>>ƒchƒ>>ƒletter1ƒ>>ƒletter2ƒ>>ƒnum1ƒ>>ƒnum2ƒ>>ƒnum3;

i. cinƒ>>ƒtemp1ƒ>>ƒtemp2ƒ>>ƒtemp3ƒ>>ƒvolts1ƒ>>ƒvolts2;

 EXERCISES 3.5

4. See solution file pgm3-5ex4.cpp. Answers are shown in italics:

Planet (emissivity = 1) Average Surface
Temperature (° Celsius)

Heat Radiated
(watts/m2)

Mercury 270 301.311
Venus 462 2583.020
Earth 14 0.002

V_C7785_AppE.1c 741V_C7785_AppE.1c 741 1/18/11 11:22 AM1/18/11 11:22 AM

742 Solutions to Selected Exercises

5. See solution file pgm3-5ex5.cpp. Answers are shown in italics:

Substance Average Surface
Temperature
(° Celsius)

Emissivity Heat Radiated
(watts/m2)

Automobile 47 .3 .082999
Brick 45 .9 .209244
Commercial roof 48 .05 .0150486

Chapter 4

 EXERCISES 4.1

1. a. True. Value is 1. f. False. Value is 10.

b. True. Value is 1. g. False. Value is 4.

c. True. Value is 1. h. False. Value is 0.

d. True. Value is 1. i. False. Value is 10.

e. True. Value is 1.

2. Note: In any relational expression, a non-zero value is considered true and a zero value is con-

sidered false.

a. ((aƒ%ƒb)ƒ*ƒc)ƒ&&ƒ((cƒ%ƒb)ƒ*ƒa)
ƒƒƒƒ=ƒ((5ƒ%ƒ2)ƒ*ƒ4)ƒ&&ƒ((4ƒ%ƒ2)ƒ*ƒ5)
ƒƒƒƒ=ƒ(1ƒ*ƒ4)ƒ&&ƒ(0ƒ*ƒ5)
ƒƒƒƒ=ƒ4ƒ&&ƒ0ƒƒƒ//ƒsameƒasƒTrueƒANDƒFalse
ƒƒƒƒ=ƒ0

b. ((aƒ%ƒb)ƒ*ƒc)ƒ||ƒ((cƒ%ƒb)ƒ*ƒa)
ƒƒƒƒ=ƒ((5ƒ%ƒ2)ƒ*ƒ4)ƒ||ƒ((4ƒ%ƒ2)ƒ*ƒ5)
ƒƒƒƒ=ƒ(1ƒ*ƒ4)ƒ||ƒ(0ƒ*ƒ5)
ƒƒƒƒ=ƒ4ƒ||ƒ0ƒƒƒ//ƒsameƒasƒTrueƒORƒFalse
ƒƒƒƒ=ƒ1

c. ((bƒ%ƒc)ƒ*ƒa)ƒ&&ƒ((aƒ%ƒc)ƒ*ƒb)
ƒƒƒƒ=ƒ((2ƒ%ƒ4)ƒ*ƒ5)ƒ&&ƒ((5ƒ%ƒ4)ƒ*ƒ2)
ƒƒƒƒ=ƒ(2ƒ*ƒ5)ƒ&&ƒ(1ƒ*ƒ2)
ƒƒƒƒ=ƒ10ƒ&&ƒ2ƒƒƒ//ƒsameƒasƒTrueƒANDƒTrue
ƒƒƒƒ=ƒ1

d. ((bƒ%ƒc)ƒ*ƒa)ƒ||ƒ((aƒ%ƒc)ƒ*ƒb)
ƒƒƒƒ=ƒ((2ƒ%ƒ4)ƒ*ƒ5)ƒ||ƒ((5ƒ%ƒ4)ƒ*ƒ2)
ƒƒƒƒ=ƒ(2ƒ*ƒ5)ƒ||ƒ(1ƒ*ƒ2)
ƒƒƒƒ=ƒ10ƒ||ƒ2ƒƒƒ//ƒsameƒasƒTrueƒORƒTrue
ƒƒƒƒ=ƒ1

V_C7785_AppE.1c 742V_C7785_AppE.1c 742 1/18/11 11:22 AM1/18/11 11:22 AM

743Appendix E

3. a. ageƒ==ƒ30

b. tempƒ>ƒ98.6

c. heightƒ<ƒ6

d. monthƒ==ƒ12

e. letterInƒ==ƒ'm'

f. (ageƒ==ƒ30)ƒ&&ƒ(heightƒ>ƒ6)

g. (dayƒ==ƒ15)ƒ&&ƒ(monthƒ==ƒ1)

h. (ageƒ>ƒ50)ƒ&&ƒ(employedƒ>=ƒ5)

i. (idƒ<ƒ500)ƒ&&ƒ(ageƒ>ƒ55)

j. (lengthƒ>ƒ2)ƒ&&ƒ(lengthƒ<ƒ3)

 EXERCISES 4.2

1. a. ifƒ(angleƒ==ƒ90)
ƒƒƒƒcoutƒ<<ƒ“Theƒangleƒisƒaƒrightƒangle”;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“Theƒangleƒisƒnotƒaƒrightƒangle”;

b. ifƒ(tempƒ>ƒ100)
ƒƒƒƒcoutƒ<<ƒ“aboveƒtheƒboilingƒpointƒofƒwater”;
ƒƒelse
ƒƒƒƒcoutƒ<<ƒ“belowƒtheƒboilingƒpointƒofƒwater”;

c. ifƒ(numberƒ>ƒ0)
ƒƒƒƒnumberƒ+=ƒpositivesum;
ƒƒelse
ƒƒƒƒnumberƒ+=ƒnegativesum;

d. ifƒ(slopeƒ<ƒ0.5ƒ)
ƒƒƒƒflagƒ=ƒ0;
ƒƒelse
ƒƒƒƒflagƒ=ƒ1;

e. ifƒ(slope1ƒ-ƒslope2ƒ<ƒ.001ƒ)
ƒƒƒƒapproxƒ=ƒ0;
ƒƒelse
ƒƒƒƒapproxƒ=ƒ(slope1ƒ-ƒslope2)ƒ/ƒ2.0;

2. a. ifƒ(aceƒ<ƒ25)
ƒƒƒƒsumƒ=ƒsumƒ+ƒa;
ƒƒelse
ƒƒƒƒcountƒ=ƒcountƒ+ƒ1;

V_C7785_AppE.1c 743V_C7785_AppE.1c 743 1/18/11 11:22 AM1/18/11 11:22 AM

744 Solutions to Selected Exercises

b. if(cƒ==ƒ15)
ƒƒ{
ƒƒƒƒcreditƒ=ƒ10;
ƒƒƒƒlimitƒ=ƒ1200;
ƒƒ}
ƒƒelse
ƒƒ{
ƒƒƒƒcreditƒ=ƒ8;
ƒƒƒƒlimitƒ=ƒ800;
ƒƒ}

c. ifƒ(idƒ>ƒ22)
ƒƒƒƒfactorƒ=ƒ0.7;

d. ifƒ(countƒ==ƒ10)
ƒƒ{
ƒƒƒƒaverageƒ=ƒsumƒ/ƒcount;
ƒƒƒƒcoutƒ<<ƒaverage;
ƒƒ}

3. If the two numbers are equal, the else statement is executed, which produces an incorrect

display.

 EXERCISES 4.3

7. b. Typically, a runtime error message, such as “Floating-point error: Divide by zero,” is

displayed.

11. a. Both programs produce the same output.

b. Program 4.5 is better because it requires less processing. In Program 4.5, when the correct

monthly sales figure is evaluated, the income value is calculated and the if-else state-

ment is exited without further processing. In the program in Exercise 11a, the system must

evaluate every if statement, even if the first one is the statement that evaluates to true.

Consequently, Program 4.5 is better because it potentially requires less processing.

12. a. The program runs but calculates incorrect results, except for the case in which monthly

sales are less $20,000.

b. If monthly sales are less than 20000, the program produces correct results because either the

first if or first else-if is executed. For any and all amounts >= 20000, the income for the

first else-if statement is obtained, and the other else-if statements aren’t evaluated.

V_C7785_AppE.1c 744V_C7785_AppE.1c 744 1/18/11 11:22 AM1/18/11 11:22 AM

745Appendix E

 EXERCISES 4.4

1. switchƒ(letterGrade)
{
ƒƒcaseƒ'A':
ƒƒƒƒcoutƒ<<ƒ“Theƒnumericalƒgradeƒisƒbetweenƒ90ƒandƒ100”;
ƒƒƒƒbreak;
ƒƒcaseƒ'B':
ƒƒƒƒcoutƒ<<ƒ“Theƒnumericalƒgradeƒisƒbetweenƒ80ƒandƒ89.9”;
ƒƒƒƒbreak;
ƒƒcaseƒ'C':
ƒƒƒƒcoutƒ<<ƒ“Theƒnumericalƒgradeƒisƒbetweenƒ70ƒandƒ79.9”;
ƒƒƒƒbreak;
ƒƒcaseƒ'D':
ƒƒƒƒcoutƒ<<ƒ“Howƒareƒyouƒgoingƒtoƒexplainƒthisƒone?”;
ƒƒƒƒbreak;
ƒƒdefault:
ƒƒƒƒcoutƒ<<ƒ“OfƒcourseƒIƒhadƒnothingƒtoƒdoƒwithƒtheƒgrade.”;
ƒƒƒƒcoutƒ<<ƒ“\nItƒmustƒhaveƒbeenƒtheƒprofessor'sƒfault.”;
}

7. The expression in the switch statement must evaluate to an integer quantity and be tested

for equality. The if-else chain in Program 4.5 compares double-precision values, violating

the switch statement’s requirements for integer relational expressions.

Chapter 5

 EXERCISES 5.1

3. a. 21 numbers are displayed, with 1 being the first and 21 being the last.

b. See solution file pgm5-1ex3.cpp.

c. 21 numbers would still be printed, but the first number would be 0 and the last would be 20.

 EXERCISES 5.2

5. a. Yes, the program yields the correct results because the last time through the loop, it takes

the average of the final total.

b. Having the average calculate outside the loop is better because the program does the cal-

culation once instead of each time the loop executes.

V_C7785_AppE.1c 745V_C7785_AppE.1c 745 1/18/11 11:22 AM1/18/11 11:22 AM

746 Solutions to Selected Exercises

 EXERCISES 5.3

1. a. for(iƒ=ƒ1;ƒiƒ<=ƒ20;ƒi++)

b. for(icountƒ=ƒ1;ƒicountƒ<=ƒ20;ƒicountƒ=ƒicountƒ+ƒ2)

c. for(jƒ=ƒ1;ƒjƒ<=ƒ100;ƒjƒ=ƒjƒ+ƒ5)

d. for(icountƒ=ƒ20;ƒicountƒ>=ƒ1;ƒicount--)

e. for(icountƒ=ƒ20;ƒicountƒ>=1;ƒicountƒ=ƒicountƒ-ƒ2)

f. for(countƒ=ƒ1.0;ƒcountƒ<=ƒ16.2;ƒcountƒ=ƒcountƒ+ƒ0.2)

g. for(xcntƒ=ƒ20.0;ƒxcntƒ>=ƒ10.0;ƒxcntƒ=ƒxcntƒ-ƒ0.5)

2. a. 20 e. 10

b. 10 f. 77

c. 20 g. 21

d. 20

3. a. 10 d. -5

b. 1024 e. 40320

c. 75 f. 0.03125

Chapter 6

 EXERCISES 6.1

1. a. requires one int value

b. requires three values in this order: an int and two doubles

c. requires three values in this order: an int and two doubles

d. requires three values in this order: a char and two floats

e. requires two doubles

f. requires six values in this order: two ints, two chars and two doubles

g. requires four values in this order: two ints and two chars

2. a. voidƒcheck(intƒnum1,ƒdoubleƒnum2,ƒdoubleƒnum3)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Inƒcheck()\n”;
ƒƒƒƒcoutƒ<<ƒ“Theƒvalueƒofƒnum1ƒisƒ“ƒ<<ƒnum1ƒ<<ƒendl;
ƒƒƒƒcoutƒ<<ƒ“Theƒvalueƒofƒnum2ƒisƒ“ƒ<<ƒnum2ƒ<<ƒendl;
ƒƒƒƒcoutƒ<<ƒ“Theƒvalueƒofƒnum3ƒisƒ“ƒ<<ƒnum3ƒ<<ƒendl;
ƒƒƒƒreturn;
ƒƒ}

V_C7785_AppE.1c 746V_C7785_AppE.1c 746 1/18/11 11:22 AM1/18/11 11:22 AM

747Appendix E

3. a. voidƒfindAbs(doubleƒnumber)
ƒƒ{
ƒƒƒƒcoutƒ<<ƒ“Theƒabsoluteƒvalueƒofƒ“ƒ<<ƒnumberƒ<<ƒ“ƒis:ƒ“;
ƒƒƒƒif(numberƒ<ƒ0)
ƒƒƒƒƒƒnumberƒ=ƒ-number;
ƒƒƒƒcoutƒƒ<<ƒnumberƒ<<ƒendl;
ƒƒ
ƒƒƒƒreturn;
ƒƒ}

 EXERCISES 6.2

2. a. voidƒcheck(intƒnum1,ƒfloatƒnum2,ƒdoubleƒnum3)

b. doubleƒfindAbs(doubleƒx)

c. floatƒmult(floatƒfirst,ƒfloatƒsecond)

d. intƒsquare(intƒnumber)

e. intƒpowfun(intƒnum,ƒintƒexponent)

f. voidƒtable(void) or voidƒtable()

3. a. doubleƒrightTriangle(doubleƒa,ƒdoubleƒb)
ƒƒ{
ƒƒƒƒreturnƒsqrt((aƒ*ƒa)ƒ+ƒ(bƒ*ƒb));
ƒƒ}

b. See solution file pgm6-2ex3b.cpp.

4. a. doubleƒfindAbs(doubleƒnumber)
ƒƒ{
ƒƒƒƒif(numberƒ<ƒ0)
ƒƒƒƒƒƒnumberƒ=ƒ-number;
ƒƒƒƒreturnƒnumber;
ƒƒ}

b. See solution file pgm6-2ex4b.cpp.

 EXERCISES 6.3

1. a. double&ƒamount

b. double&ƒprice

c. int&ƒminutes

d. char&ƒkey

e. double&ƒyield

V_C7785_AppE.1c 747V_C7785_AppE.1c 747 1/18/11 11:22 AM1/18/11 11:22 AM

748 Solutions to Selected Exercises

2. voidƒtime(int&ƒsec,ƒint&ƒmin,ƒint&ƒhours)

3. a. voidƒfindMax(intƒx,ƒintƒy,ƒint&ƒmax)
ƒƒ{ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ//ƒstartƒofƒfunctionƒbody
ƒƒƒƒintƒmaxnum;ƒƒƒƒƒƒƒƒ//ƒvariableƒdeclaration
ƒƒ
ƒƒƒƒifƒ(xƒ>=ƒy)ƒƒƒƒƒƒƒƒ//ƒfindƒtheƒmaximumƒnumber
ƒƒƒƒƒƒmaxnumƒ=ƒx;
ƒƒƒƒelse
ƒƒƒƒƒƒmaxnumƒ=ƒy;
ƒƒƒƒƒƒmaxƒ=ƒmaxnum;
ƒƒ
ƒƒƒƒreturn;ƒƒƒƒƒƒƒƒƒƒƒƒ//ƒreturnƒstatement
ƒƒ}

 EXERCISES 6.4

1. a.

Variable or Constant Name Data Type Scope
PRICE int global to main(), roi(), and step()
YEARS longƒint global to main(), roi(), and step()
YIELD double global to main(), roi(), and step()
bondtype int local to main()
interest double local to main()
coupon double local to main()
mat1 int local to roi()
mat2 int local to roi()
count int local to roi()
effectiveRate double local to roi()
first double local to step()
last double local to step()
numofyrs int local to step()
fracpart double local to step()

V_C7785_AppE.1c 748V_C7785_AppE.1c 748 1/18/11 11:22 AM1/18/11 11:22 AM

749Appendix E

2. a.

Variable or Constant Name Data Type Scope
KEY char global to main(), func1(), and

func2()
NUMBER longƒint global to main(), func1(), and

func2()
a, b, c int local to main()
x, y double local to main()
secnum double global to func1() and func2()
num1, num2 int local to func1()
o, p int local to func1()
q float local to func1()
first, last double local to func2()
a, b, c, o, p int local to func2()
r double local to func2()
s, t, x double local to func2()

3. All function parameters have local scope in their defined function. Note that although function

parameters assume a value that depends on the calling function, these parameters can change

values in their functions. This makes them behave as though they were local variables in the

called function.

 EXERCISES 6.5

1. a. The storage categories available to local variables are auto, static, and register.

b. The storage categories available to global variables are extern and static. A local auto

variable is unique to the function in which it’s declared. Every time the function is called,

the auto variable is re-created, as though it never existed. A local static variable is also

unique to the function where it’s declared. However, a static variable retains its last value

and isn’t re-created when its function is called again.

2. The first function declares yrs to be a static variable and assigns a value of 1 to it only once,

when the function is compiled. Each time the function is called thereafter, the value in yrs is

increased by 2. The second function also declares yrs to be static but assigns it the value 1

every time it’s called, and the value of yrs after the function is finished will always be 3. By

resetting the value of yrs to 1 each time it’s called, the second function defeats the purpose

of declaring the variable to be static.

V_C7785_AppE.1c 749V_C7785_AppE.1c 749 1/18/11 11:22 AM1/18/11 11:22 AM

750 Solutions to Selected Exercises

Chapter 7

 EXERCISES 7.1

1. a. constƒintƒSIZEƒ=ƒ100;
ƒƒintƒgrades[SIZE];

b. constƒintƒSIZEƒ=ƒ50;
ƒƒdoubleƒtemp[SIZE];

c. constƒintƒSIZEƒ=ƒ30;
ƒƒcharƒcode[SIZE];

d. constƒintƒSIZEƒ=ƒ100;
ƒƒintƒyear[SIZE];

2. a. grades[0] refers to the first item stored in the array, grades[2] refers to the third item,

and grades[6] refers to the seventh item.

b. prices[0] refers to the first item stored in the array, prices[2] refers to the third item,

and prices[6] refers to the seventh item.

c. amounts[0] refers to the first item stored in the array, amounts[2] refers to the third item,

and amounts[6] refers to the seventh item.

3. a. cinƒ>>ƒgrades[0];
ƒƒcinƒ>>ƒgrades[2];
ƒƒcinƒ>>ƒgrades[6];ƒ

b. cinƒ>>ƒprices[0];
ƒƒcinƒ>>ƒprices[2];
ƒƒcinƒ>>ƒprices[6];ƒ

c. cinƒ>>ƒamounts[0];
ƒƒcinƒ>>ƒamounts[2];
ƒƒcinƒ>>ƒamounts[6];ƒ

 EXERCISES 7.2

1. a. constƒintƒSIZEƒ=ƒ10;
ƒƒintƒgrades[SIZE]ƒ=ƒ{89,ƒ75,ƒ82,ƒ93,ƒ78,ƒ95,ƒ81,ƒ88,ƒ77,ƒ82};

b. constƒintƒSIZEƒ=ƒ5;
ƒƒdoubleƒamounts[SIZE]ƒ=ƒ{10.62,ƒ13.98,ƒ18.45,ƒ12.68,ƒ14.76};

c. constƒintƒSIZEƒ=ƒ100;
ƒƒdoubleƒrates[SIZE]ƒ=ƒ{6.29,ƒ6.95,ƒ7.25,ƒ7.35,ƒ7.40,ƒ7.42};

d. constƒintƒSIZEƒ=ƒ64;
ƒƒdoubleƒtemps[SIZE]
ƒƒƒƒ=ƒ{78.2,ƒ69.6,ƒ68.5,ƒ83.9,ƒ55.4,ƒ67.0,ƒ49.8,ƒ58.3,ƒ62.5,ƒ71.6};

e. constƒintƒSIZEƒ=ƒ15;
ƒƒcharƒcodes[SIZE]ƒ=ƒ{ƒ'f',ƒ'j',ƒ'm',ƒ'q',ƒ't',ƒ'w',ƒ'z'ƒ};

V_C7785_AppE.1c 750V_C7785_AppE.1c 750 1/18/11 11:22 AM1/18/11 11:22 AM

751Appendix E

6. charƒgoodstr1[]ƒ=ƒ“GoodƒMorning”;
charƒgoodstr1[]ƒ=ƒ{'G',ƒ'o',ƒ'o',ƒ'd',ƒ'ƒ',ƒ'M',ƒ'o',ƒ'r',ƒ'n',ƒ'i',ƒ'n',
ƒ'g'};
charƒgoodstr1[12]ƒ=ƒ{'G',ƒ'o',ƒ'o',ƒ'd',ƒ'ƒ',ƒ'M',ƒ'o',ƒ'r',ƒ'n',ƒ'i',ƒ'n
','g'};

7. a. charƒmessage1[]ƒ=ƒ“InputƒtheƒFollowingƒData”;
ƒƒcharƒmessage2[]ƒ=ƒ“------------------------”;
ƒƒcharƒmessage3[]ƒ=ƒ“EnterƒtheƒDate:ƒ“;
ƒƒcharƒmessage4[]ƒ=ƒ“EnterƒtheƒAccountƒNumber:ƒ“;

b. See solution file pgm7-2ex7b.cpp.

 EXERCISES 7.3

1. voidƒsortArray(doubleƒinArrayƒ[500])
voidƒsortArray(doubleƒinArrayƒ[])

2. charƒfindKey(charƒselectƒ[256])
charƒfindKey(charƒselectƒ[])

3. doubleƒprimeƒ(doubleƒ[256])
doubleƒprimeƒ(doubleƒ[])

 EXERCISES 7.4

1. a. constƒintƒNUMROWSƒ=ƒ6;
ƒƒconstƒintƒNUMCOLSƒ=ƒ10;
ƒƒƒƒƒƒintƒval[NUMROWS][NUMCOLS];

b. constƒintƒNUMROWSƒ=ƒ2;
ƒƒconstƒintƒNUMCOLSƒ=ƒ5;
ƒƒƒƒƒƒintƒval[NUMROWS][NUMCOLS];

c. constƒintƒNUMROWSƒ=ƒ7;
ƒƒconstƒintƒNUMCOLSƒ=ƒ12;
ƒƒƒƒƒƒcharƒval[NUMROWS][NUMCOLS];

2. The output is as follows:

8ƒƒƒ16ƒƒƒ9ƒƒƒ52ƒƒƒ3ƒƒƒ15ƒƒƒ27ƒƒƒ6ƒƒƒ14ƒƒƒ25ƒƒƒ2ƒƒƒ10

V_C7785_AppE.1c 751V_C7785_AppE.1c 751 1/18/11 11:22 AM1/18/11 11:22 AM

Note:
• Page numbers followed by t

indicate tables.

• Page numbers followed by +t

indicate discussions plus

tables.

Symbols
& (ampersand): address opera-

tor, 258, 343

&& (ampersands). See AND

operator

* (asterisk): indirection opera-

tor, 345, 351

See also multiplication

operator

*/ (asterisk-slash): end com-

ment symbol, 24

\ (backslash): escape character,

21, 41

\\ (backslashes): pathname

item separator, 391, 661

\\ escape sequence, 41t

| (bar): bitwise OR operator,

100, 401

|| (bars). See OR operator

{} (braces): list delimiters, 303

See also statement delimiters

:: (colons). See scope resolution

operator

, (comma): list item separator,

206, 303, 314

\” escape sequence, 41t

”” (double quotes): string

delimiters, 20, 42, 43, 606

= (equals sign). See assignment

operator

== (equals signs). See equality

(equal to) operator

! (exclamation point). See NOT

operator

!= (exclamation point–equals

sign). See inequality (not

equal to) operator

!inFile expression, 402, 409

> (greater than sign). See greater

than operator

>= (greater than/equals sign).

See greater than or equal to

operator

>> (greater than signs): extrac-

tion operator, 118, 119, 132

< (less than sign). See less than

operator

<= (less than/equals sign). See
less than or equal to operator

<< (less than signs): insertion

symbol, 18, 50

– (minus sign):

negation operator, 52, 53t

private visibility indicator, 572

See also subtraction operator

-> operator (data member

access operator), 510,

716–717

-- (minus signs). See decrement

operator

(). See parentheses

% (percent sign). See modulus

operator

. (period). See dot operator

+ (plus sign):

concatenation operator, 614t,

616, 619, 620

public visibility indicator, 572

See also addition operator

++ (plus signs). See increment

operator

A

Index

W_C7785_Index.1c 753W_C7785_Index.1c 753 1/18/11 11:23 AM1/18/11 11:23 AM

Index754

(pound sign): preprocessor

command symbol, 19

#include statement (com-

mand), 19, 661, 662

\? escape sequence, 41t

; (semicolon). See semicolon;

statement terminator

\' escape sequence, 41t

'' (single quotes): character

delimiters, 42, 43

/ (slash). See division operator

/* (slash-asterisk): begin com-

ment symbol, 24

// (slashes): comment symbol,

24

~ (tilde: destructor prefix, 458

_ (underscore): name

character, 14

Numbers
0:

division-by-zero error, 635,

636–639

octal number designation

prefix, 101

\0 escape sequence. See null

character

0x: hexadecimal number desig-

nation prefix, 77, 101

4-bit patterns, 77

A
\a escape sequence, 41t

abs() function, 108t, 109t, 239,

251–253

absolute values: determining,

108t, 109t, 237–241, 251–253

abstract data types, 439

See also classes

abstraction, 537

access operator. See dot operator

access specifications/specifiers,

442, 443, 447, 541–546

accessing:

characters in strings, 613t,

616–618, 624, 626

data members, 509–510, 556

one-dimensional array ele-

ments: with pointer con-

stants, 359, 367; with

pointers, 355, 357–358,

360, 367, 376–378; with

subscripts, 295–296,

355–356, 360, 376–378

string objects, 606

structure members, 702

two-dimensional array ele-

ments, 316, 379

accessors (accessor methods), 459

in STL classes, 582–583t,

593–594t

accumulate algorithm

(STL), 576t

accumulation statements,

85–86, 86–87

counting statements, 88–90

in while loops, 192

adding numbers to pointers, 365

adding numbers to variables,

85–86, 86–87

incrementing variables, 88–89

addition operation:

with memory locations, 57–58

with variables, 58–59

addition operator (+), 53t

precedence and associativity,

54–56+t, 141t

addition operator function,

495–498

address operator (&), 258, 343

addresses, 57–58, 72,

341–342, 343

assigning to pointers, 364–365

displaying, 343–344

indirect addressing, 345

passing to functions. See
passing addresses to

functions

referring to (determining),

258, 343

of register variables, 280

storing, 344–345, 347

aggregate data types, 297

See also data structures

AI (artificial intelligence), 599

alert escape sequence (\a), 41t

algorithms, 5–8

coding, 8, 31

developing, 29–31

search algorithms, 325–333

sort algorithms, 333–339

STL algorithms, 576–577+t

See also specific algorithms
aliases (reference variables),

349–350

altering list (in for statements),

202, 205, 206–207

ampersand (&): address opera-

tor, 258, 343

ampersands (&&). See AND

operator

analysis of a problem, 29

analyzing problems, 29

AND operator (&&), 139

precedence and associativity,

140–141+t

angles: converting to radians, 111

append mode (of files), 400

appending strings to strings. See
concatenating strings

arguments (of functions/in

function calls), 16, 107, 228

arithmetic expressions as, 109

default arguments, 236–237

file stream objects as,

419–423

pass by reference arguments,

257–258

pass by value arguments,

244, 257

passing addresses as. See
passing addresses to

functions

passing values as. See passing

values to functions

and reference parameters,

259–262

See also parameters

W_C7785_Index.1c 754W_C7785_Index.1c 754 1/18/11 11:23 AM1/18/11 11:23 AM

755Index

arithmetic:

pointer arithmetic, 341,

364–369

stack arithmetic, 592

arithmetic expressions, 49, 51,

151–152

as arguments in function

calls, 109

in assignment statements,

80–83

displaying the value of, 49–51

functions in, 109–111

parentheses in, 49, 53–54

rules for writing, 53–55

types, 51

arithmetic operations, 48–57

as overloaded, 52

arithmetic operators, 49, 53t

precedence and associativity,

54–56+t, 141t

See also shortcut assignment

operators

array elements. See one-

dimensional array elements;

two-dimensional array

elements

array names as pointer con-

stants, 358–359, 360

arrays:

as data structures, 297, 575

vs. linked lists, 586

multidimensional array analo-

gies, 313, 319–320

of objects, 459–461, 579

passing to functions. See
passing arrays to functions

of pointers, 693–696

vs. STL lists, 574–575, 579;

linked lists, 586

of structures. See arrays of

structures

See also one-dimensional

arrays; two-dimensional

arrays

arrays of structures, 708–712

declaring and defining,

709–710

processing, 710–711

artificial intelligence (AI), 599

ASCII code, 40

letter codes, 40t

newline and null character

codes, 43

assign() method (STL

classes), 582t, 594t

assigning addresses to pointers,

364–365

assigning filenames to string

variables, 395–397

assigning values to variables,

79–80, 132

Boolean variables, 154

by adding numbers, 85–86,

86–87, 88–89

decrementing variables, 90

incrementing variables,

88–89

return values, 247

See also assignment

statements

assignment expressions, 82–83

assignment operator (=), 59, 80,

82–83

vs. equality operator (==),

151–152, 173, 221

memberwise assignment,

499, 565; for pointer

data members, 499,

565–566, 568

precedence and associativity,

83, 141t

in string class, 614t

See also shortcut assignment

operators

assignment operator functions,

499–500

with a return statement,

511–512

vs. copy constructor, 501

for pointer data members,

566–567

assignment statements, 59, 79–93

accumulating. See accumula-

tion statements

arithmetic expressions in,

80–83

counting statements, 88–90

data type conversion in, 84

vs. initialization statements,

500, 501

multiple assignments, 83

See also assigning values to

variables

associative lists, 574+t

associativity of operators,

140–141+t

arithmetic operators,

54–55+t, 141t

dot operator, 589

asterisk (*): indirection opera-

tor, 345, 351

See also multiplication

operator

asterisk-slash (*/): end com-

ment symbol, 24

at() method (deque class),

593t

at() method (string class),

613t, 616–618, 624, 626

atof() function, 650t,

688–689+t

atoi() function, 650t,

688–689+t

atomic data types, 59

atomic data values, 59

atomic variables, 291

attitude toward debugging, 136

attributes (of objects), 485, 570

specifying, 447, 485–486,

570–572

types, 571

in UML class and object dia-

grams, 570–572

visibility, 572

W_C7785_Index.1c 755W_C7785_Index.1c 755 1/18/11 11:23 AM1/18/11 11:23 AM

756 Index

auto variables, 277–278, 283

See also variables

automatic dereferences (implicit

dereferences), 348, 350

averages: calculating, 193–194,

211–212

B
\b escape sequence, 41t

back() method (STL classes),

582t, 593t

backslash (\): escape character,

21, 41

backslash escape sequence

(\\), 41t

backslashes (\\): pathname

item separator, 391, 661

backspace escape sequence

(\b), 41t

backup (of programs), 33

bad() method (fstream class),

393t, 425t

bar (|):

bitwise OR operator, 100, 401

display field delimiter, 96

octal group separator, 77

bars (||). See OR operator

base class members:

access specifications, 542+t

function overriding, 547–551

base classes, 540

and derived classes,

543–544, 546

See also ios class;

streambuf class

base/member initialization

list, 503

basic analysis, 29

begin comment symbol (/*), 24

begin() method (STL classes),

583t, 594t

behaviors (of objects),

435–436, 485

specifying, 485–486

Big O notation, 332–333

for binary search algorithm,

332–333

for bubble sort algorithm, 339

for linear search algorithm,

332–333

for selection sort

algorithm, 336

binary arithmetic expressions, 49

binary numbers, 74–75

converting: to decimal num-

bers, 75; to hexadecimal

numbers, 76–77; to octal

numbers, 77

converting decimal numbers

to, 75

converting hexadecimal

numbers to, 75–76+t

binary operators, 49, 53t

binary search algorithm,

328–332

Big O, 332–333

vs. linear search algorithm, 332

binary trees: STL list types, 574t

binary_search algorithm

(STL), 576t

binary-based files, 389

binarySearch() function,

330–332

binding, function, 549–551

bits, 72

4-bit patterns, 77

bitwise OR operator (|), 100, 401

blank lines (in programs), 64, 145

block comments, 23, 24

block scope. See local scope

block statements. See com-

pound statements

boiled egg model, 535–536

Book class, 562–567

bool data type, 41–42, 44t,

153–154

boolalpha manipulator, 94t

Boolean data, 41–42

Boolean values, 153–154

comparing, 154

Boolean variables:

assigning values to, 154

declaring, 153

bounds checks (on index values):

one-dimensional array ele-

ments, 297

string objects, 667

braces ({}): list delimiters,

303, 314

See also statement delimiters

break statements:

in for statements, 207

in switch statements,

169, 171

in while statements, 197

bubble sort algorithm, 336–339

Big O, 339

vs. selection sort

algorithm, 339

bubbleSort() function,

338–339

buffers. See file buffers

bugs. See programming errors

built-in data types, 38–45

operational capabilities, 439+t

built-in to built-in data type

conversion, 520

casts, 111, 520

in cin statements, 121

coercion, 84

explicit conversion, 111, 520

implicit conversion, 51, 84,

111, 121, 246, 520

in mixed-mode

expressions, 51

in return statements, 246

built-in to class data type con-

version, 522–524

bytes, 72

W_C7785_Index.1c 756W_C7785_Index.1c 756 1/18/11 11:23 AM1/18/11 11:23 AM

757Index

C
C style of initialization, 455

C++ (language), 436–438, 658

dual nature, 5, 9

programming advantage, 341

C++ style of initialization, 455

c_str() method (string

class), 396, 397, 613t, 667

C-strings (character arrays), 304,

396, 428, 665–699, 694

comparing, 682t, 683–684

concatenating, 681t, 682–683,

683–684

converting integers/double-

precision numbers to/

from, 649, 650t, 688–689+t

converting strings/string

objects to, 396, 397,

613t, 667

converting to strings/string

objects, 614t, 667

copying. See strcopy()

function; strcpy()

function

declarations of, 396, 666, 694

determining the length of,

681t, 683

end-of-C-string test, 676–679

as filenames, 396

finding characters in, 682t

fundamentals, 666–675

initialization of, 304, 323

input methods, 628–629+t,

666–670, 667–668t; get(),

629–632, 671–672;

getaline(), 673. See also

getline() method

(fstream class)

library functions, 670,

681–684+t; pointer-

defined C-strings in, 675,

679–680

output methods, 666,

667t, 668

parsing, 682t

pointer constants, 691

pointer-defined. See pointer-

defined C-strings

pointers to, 562–565, 565–566;

common programming

errors, 698. See also pointer-

defined C-strings

processing, 670, 681; with

pointers, 675, 679–680;

with subscripts, 670–673,

676–679; as time consum-

ing, 605. See also ... library

functions, above
storage of, 691–692

string literals thrown as, 639

vs. string objects, 667

vs. strings, 605

calc() function, 260–262,

379–381

calcNet() function, 713–715,

716–718

calcval() function, 543–546

called functions, 227, 245–246

calling:

constructors, 453,

454–455, 546

functions. See function calls

methods, 100, 391, 423,

446–448, 459, 476, 508–509

calling functions (functions that

call others), 227, 247

capacity() method (STL

classes), 584t, 595t

card deck model, 535–537

carriage return escape sequence

(\r), 41t

case: converting lowercase to

uppercase, 623t, 625, 686t,

687–688

case sensitivity in identifiers, 15

case statement sets/stacks, 169

case values (in switch state-

ments), 168–169, 171

casts (data type conversion),

111, 520

catch blocks, 636, 637–639,

641, 644

catching exceptions, 635t, 636,

637–639, 641–644

cctype header file, 622, 684

cdabs() function, 237–238

Celsius: converting to

Fahrenheit, 185–186,

249–250, 250–251

cerr (standard error stream), 412

char data type, 40, 44t, 73t

integer codes, 626

vs. string data type, 612

character arrays. See C-strings

character class methods:

I/O methods, 628–629+t,

666–670, 667–668t; get(),

629–632, 671–672. See also

getaline() function;

getline() method

(fstream class)

processing (manipulation/

handling) methods/

functions, 622–626+t,

684–688+t

character codes, 40, 72

See also ASCII code

character delimiters (''), 42, 43

character I/O, 627–632

character class methods,

628–629+t, 666–670,

667–668t; get(), 629–632,

671–672

See also getaline() func-

tion; getline() method

(fstream class)

character strings. See C-strings

character variables, 423

declaring, 61–62, 65

character-based files. See text

files

characters (character values/

data), 40

accessing in strings, 613t,

616–618, 624, 626

as case values, 171

comparing, 139+t; in

C-strings, 682t

W_C7785_Index.1c 757W_C7785_Index.1c 757 1/18/11 11:23 AM1/18/11 11:23 AM

758 Index

converting lowercase to

uppercase, 623t, 625, 686t,

687–688

copying in C-strings, 682t

declaring variables for,

61–62, 65

determining the number of

in strings, 613t, 615–616

finding: in C-strings, 682t; in

strings, 614t, 620, 621

I/O. See character I/O

inserting in strings, 614t, 618,

619–620

library functions, 622–626+t,

684–688+t

as literal values, 38

offset values in string

objects, 606, 609

reading. See reading from

text files/input streams

replacing in strings, 614t,

619, 620

retrieving from strings, 613t,

616–618

storage of, 626

writing. See writing to text

files/output streams

See also letters

checking files. See file checking

Checkout class, 552–558

child classes. See derived classes

cin object, 9, 118, 119, 391,

428, 609t, 669

cin statements, 118–121, 296

character class methods in,

613, 628–629+t, 667–668t,

671–672

data type conversion in, 121

getline() (fstream class)

in, 629, 667t, 668–670

with getline() (string

class), 611–613

for string input, 609–610,

611–613

See also prompting and stor-

ing user input

Circle class, 541, 542–546

class definitions/declarations,

440–446

declaration section, 440,

441–443, 445, 467

forward declarations, 525

implementation section, 440,

443–446, 467

class diagrams (UML), 569–572

class hierarchies, 541

ios class, 427

class members, 440

access specifications/

specifiers, 442, 443, 447,

541–546

pointers as. See pointer data

members

scope, 473–474

static members, 474–477

storage categories, 474–480

See also data members; meth-

ods; and also base class

members; derived class

members

class operators. See operator

functions

class scope, 473–474

class to built-in data type con-

version, 520–522

class to class data type conver-

sion, 525–528

class variables, static,

474–476

classes, 9, 14, 38, 433, 439–484,

448, 449, 487, 570, 606

base. See base classes

child. See derived classes

common programming

errors, 482, 568

constructing, 440–448; com-

mon programming errors,

482, 568; examples,

463–473

declaration section, 440,

441–443, 445, 467

declaring. See class

definitions/declarations

definition (defined), 439–440

definition of (defining).

See class definitions/

declarations

derived. See derived classes

deriving, 542–546

functions. See methods

in high-level languages, 435

implementation section, 440,

443–446, 467

instances. See objects

for lists. See STL lists

members. See class members

without methods. See
structures

modeling objects in. See
modeling objects

naming (names), 14, 442

parent. See base classes

as plans, 436

as recipes, 436–438

vs. structures, 704n

UML diagrams, 569–572

variables. See data members;

objects

clear() method (STL classes),

583t, 594t

clog (standard log stream), 412

close() method, 399

closed box metaphor, 267, 276

closing files, 390, 399

cmath header file, 108

code(s). See character codes;

number codes/systems;

pseudocode; source code

coding algorithms, 8, 31

coercion (data type

conversion), 84

coin-toss model, 485

collections (containers), 573, 575

colons (::). See scope resolution

operator

W_C7785_Index.1c 758W_C7785_Index.1c 758 1/18/11 11:23 AM1/18/11 11:23 AM

759Index

combining:

field width manipulators,

96, 97t

flags, 100

mode indicators, 401

comma (,): list item separator,

206, 303, 314

comment symbols (//) (/*,

*/), 24

comments (in programs), 23–25

placement of, 128

pre-/postcondition

comments, 232

common programming errors,

26–27, 70–71, 132

assignment operator (=) vs.

equality operator (==),

151–152, 173, 221

classes, 482, 568

data files, 423

exception handling, 656

functions, 285, 568

memberwise assignment for

pointer members. See
under pointer data

members

objects, 482, 568

one-dimensional arrays, 323

operator functions, 533

pointers, 383–385; to

C-strings, 698

repetition statements,

220–222

selection statements, 173–174

STL lists, 602

structures, 727

unions, 727

compare() method (string

class), 613t

comparing:

Boolean values, 154

C-strings, 682t, 683–684

characters, 139+t; in

C-strings, 682t

dates, 493–495

numbers. See relational

expressions

pointers, 364, 367

strings, 613t, 614t, 615–616

compile-time errors, 134

syntax errors, 134–135

compiled languages, 10

compilers, 10, 66

compound statements, 146

in for statements, 204

in if–else statements,

146–148, 149, 174

computer programs. See
programs

computers, 3

speed growth, 657

concatenating C-strings, 681t,

682–683, 683–684

concatenating strings, 614t, 616,

619, 620

concatenation operator (+),

614t, 616, 619, 620

conditions, 138–139, 152

do–while statement expres-

sions, 218, 219

evaluating, 141

for statement expressions,

201–202, 207

if–else statement

expressions, 143

in logical expressions,

139–140

pre-/postconditions, 232

switch statement

expressions, 168

while statement expres-

sions, 180, 184

connections. See file stream

object-to-file connections

connector symbol (on

flowcharts), 7

const identifiers:

declaring, 127–128

naming, 128

in operator functions, 493

constants:

in assignment statements, 80

as literal values, 38

magic numbers, 127

named. See symbolic

constants

pointer. See pointer constants

See also characters; numbers;

strings

constructing classes, 440–448

common programming

errors, 482, 568

examples, 463–473

constructors (constructor meth-

ods), 443, 452–463

calling, 453, 454–455, 546

copy. See copy constructors

for data type conversion,

522–524

Date() constructor, 443–444,

446–447, 455–456

declaring, 452, 453, 454–455

default. See default

constructors

as inline functions, 458

overloading of, 455–457

in STL classes, 582t, 593t

string class constructors,

607t

containers, 573, 575

See also arrays; STL lists

continue statements:

in catch blocks, 639

in for statements, 207

in while statements, 197–198

conversion operator functions,

520–522, 525–528

converting:

angles to radians, 111

binary numbers: to decimal

numbers, 75; to hexadeci-

mal numbers, 76–77; to

octal numbers, 77

C-strings to strings/string

objects, 614t, 667

W_C7785_Index.1c 759W_C7785_Index.1c 759 1/18/11 11:23 AM1/18/11 11:23 AM

760 Index

C-strings to/from integers/

double-precision num-

bers, 649, 650t, 688–689+t

Celsius to Fahrenheit,

185–186, 249–250, 250–251

data types. See data type

conversion

decimal numbers: to binary

numbers, 75; to hexadeci-

mal numbers, 99–100; to

octal numbers, 99–100

hexadecimal numbers: to

binary numbers, 75–76+t;

to decimal numbers, 101

lowercase to uppercase, 623t,

625, 686t, 687–688

octal numbers to decimal

numbers, 101

strings/string objects to

C-strings, 396, 397,

613t, 667

ConvertToUpper() function,

687–688

copy algorithm (STL), 576t

copy constructors, 500–503

vs. assignment operator

function, 501

declaration of, 501

for pointer data members, 567

See also default copy

constructor

copy_backward algorithm

(STL), 576t

copying C-strings. See strcopy()

function; strcpy() function

copying characters in

C-strings, 682t

cos() function, 108t, 111

counters:

in for loops, 221; nested

loops, 209–211

in while statements, 180–183

counting statements, 88–90

cout object, 9, 18, 19, 20, 391,

428, 609+t

cout statements, 20–22

character class method in,

628+t

See also displaying data

cout stream manipulators. See
manipulators

cout stream methods, 100,

103+t, 405

CPU storage areas, 280

cstdlib header file, 288, 392

cstring header file, 681

ctime header file, 288, 658

Cylinder class, 541, 542–546

D
data (values/value sets), 38

atomic values, 59

displaying. See displaying

data

input. See user input

See also characters; constants;

numbers; strings; values

(of variables)

data fields (in records), 575, 701

data files (files), 388–389

access types, 416; random

access, 416–419

checking for opening,

392–395, 402, 640–642,

645; multiple files,

644–648

checking for overwrite

approval, 642–644

closing, 390, 399

common programming

errors, 423

file stream objects and. See
file stream object-to-file

connections

opening, 390–392, 423; mul-

tiple files, 644–648. See
also ... checking for

opening, above; open()

method

organization, 416

storage of, 391, 404–405

See also text files

data hiding, 442, 448, 471

data member access operator

(->), 510, 716–717

data members (of classes), 440

access operator, 509–510

access specifications/

specifiers, 442, 443, 447,

541–546

declaring, 442

initialization of, 446–447,

453, 454–455

pointers as. See pointer data

members

as private, 442, 447

scope, 473, 474

static class variables,

474–476

storage of, 508

as variables, 440

data objects. See objects

data structures, 297, 575

as homogeneous/heteroge-

neous, 575, 707

unions, 724–727

See also arrays; STL lists;

structures

data transfer mechanism, 426

data type conversion, 519–529

built-in to built-in. See built-in

to built-in data type

conversion

built-in to class, 522–524

class to built-in, 520–522

class to class, 525–528

constructors for, 522–524

data types, 37–48

abstract types, 439. See also

classes

aggregate types, 297. See also

data structures

atomic types, 59

built-in types, 38–45; opera-

tional capabilities, 439+t

W_C7785_Index.1c 760W_C7785_Index.1c 760 1/18/11 11:23 AM1/18/11 11:23 AM

761Index

class types. See classes

conversion of. See data type

conversion

function templates with

more than one, 253

operations, 38+t

in pointer declarations, 348

programmer-defined types,

38, 439. See also classes

in reference declarations, 350

of return values, 246

vs. scope, 270

signed types, 43–44+t

specifying, 59–60

storage size. See storage size

of data types

structure types, 704–705

structured types, 297. See also

data structures

T type representation,

239–241

unsigned types, 43–44+t, 73t

user-defined types. See
classes

See also floating-point data

types; integer data types

Date class, 440–448

data type conversions,

519–529

methods and objects,

508–519

operator functions, 493–507

Date() constructor, 443–444,

446–447, 455–456

dates:

adding integers to, 495–498

comparing, 493–495

as integers, 519–520

specifying/storage of, 442,

455–456

debuggers, 136

debugging programs, 31–32, 136

with global variables, 272

dec manipulator, 94t, 99

decimal numbers:

converting: to binary num-

bers, 75; to hexadecimal

numbers, 99–100; to octal

numbers, 99–100

converting binary numbers

to, 75

converting hexadecimal

numbers to, 101

converting octal numbers

to, 101

decision symbol (on flow-

charts), 7, 180

deck of cards model, 535–537

declaration section of classes,

440, 441–443, 445, 467

declaring (declaration

statements):

arrays: of objects, 459; one-

dimensional, 292–293,

303–307; of structures,

709–710; two-dimensional,

313–314, 380

C-strings, 396, 666, 694

classes. See class definitions/

declarations

const identifiers, 127–128

constructors, 452, 453,

454–455

copy constructors, 501

data members, 442

file stream objects, 390, 391,

400; opening files in com-

bination with, 395

formal parameters, 232

functions, 227, 250; assign-

ment operator function,

499. See also function

prototypes

methods, 443

namespaces, 659

object arrays, 459

objects, 446–447, 455

one-dimensional arrays,

292–293, 303–307

pointers, 346–348, 694

references, 258–259, 349,

350, 370

structure arrays, 709–710

structure data types, 704–705

structures, 702, 703

two-dimensional arrays,

313–314, 380

variables. See declaring

variables

declaring variables (declaration

statements), 59–64, 64–65

Boolean variables, 153

data members, 442

definition statements, 64–65

at first use, 64

with initialization, 63–64,

278, 279, 303–307

multiple declarations, 62–63

placement of, 128–129, 232

pointers, 346–348

references, 258–259, 349,

350, 370

decrement operator (--), 90, 132

with pointers, 366

pre-/postfix operators, 90,

154, 366

decrementing pointers, 365–367

decrementing variables, 90

See also decrement operator

default case (in switch state-

ments), 168

default constructors,

452–453, 457

with a base/member initial-

ization list, 503

user-defined, 459, 460

default copy constructor,

500–501

memberwise assignment,

500, 565; for pointer data

members, 500, 567, 568

definition of functions. See
function definitions

W_C7785_Index.1c 761W_C7785_Index.1c 761 1/18/11 11:23 AM1/18/11 11:23 AM

762 Index

definition of variables (defini-

tion statements), 64–65

delete operator:

deleting dynamic arrays, 360,

361t, 362–363, 383

deleting dynamic objects,

553+t, 555, 556–557

deque class (STL):

common programming

errors, 602

implementing queues with,

599–601

implementing stacks with,

592–597

methods and operations, 592,

593–595t

deque objects, 596

See also queues; stacks

dereferencing operator (indirec-

tion operator) (*), 345, 351

derived class members:

access specifications, 542+t

function overloading,

547–551

derived classes, 427–428+t,

540, 541

base classes and, 543–544, 546

creating, 542–546

designing programs, 12–13,

29–31, 569

object-oriented programs,

569–572

desk checking, 134, 136

destructor prefix (~), 458

destructors (destructor methods),

458–459, 566

as inline functions, 553

in STL classes, 582t, 593t

development phases, software,

28–33

device drivers, 426

diamond symbol (on flow-

charts), 7, 180

display() function, 228,

235–236, 317–319

display field delimiter (|), 96

display of integers from

memory, 99–102

displaying addresses, 343–344

displaying data, 18–21

arithmetic expression values,

49–51

array element values,

297–299, 315–317,

317–319, 355–360

C-strings, 666, 667t, 668

formatting output,

93–106, 405

monetary amounts, 100

put() method (character

class), 628+t, 667t, 668

return values, 247

strings, 49–50

temporarily, 136, 173

division of integers, 49, 52

division operator (/), 49, 53t

precedence and associativity,

54–56+t, 141t

division-by-zero error, 635,

636–639

do–while statements, 217–220

interactive input loops,

217–219

validating user input, 219

vs. while statements, 217, 219

documentation of programs,

32–33

dot operator (member access

operator/period) (.),

509–510, 702, 710

associativity, 589

in attribute references, 447

in method calls, 100, 391,

423, 447

double backslashes. See
backslashes (\\)

double data type, 44–45+t, 60

double quote escape sequence

(\”), 41t

double quotes (””): string

delimiters, 20, 42, 43, 606

double-precision numbers/

values, 44

accuracy problem, 142, 221

converting C-strings to, 649,

650t, 688–689+t

declaring variables for, 60, 65

drivers, device, 426

duration. See storage categories

dynamic allocation of memory,

360, 552

for arrays, 360–363

for function binding, 549–551

for objects, 552–562, 556

for structures, 721–724

dynamic arrays, 360–363

STL list type, 574t

dynamic binding, 549–551

dynamic objects, 552–562, 568

dynamic structures, 721–724

E
e (exponential notation sym-

bol), 45

echo printing, 136

editors, 10–11

effort expended in software

development, 32

Elevator class, 467–470

Employee structure, 713–715,

716–718, 719–720

empty() method (STL

classes), 584t, 595t

empty() method (string

class), 613t

empty strings, 608, 612

encapsulation, 471, 537, 541

and code extensibility,

537–538

inside–outside analogy,

535–537

end comment symbol (*/), 24

end() method (STL classes),

583t, 594t

W_C7785_Index.1c 762W_C7785_Index.1c 762 1/18/11 11:23 AM1/18/11 11:23 AM

763Index

end-of-C-string test, 676–679

end-of-file sentinel. See EOF

sentinel/marker

end-of-string marker. See null

character

ending program execution, 392

endl manipulator, 51, 52,

94t, 404

vs. \n escape sequence, 52

enqueuing, 599–600

entrance-controlled loops, 196

EOF code, 423

EOF sentinel/marker, 405

detecting, 407–409

eof() method (fstream class),

392t, 425t

EPSILON constant, 142

equal algorithm (STL), 576t

equality (equal to) operator

(==), 138–139+t

assignment operator (=) vs.,

151–152, 173, 221

not testing floating-point

numbers/variables with,

142, 221

precedence and associativity,

140–141+t

in STL classes, 583t, 594t

equality operator function,

493–495

equals sign (=). See assignment

operator

equals signs (==). See equality

(equal to) operator

erase() methods (STL class-

es), 583t, 594t

erase() methods (string

class), 613t

error processing: functions for,

634–635

See also exception handling

errors in program execution, 635

division by zero, 635,

636–639

processing functions,

634–635. See also excep-

tion handling

string literals as numerical

input, 635, 639

See also programming errors

escape character (\), 21, 41

escape sequences, 41+t

exception handlers, 635+t

exception handling, 605–606,

634–640, 640–644

common programming

errors, 656

with file checking, 642–644

in opening multiple files,

644–648

terminology, 635+t

validating user input with,

652–655

exceptions, 635+t

catching, 635t, 636, 637–639,

641–644

throwing, 635+t, 636–637,

637–639, 641–644

exchange sort algorithms. See
bubble sort algorithm

exchanging values in reference

parameters, 262–265,

369–374

exclamation point (!). See NOT

operator

exclamation point–equals sign

(!=). See inequality (not

equal to) operator

executable programs, 11

executable statements, 17

execution of programs. See pro-

gram execution

exit() function, 392

exit-controlled loops, 196

exp() function, 108t, 109t

explicit data type conversion,

111, 520

exponential notation, 45, 46t

expressions, 51, 80, 151–152

as rvalues, 84

See also arithmetic expres-

sions; conditions

extended analysis, 29

extensions (of filenames),

388–389

extern variables, 280–282, 283

external sort algorithms, 333

extracting substrings from

strings, 614t, 620, 621

extraction operator (>>), 118,

119, 132

F
\f escape sequence, 41t

Fahrenheit: converting Celsius

to, 185–186, 249–250,

250–251

fail() method (fstream

class), 392+t, 393–395, 402,

425t

false value, 153–154

field justification manipulator. See
setiosflags manipulator

field width manipulators, 93

effects, 96, 97t

See also fixed manipulator;

setprecision manipula-

tor; setw manipulator

FIFO lists. See queues

file access, 416

random access, 416–419

file buffers, 426

attaching strstream objects

to, 428–429

classes providing, 427, 428+t

file checking:

for opening files, 392–395,

402, 640–642, 645; multi-

ple files, 644–648

for overwrite approval,

642–644

file manipulation methods,

424–425t

See also output stream

methods

W_C7785_Index.1c 763W_C7785_Index.1c 763 1/18/11 11:23 AM1/18/11 11:23 AM

764 Index

file organization, sequential, 416

file position marker, 416–419

file position marker methods,

416t, 417–419

file status methods, 392–393t

file stream methods (fstream

methods), 390–401, 392–393t,

406, 407–411+t, 424–425t

close() method, 399

See also getline() method

(fstream class); open()

method; output stream

methods

file stream object-to-file

connections:

checking, 392–395, 402

closing, 390, 399

opening, 390–392

file stream objects (fstream

objects), 391, 400–401,

411–412

as arguments, 419–423

and data files. See file stream

object-to-file connections

declaration of, 390, 391, 400;

opening files in combina-

tion with, 395

logical file objects, 411

physical file objects, 411–412

file streams, 389–390

data transfer mechanism, 426

in-memory streams, 428–429

filebuf class, 428t

base class, 427

filenames, 388–389+t

assigning to string variables,

395–397

C-strings as, 396

length maximums in

OSs, 388t

pathnames, 399; item separa-

tor, 391, 661

files: program files, 280–282, 388

See also data files; header

files; text files

fill algorithm (STL), 576t

fill() method, 103t

find algorithm (STL), 577t

find() methods (string

class), 614t, 621

find_first_not_of() method

(string class), 614t

find_first_of() method

(string class), 614t

finding characters:

in C-strings, 682t

in strings, 614t, 620, 621

findMax() function, 229–235,

245–248, 307–311, 375–378

first in, first out lists. See queues

first-level structure diagrams, 30

five-dimensional array

analogy, 320

fixed flag, 98, 98t, 100

fixed manipulator, 94t, 96,

97t, 405

fixed-count loops:

for loops, 204

while loops, 185, 194, 196

flags, 98

combining, 100

float data type, 44–45+t, 60

floating-point data types, 44–46

operations, 38t

range of values, 45t

storage size, 44, 45t

floating-point expressions, 51

floating-point numbers, 44

accuracy problem, 142, 221

converting C-strings to, 649,

650t, 688–689+t

display/rounding of, 50

formatting, 96, 100

not testing with the equality

operator, 142, 221

notation, 45, 46t

significant digits, 46

floating-point variables:

declaring, 60, 65

not testing with the equality

operator, 142, 221

flow lines (on flowcharts), 7

flow of control in program exe-

cution, 82, 137

flowchart symbols, 7

flowcharts, 6–8

for binary search

algorithm, 329

for do–while statements, 218

for for statements, 202, 203

for if–else statements, 144

for while statements, 181,

190, 191

flush manipulator, 94t

for statements, 201–216

accessing array elements with,

295–296, 316, 355–360,

366–367, 376–378

common programming

errors, 220–221

compound statements

in, 204

fixed-count loops, 204

interactive input loops,

208–209, 211–212, 297

nested loops, 209–212,

316, 318

parenthetical items in,

201–202, 204, 207; omit-

ting, 205–207

semicolon in, 201, 205, 221

vs. while statements,

203–204, 207–208

form. See programming style

form feed escape sequence

(\f), 41t

formal parameters, 230

declarations of, 232

format flags. See flags

format manipulators. See
manipulators

format methods, 100, 103+t, 405

formatting output, 93–106, 405

formulas, 6

forward declarations (of

classes), 525

W_C7785_Index.1c 764W_C7785_Index.1c 764 1/18/11 11:23 AM1/18/11 11:23 AM

765Index

four-dimensional array

analogy, 320

friend functions (nonmember

methods), 478–480

operator functions as/vs.,

504–505

friends lists, 478–479

front() method (STL classes),

582t, 593t

frstream class: base and

derived classes, 427

fstream class, 428+t

base and derived classes, 427

fstream header file, 391, 428t

fstream methods. See file

stream methods

fstream objects. See file stream

objects

function binding, 549–551

function body, 229, 231–233

function calls, 109, 226

arguments. See arguments

with empty parameter

lists, 236

for operator functions,

494, 495

overhead, 250

for passing addresses, 369

for passing values, 228–229,

230, 265, 369; array values,

307, 317

function definitions,

229–234, 231

for operator functions, 493,

496, 499–500

placement of, 231, 234, 250

function headers, 15–16,

229–230, 245–246, 250

arrays as specified in,

309–310, 317–318, 319,

375–376

common programming

errors, 285

template header, 239

function names, 14–15, 16,

107, 230

parentheses in, 14, 107, 231

reusing. See function

overloading

function overloading, 107–108,

237–238

constructors, 455–457

derived class member func-

tions, 547–551

function prototypes, 227–228,

231, 247, 248, 250

arrays as specified in, 309,

317, 319

default arguments in,

236–237

eliminating/omitting,

250, 285

with empty parameter lists,

235–236

for operator functions, 493,

495, 511, 529, 532

function templates,

238–241, 253

returning values from,

251–253

functions, 4, 13, 225–289

arguments. See arguments

in arithmetic expressions,

109–111

basics, 226–244

C-string library functions,

670, 681–684+t; pointer-

defined C-strings in, 675,

679–680

called functions, 227,

245–246

calling. See function calls

calling functions, 227, 247

character library functions,

622–626+t, 684–688+t

of classes. See methods

common programming

errors, 285, 568

declarations of, 227, 250;

assignment operator func-

tion, 499. See also function

prototypes

definition of. See function

definitions

developing, 673

with empty parameter lists,

235–236

for error processing, 634–635

friend. See friend functions

general format, 230

inline functions, 250–251

library. See library functions

mathematical library func-

tions, 106–116

member functions (of

classes). See methods

as modules, 225–226, 267

naming. See function names

operator. See operator

functions

overloaded. See function

overloading

passing items to. See passing

addresses to functions;

passing arrays to func-

tions; passing structures to

functions; passing values

to functions

pointers to, 380–381

predefined functions, 17

return values, 16, 108+t,

109t, 228

returning structures from,

718–720

returning values from,

244–257; multiple values,

257–267

stubs, 234–235

templates for, 238–241

virtual functions,

549–551, 568

See also main() function; and
other specific functions

W_C7785_Index.1c 765W_C7785_Index.1c 765 1/18/11 11:23 AM1/18/11 11:23 AM

766 Index

G
generating random numbers,

287–288

get() method (character

class), 628+t, 629–632, 667t,

668, 671–672

get() methods (fstream

class), 407t, 411, 424t

getaline() function, 673

getanInt function, 652–655,

659–661

getline() method (fstream

class), 407t, 409–410, 425t

in cin statements, 629, 667t,

668–670

getline() method (string

class), 424t, 609+t,

610–611, 629

cin statement and, 611–613

getOpen() function, 421–422

getValues() function,

719–720

global scope, 268, 473, 474

global variables, 268–269,

473, 474

common programming

error, 285

extern variables,

280–282, 283

vs. local variables of the

same name, 271–272

misuse of, 272

scope, 268, 473, 474

scope extension, 280–283

specifying, 271

static variables, 282–283;

initialization of, 278

storage categories, 280–283

storage of, 269–270

structure data types, 704

symbolic constants as,

272, 309

good() method (fstream

class), 393t, 407–409, 425t

graphical user interfaces

(GUIs), 4

greater than operator (>),

138–139+t

precedence and associativity,

140–141+t

in STL classes, 584t, 595t

greater than or equal to opera-

tor (>=), 138–139+t

precedence and associativity,

140–141+t

in STL classes, 584t, 595t

greater than signs (>>): extrac-

tion operator, 118, 119, 132

GUIs (graphical user

interfaces), 4

H
head pointer, 599

header files, 19

cctype file, 622, 684

cmath file, 108

cstdlib file, 288, 392

cstring file, 681

ctime file, 288, 658

fstream file, 391, 428t

including, 19

iomanip file, 96

iostream file, 19, 391,

412, 428t

limits file, 73

string file, 399, 608, 622

heterogeneous data structures,

575, 707

heuristic commands, 5

hex manipulator, 94t, 99

hexadecimal number escape

sequence (\xhhhh), 41t

hexadecimal numbers, 75–77

converting: to binary num-

bers, 75–76+t; to decimal

numbers, 101

converting binary numbers

to, 76–77

converting decimal numbers

to, 99–100

designation prefix (0x),

77, 101

high-level languages, 4, 435

See also C++

homogeneous data structures,

575, 707

horizontal tab escape sequence

(\t), 41t

hybrid languages, 435

See also C++

I
I/O. See input/output

identifiers, 14–15

class names, 14, 442

const identifiers, 127–128

See also function names

identifying strings: displaying,

49–50

if statements, 149–151

nested statements,

158–159, 174

if–else chains, 159–167

if–else statements, 143–158

compound statements in,

146–148, 149, 174

nested statements, 159;

if–else chains, 159–167

problems associated with,

151–152

ifstream class, 391, 428+t

base classes, 427

ifstream objects. See input file

stream objects

ignore() method (character

class), 613, 628+t, 668t

ignore() method (fstream

class), 407t, 425t

implementation (in object-

oriented programming), 448

implementation section of

classes, 440, 443–446, 467

implicit data type conversion,

51, 84, 111, 121, 246, 520

implicit dereferences (automatic

dereferences), 348, 350

W_C7785_Index.1c 766W_C7785_Index.1c 766 1/18/11 11:23 AM1/18/11 11:23 AM

767Index

in-memory streams, 428–429

including header files, 19

including namespaces, 661, 662

increment operator (++),

88–89, 132

with pointers, 366

pre-/postfix operators, 89,

154, 366

incrementing pointers, 365–367

incrementing variables, 88–89

See also increment operator

indentation (in programs), 23

of nested if statements, 159

index values. See offset values

indexes. See subscripts

indirect addressing, 345

indirection operator (derefer-

encing operator) (*), 345, 351

individualized code, 657–658

inequality (not equal to) opera-

tor (!=), 138–139+t

precedence and associativity,

140–141+t

in STL classes, 583t, 595t

inFile object, 390, 391, 399

!inFile expression, 402, 409

infinite loops:

do–while statements as, 219

for statements as, 207

while statements as, 183

information hiding, 471

inheritance, 540–547, 541

in high-level languages, 435

types, 540

initialization:

vs. assignment, 500, 501

base/member list, 503

C++ style vs. C style, 455

of data members, 446–447,

453, 454–455

of one-dimensional arrays/

array elements, 303–307

of pointers, 368, 384

of strings, 608

of structures/structure

members, 705

of two-dimensional arrays/

array elements, 314

of variables, 63–64, 278, 279,

303–307; static vari-

ables, 278–279

initializing list (in for state-

ments), 201, 205,

206–207, 207

inline functions, 250–251

constructors as, 458

destructors as, 553

inline keyword, 250

inner loop (in nested for

loops), 209–211

inOut() function, 419–421

input: as character-by-

character, 627

See also reading from text

files/input streams; user

input

input data, 389

input file stream, 389–390

input file stream objects

(ifstream objects), 400

declaration of, 390, 391;

opening files in combina-

tion with, 395

input files:

checking for opening, 392–

394, 402, 640–642, 645

opening, 390–392, 423

standard input file, 411

See also data files

input mode (of files), 393, 401

input stream objects, 391

file stream object declaration

statements, 390, 391

See also cin object

input streams:

in-memory streams, 429

reading from, 406–410, 407t,

409–410, 411, 424–425t,

627, 628+t, 629–632, 667t,

668–670, 671–672; data

transfer mechanism, 426

input/output (I/O), 29

as character-by-character,

627. See also character I/O

See also displaying data; read-

ing from text files/input

streams; user input; writ-

ing to text files/output

streams

input/output symbol (on flow-

charts), 7

insert() method (string

class), 614t, 618, 619–620

insert() methods (STL

classes), 582t, 593–594t

inserting characters in strings,

614t, 618, 619–620

insertion symbol (<<), 18, 50

inside–outside analogy, 535–537

instance variables. See data

members (of classes)

instantiating objects, 607

instantiations of classes. See
objects

int data type, 39, 44t, 73t

integer data types, 38–44

operations, 38t

range of values, 43–44+t, 73+t

storage size, 42–44+t,

73–74+t

integer division, 49, 52

integer expressions, 51

integer variables: declaring,

59–60, 65

integers (integer values/data), 39

adding to dates, 495–498

as char data type codes, 626

converting C-strings to/from,

649, 650t, 688–689+t

dates as, 519–520

declaring variables for,

59–60, 65

as displayed from memory,

99–102

formatting, 94–96

significant digits, 46

W_C7785_Index.1c 767W_C7785_Index.1c 767 1/18/11 11:23 AM1/18/11 11:23 AM

768 Index

as stored in memory, 72–77,

101, 102

validating input. See validat-

ing user input

See also decimal numbers;

hexadecimal numbers;

octal numbers

interactive input. See user input

interfaces (in object-oriented

programming), 448, 537–538

internal sort algorithms,

333–339

interpreted languages, 10

interpreters, 10

invocation of statements, 31

invoking functions. See function

calls

I/O. See input/output

iomanip header file, 96

ios class, 426–427

derived classes, 427–428+t

ios flags, 98–99+t

ios mode indicators (open()

method), 400, 401

iostream class, 391, 428t

base classes, 426–427

iostream class library, 19, 426,

426–427

iostream header file, 19, 391,

412, 428t, 666

is...() methods (istype()

methods), 622–625+t,

684–687+t

isalnum() method/function,

622t, 685t

isalpha() method/function,

622t, 684t

isascii() method/function,

623t, 685t

isctrl() method/function,

623t, 686t

isdigit() method/function,

622t, 685t, 686–687

isgraph() method/function,

623t, 686t

islower() method/function,

622t, 685t

isolation testing, 236

isprint() method/function,

623t, 685t

ispunct() method/function,

623t, 686t

isspace() method/function,

623t, 685t

istream class, 19, 391, 428t

base and derived classes, 427

isupper() method/function,

622t, 685t

isvalidInt function, 650–655,

658–661

iteration. See repetition

iterators (STL), 577

itoa() function, 650t, 688+t

K
keyboard (standard input

device), 411

keyboard input. See user input

keywords, 14+t

L
languages. See machine language;

programming languages

last in, first out lists. See stacks

left flag, 98, 99t

left manipulator, 94t

length of C-strings: determin-

ing, 681t, 683

length of strings: determining,

613t, 615–616

length() method (string

class), 613t, 615–616

less than operator (<),

138–139+t

precedence and associativity,

140–141+t

in STL classes, 584t, 595t

less than or equal to operator

(<=), 138–139+t, 144–145

precedence and associativity,

140–141+t

in STL classes, 584t, 595t

less than signs (<<): insertion

symbol, 18, 50

letters:

comparing, 139+t

converting lowercase to

uppercase, 623t, 625, 686t,

687–688

uppercase letters in identifi-

ers, 15, 442

See also characters

libraries (of classes and func-

tions): creating, 658–663

See also library functions;

STL (Standard Template

Library)

library functions:

C-string functions, 670,

681–684+t; pointer-defined

C-strings in, 675, 679–680

character functions,

622–626+t, 684–688+t

mathematical functions,

106–116

lifetimes. See storage categories

LIFO lists. See stacks

limits header file, 73

line comments, 23–24

linear search algorithm

(sequential search algo-

rithm), 325–327

Big O, 332–333

vs. binary search

algorithm, 332

linearSearch() function,

326–327

link variables in queues, 599

linked list objects:

adding, 580

pointers in, 580–581, 602

removing/popping, 581, 584

W_C7785_Index.1c 768W_C7785_Index.1c 768 1/18/11 11:23 AM1/18/11 11:23 AM

769Index

linked lists, 579–590

vs. arrays, 586

common programming

errors, 602

constructing, 581–589; using

the list class, 581–586;

using user-defined

objects, 586–589

objects in. See linked list

objects

STL list type, 574t

of structures, 722

See also list class (STL)

linkers, 11

list class (STL):

common programming

errors, 602

constructing linked lists

using, 581–586

methods and operations, 581,

582–584t

list delimiters ({}), 303, 314

list item separator (,), 206,

303, 314

lists:

altering list (in for state-

ments), 202, 205, 206–207

base/member initialization

list, 503

containers. See arrays; STL

lists

first in, first out. See queues

friends lists, 478–479

initializing list (in for state-

ments), 201, 205,

206–207, 207

last in, first out. See stacks

linked. See linked lists

See also STL lists

literal values, 38

See also characters; constants;

letters; numbers; strings

local scope (block scope),

148–149, 267–268, 473, 474

local variables, 267–268

auto variables, 277–278, 283

common programming

errors, 285

vs. global variables of the

same name, 271–272

register variables,

279–280, 283

scope, 148–149, 267–268

static variables, 278, 283;

initialization of, 278–279

storage categories,

277–280, 283

storage of, 269–270

log() function, 108t, 109t

log10() function, 108t, 109t

logic errors, 135

assignment operator (=) vs.

equality operator (==),

151–152, 173, 221

logical data, 41–42

logical expressions, 139–140

evaluating, 141

logical file objects, 411

logical operators, 139–140

bitwise OR operator (|),

100, 401

precedence and associativity,

140–141+t

long double data type,

44–45+t

long int data type, 44t, 73t

long integers: dates as, 519–520

loop symbol (on flowcharts), 7

loops, 179

infinite. See infinite loops

types, 196

See also do–while state-

ments; for statements;

while statements

low-level languages, 4

lowercase letters: converting to

uppercase, 623t, 625, 686t,

687–688

Lukasiewicz, Jan, 592

lvalues, 84, 694

M
machine language, 9

translation of source pro-

grams into, 9–10

magic numbers, 127

main() function, 15–17, 22, 467

general form, 22–23, 60–61

maintenance of programs, 33

manipulators (output stream/

format manipulators), 51,

93–106, 93–94t, 405

endl manipulator, 51, 52,

94t, 404

field justification. See
setiosflags manipulator

field width. See field width

manipulators

method equivalents, 100,

103+t, 103t, 405

parameterized

manipulators, 99

See also other specific
manipulators

mathematical library functions,

106–116

max_object algorithm

(STL), 577t

max_size() method (STL

classes), 584t, 595t

maximum values: locating in

arrays, 296

See also findMax() function

member access operator. See dot

operator

member functions/methods. See
methods

memberwise assignment

(between objects):

assignment operator, 499, 565;

for pointer data members,

499, 565–566, 568

default copy constructor,

500, 565; for pointer data

members, 500, 567, 568

W_C7785_Index.1c 769W_C7785_Index.1c 769 1/18/11 11:23 AM1/18/11 11:23 AM

770 Index

memory:

capacity growth, 657

CPU storage areas, 280

file buffers, 426

in-memory streams, 428–429

integers as displayed from,

99–102

locations in. See addresses

numbers as stored in, 72–77,

101, 102

memory allocation, 64–66, 360

dynamic. See dynamic alloca-

tion of memory

See also storage

memory leaks, 556–557

memory locations. See addresses

merge() method (list

class), 583t

methods (of classes), 389,

440–441

access specifications/specifi-

ers, 442, 443, 447, 541–546

access to objects, 508–511

accessors, 459

C-string. See character

class methods; and under
library functions

calling, 100, 391, 423, 446–448,

459, 476, 508–509

character class. See
character class methods

classes without. See
structures

constructors. See constructors

declaration statements, 443

destructors, 458–459

file status methods, 392–393t

file stream methods, 390–401

implementation format/

statements, 443–446

mutators, 460

nonmember methods. See
friend functions

output stream methods, 100,

103+t, 405

passing objects to, 514–518

pointer argument. See this

pointer

as public, 443

returning objects from,

511–514

scope, 473, 474

static member methods,

476–477

STL algorithms, 576–577+t

in STL classes, 581, 582–584t,

592, 593–595t

storage of, 508

string class. See string

class methods

in UML class and object

diagrams, 572

min_object algorithm

(STL), 577t

minus sign (–):

negation operator, 52, 53t

private visibility indicator, 572

See also subtraction operator

mixed-mode expressions, 51

mnemonics as identifiers, 14–15

mode indicators (open()

method), 400, 401

combining, 401

modeling objects (in classes),

484, 485–486, 486–488,

535–537

See also constructing classes

modules (of programs), 13

functions as, 225–226, 267

modulus operator (%), 52, 53t

precedence and associativity,

54–56+t, 141t

monetary amounts:

displaying, 100

multidimensional arrays: analo-

gies for, 313, 319–320

See also two-dimensional

arrays

multiple assignments, 83

multiple extraction operators,

119, 132

multiple files: opening and

checking, 644–648

multiple inheritance, 540

multiple insertion symbols, 50

multiple values: returning from

functions, 257–267

multiplication operator (*), 53+t

precedence and associativity,

54–56+t, 141t

mutators (mutator methods), 460

in STL classes, 582–583t,

593–594t

N
\n escape sequence. See new-

line character/escape

sequence

named constants. See symbolic

constants

namespaces, 19, 662

declaring (creating), 659

including and designating,

661, 662

NameTele class, 586–589

naming (names):

classes, 14, 442

const identifiers, 128

files. See filenames

functions. See function names

objects, 487

variables, 58–59, 59–60

negation operator (-), 52, 53t

nested for loops, 209–212,

316, 318

nested if statements,

158–159, 174

nested if–else statements, 159

if–else chains, 159–167

nested try blocks, 647–648

new operator:

creating dynamic arrays,

360–361+t

creating dynamic objects,

553–558+t, 602

creating dynamic structures,

721–722+t

W_C7785_Index.1c 770W_C7785_Index.1c 770 1/18/11 11:23 AM1/18/11 11:23 AM

771Index

newline character/escape

sequence (\n), 21, 41t, 42,

43, 404

as an input phantom,

611–613, 629–632

ASCII code, 43

as character/string literals/

data types, 43, 612

vs. endl manipulator, 52

newval() function, 258–260

nibbles, 77

\nnn escape sequence, 41t

noboolalpha manipulator, 94t

nonexecutable statements, 17

nonmember methods. See
friend functions

noshowbase manipulator, 94t

noshowpoint manipulator, 94t

noshowpos manipulator, 94t

not equal to operator. See
inequality (not equal to)

operator

NOT operator (!), 140

precedence and associativity,

140–141+t

nouppercase manipulator, 94t

null character (\0) (NULL), 41t,

304, 428, 563, 602, 606, 666

ASCII code, 43

null statement (;), 198, 221

NULL value, 553, 602

See also null character

number codes/systems, 72

binary numbers, 74–75

See also hexadecimal num-

bers; octal numbers

numbers (numeric values):

adding to pointers, 365

adding to variables, 85–86,

86–87, 88–89

comparing. See relational

expressions

data types, 38–45

displaying variable values

temporarily, 136, 173

as literal values, 38

power-of-ten symbols and

prefixes, 46t

precision. See precision

random. See random

numbers

ranges. See ranges of values

Reynolds numbers, 163

significant digits, 46

as stored in memory, 72–77,

101, 102

subtracting from pointers, 365

subtracting from variables, 90

See also data; floating-point

numbers; integers

numerical data types, 38–45

numerical input:

string literals as, 635, 639

validating. See validating user

input

See also user input

O
O. See Big O notation

object descriptions, 485–486

object diagrams (UML),

569–572

object programs, 11

object-based languages, 435, 541

See also C++

object-based programming,

433–439

object-oriented languages, 4–5,

435, 539, 541

See also C++

object-oriented programming:

interfaces, 448, 537–538

vs. procedural programming,

487–488

terminology, 448–449

UML class and object dia-

grams, 569–572

object-oriented programs:

designing, 569–572

objects (class instances), 9, 446,

448–449, 570, 606

arrays of, 459–461, 579

attributes. See attributes

basic characteristics,

435–436, 485

behaviors. See behaviors

common programming

errors, 482, 568

as data structures, 575

declaring, 446–447, 455

deque objects, 596. See also

queues; stacks

descriptions, 485–486

dynamic objects,

552–562, 568

file stream. See file stream

objects

instantiating, 607

in linked lists. See linked list

objects

memberwise assignment

between. See memberwise

assignment

method access to, 508–511

modeling. See modeling

objects

naming, 487

passing to methods, 514–518

returning from methods,

511–514

state, 435–436, 449, 487

stream objects, 391. See also

cin object; cout object;

file stream objects

string. See string objects

temp object, 496

UML diagrams, 569–572

unique identity, 504

user-defined. See user-

defined objects

vs. values, 504

as variables, 446, 448

oct manipulator, 94t, 99

octal group separator (|), 77

W_C7785_Index.1c 771W_C7785_Index.1c 771 1/18/11 11:23 AM1/18/11 11:23 AM

772 Index

octal number escape sequence

(\nnn), 41t

octal numbers, 77

converting: to decimal

numbers, 101

converting binary numbers

to, 77

converting decimal numbers

to, 99–100

designation prefix (0), 101

“off by one” error, 220–221

offset values:

of the file position marker,

416–419

of one-dimensional array ele-

ments, 294, 355, 356, 358

of string object characters,

606, 609

ofstream class, 391, 428+t

base classes, 427

ofstream objects. See output

file stream objects

one-dimensional array element

subscripts (indexes), 294

accessing array elements

with, 295–296, 355–356,

360, 376–378

bounds checks on, 297

vs. pointers (for accessing

array elements), 376–378

referencing array elements

with, 294–295,

354–355, 357+t

one-dimensional array ele-

ments, 293–294

accessing (sequentially):

with pointer constants,

359, 367; with pointers,

355, 357–358, 360, 367,

376–378; with subscripts,

295–296, 355–356, 360,

376–378

displaying the values of,

297–299, 315–317,

317–319, 355–360

indexes. See one-dimensional

array element subscripts

initialization of, 303–307

offsets for, 294–295, 356

passing to functions, 307

prompting and storing input

into, 296–297

referencing: with pointer

constants, 358–359; with

pointers, 355, 356–357+t,

358; with subscripts,

294–295, 354–355, 357+t

subscripts. See one-dimension-

al array element subscripts

one-dimensional array names as

pointer constants,

358–359, 360

one-dimensional arrays, 292–312

common programming

errors, 323

declaration statements,

292–293, 303–307

dynamic arrays, 360–363

elements. See one-dimensional

array elements

initialization of, 303–307

passing to functions,

307–312, 375–378

pointer constants, 358–360,

367, 376

sizing, 293, 297

as specified in function pro-

totypes and headers,

309–310, 375–376

one-way if statements. See if

statements

open() method, 390–395,

402, 423

mode indicators, 400, 401

See also opening files

opening files, 390–392, 423

and checking for opening,

392–395, 402, 640–642,

645; multiple files,

644–648

See also open() method

operands, 49, 132

expressions comparing. See
relational expressions

operating systems (OSs):

device drivers, 426

filename length

maximums, 388t

operations, 38+t

arithmetic. See arithmetic

operations

iteration of, 31

precedence. See precedence

of operators

selection of, 31

See also functions; methods

operator functions (class opera-

tors), 493–507

addition operator function,

495–498

assignment operator. See
assignment operator

functions

common programming

errors, 533

conversion functions,

520–522, 525–528

equality operator function,

493–495

as/vs. friend functions,

504–505

parentheses operator func-

tion, 529, 532–533

subscript operator function,

529–533

symbols for, 491–492+t;

restrictions on using,

498–499

operator long() function,

520–522

operator() function, 529,

532–533

operator[] function, 529–533

operators:

address operator (&), 258, 343

arithmetic. See arithmetic

operators

W_C7785_Index.1c 772W_C7785_Index.1c 772 1/18/11 11:23 AM1/18/11 11:23 AM

773Index

assignment. See assignment

operator

associativity. See associativity

of operators

binary operators, 49, 53t

class. See operator functions

decrement. See decrement

operator

delete operator, 360, 361t,

362–363

dot. See dot operator

extraction operator (>>), 118,

119, 132

increment. See increment

operator

indirection operator (*),

345, 351

insertion symbol (<<), 18, 50

logical. See logical operators

member access. See dot

operator

new operator, 360–362+t

overloaded operators, 52. See
also operator functions

precedence. See precedence

of operators

relational. See relational

operators

unary operators, 52, 53t

See also operator functions

OR operator (||), 139–140

precedence and associativity,

140–141+t

See also bitwise OR

operator (|)

order of evaluation of operators.

See associativity of operators

order of magnitude of number

of search algorithm compari-

sons required. See Big O

notation

order of precedence of opera-

tors. See precedence of

operators

OSs. See operating systems

ostream class, 19, 391, 428t

base and derived classes, 427

ostream manipulators. See
manipulators

ostream methods, 100,

103+t, 405

out of bounds error (in array

element index value), 297

outer loop (in nested for

loops), 209–211

outFile object, 390, 403

output:

as character-by-character, 627

formatting, 93–106, 405

See also displaying data; writ-

ing to text files/output

streams

output data, 389

output file stream, 389–390, 403

output file stream objects

(ofstream objects), 400

connecting printers to, 412

declaration of, 390, 391;

opening files in combina-

tion with, 395

output files:

checking for opening, 392,

394–395, 402, 645

checking for overwrite

approval, 642–644

opening, 390–392, 423

standard output file, 411–412

See also data files

output mode (of files),

391–392, 400

output stream manipulators. See
manipulators

output stream methods, 100,

103+t, 405

output stream objects, 391

file stream object declaration

statements, 390, 391

See also cout object

output streams:

in-memory streams, 428–429

writing to, 403–405, 406,

425t, 627, 628+t, 667t,

668; data transfer

mechanism, 426

overloaded functions. See func-

tion overloading

overloaded operators, 52

See also operator functions

overriding base class member

functions, 547–551

P
parameterized manipulators, 99

parameters (of functions): for-

mal parameters, 230, 232

See also reference parameters

parent classes. See base classes

parentheses (()):

in arithmetic expressions, 49,

53–54, 120

in function names, 14,

107, 231

in logical expressions, 141

in object declarations, 455

in relational expressions, 141t

parentheses operator function,

529, 532–533

parsing C-strings, 682t

pass by reference arguments,

257–258

pass by value arguments,

244, 257

passing addresses to functions:

with pointers, 369–374,

375–378, 379–380, 514,

515–517

with reference parameters,

257–260, 348, 350–351,

369, 370, 514, 517–518;

returning multiple values,

260–267

W_C7785_Index.1c 773W_C7785_Index.1c 773 1/18/11 11:23 AM1/18/11 11:23 AM

774 Index

passing arrays to functions:

one-dimensional arrays,

307–312, 375–378

two-dimensional arrays,

317–319, 379–380

passing objects to methods,

514–518

passing structures to functions:

with pointers, 716–718

with reference parameters,

712–715

passing values to functions, 109,

226, 228–229, 230, 244, 257,

307, 514, 529–533

common programming

error, 285

pathname item separator (\\),

391, 661

pathnames, 399

peek() method (character

class), 628+t, 667t, 668

peek() method (fstream

class), 407t, 425t

percent sign (%). See modulus

operator

period (.). See dot operator

physical file objects, 411–412

PI constant, 543

plans: classes as, 436

plus sign (+):

concatenation operator, 614t,

616, 619, 620

public visibility indicator, 572

See also addition operator

plus signs (++). See increment

operator

pointer argument of methods.

See this pointer

pointer arithmetic, 341,

364–369

pointer arrays, 693–696

pointer constants:

of C-strings, 691

of one-dimensional arrays,

358–360, 367, 376

vs. pointers, 360, 376, 384

of two-dimensional arrays,

378–379

pointer data members, 499, 500,

562–568

assignment operator function

for, 566–567

copy constructor for, 567

memberwise assignment for,

568; assignment operator,

499, 565–566; default

copy constructor, 500, 567

pointer declarations,

346–348, 694

pointer-defined C-strings,

691–693, 697–698

in C-string library functions,

675, 679–680

common programming

errors, 698

pointers (pointer variables),

341, 344–345, 511, 694

accessing one-dimensional

array elements with, 355,

357–358, 360, 367, 376–378

adding numbers to, 365

advanced notation,

378–381, 515

arrays of, 693–696

assigning addresses to,

364–365

to C-strings (character arrays),

562–565, 565–566; common

programming errors, 698.

See also pointer-defined

C-strings

as class members. See pointer

data members

common programming

errors, 383–385

comparing, 364, 367

confusion regarding, 385

declarations of, 346–348, 694

decrementing, 365–367

dynamic object creation

and deletion with,

554–558, 561

to functions, 380–381

incrementing, 365–367

initialization of, 368, 384

in linked list objects,

580–581, 602

passing addresses to func-

tions with, 369–374,

375–378, 379–380, 514,

515–517

vs. pointer constants, 360,

376, 384. See also pointer

constants

processing C-strings with,

675, 679–680

queue link variables, 599

vs. references, 348, 350–351,

374, 511

referencing one-dimensional

array elements with, 355,

356–357+t, 358

vs. subscripts (for accessing

array elements), 376–378

subtracting numbers

from, 365

this. See this pointer

polymorphism, 540, 541,

547–552

in high-level languages, 435

pop operation, 584, 592,

599–600

pop_back() method (STL

classes), 582t, 593t

pop_front() method (STL

classes), 582t, 593t

populate function, 723–724

populating structures, 702–703,

723–724

postconditions/postcondition

comments, 232

postfix algebra, 592

postfix decrement operator

(--), 90, 154, 366

W_C7785_Index.1c 774W_C7785_Index.1c 774 1/18/11 11:23 AM1/18/11 11:23 AM

775Index

postfix increment operator (++),

89, 154, 366, 718

posttest loops, 196

See also do–while statements

pound sign (#): preprocessor

command symbol, 19

pow() function, 108t, 109t

power-of-ten symbols and

prefixes, 46t

precedence of operators,

140–141+t

arithmetic operators,

54–55+t, 141t

assignment operator, 83, 141t

precision (of numbers), 46

single- and double-precision

numbers/values, 44;

declaring variables for,

60, 65

precision() method, 100,

103t, 405

preconditions/precondition

comments, 232

predefined functions, 17

predefined process symbol (on

flowcharts), 7

prefix decrement operator (--),

90, 154, 366

prefix increment operator (++),

89, 154, 366, 718

preprocessor commands/

directives, 19

placement of, 128–129

pretest loops, 196

See also for statements;

while statements

primitive data types. See built-in

data types

printers: connecting to

ofstream objects, 412

private access (private

specifier), 442, 447

private visibility, 572

problem analysis, 29

problem statement, 28

procedural languages, 4, 435

See also C++

procedural programming,

433–435

costs, 434

graphical limitations, 435

vs. object-oriented program-

ming, 487–488

procedures, 4

process symbol (on flowcharts), 7

program execution:

ending, 392

errors in, 635

flow of control, 82, 137

program files, 280–282, 388

program modeling, 486, 569

programmer-defined data types,

38, 439

See also classes

programmers: attitude toward

debugging, 136

programming, 4

errors in. See programming

errors

form/style. See programming

style

ideal in, 133

introduction to, 3–12

programming errors (bugs), 31,

133–135

debugging programs, 31–32,

136, 272

detecting, 134, 136

See also common program-

ming errors

programming languages, 4–5, 435

See also C++

programming style, 22–26

blank lines, 64, 145

See also comments;

indentation

programs, 3

backup of, 33

basic structure, 234

blank lines in, 64, 145

comments in. See comments

debugging, 31–32, 136, 272

designing, 12–13, 29–31, 569;

object-oriented programs,

569–572

development phases, 28–33

documentation of, 32–33

errors. See programming

errors

execution of: flow of control,

82, 137

form/style. See programming

style

maintenance of, 33

modules, 13; functions as,

225–226, 267

robust programs, 121–122

storage of, 280–282, 388

structural processes, 31

testing. See testing programs

tracing, 136

See also source code

prompting and storing user

input, 117–121

with do–while statements,

218–219

with for statements,

208–209, 211–212, 297

into one-dimensional array

elements, 296–297

into string objects, 397–398

with while statements,

188–201, 217

See also cin statements

prompts, 118–119

protected access (protected

specifier), 542

protected visibility, 572

prototypes:

for constructors, 453,

455–456

for data members, 442

for methods, 442, 443

See also function prototypes

W_C7785_Index.1c 775W_C7785_Index.1c 775 1/18/11 11:23 AM1/18/11 11:23 AM

776 Index

pseudocode, 5–6, 8

for binary search

algorithm, 328

for bubble sort algorithm,

337–338

for linear/sequential search

algorithm, 325–327

for selection sort algorithm,

333–334

public access (public

specifier), 443

public visibility, 572

push operation, 592, 599–600

push_back() method (STL

classes), 582t, 593t

push_front() method (STL

classes), 582t, 593t

put() method (character

class), 628+t, 667t, 668

put() method (fstream class),

406, 425t

putback() method

(character class), 628t, 629,

668+t

putback() method (fstream

class), 411, 425t

Q
question mark escape sequence

(\?), 41t

queues, 598–601

common programming

errors, 602

implementing, 599–601

STL list type, 574t

See also deque class (STL)

quotation marks:

character delimiters (''),

42, 43

escape sequences (\”,

\'), 41t

string delimiters (””), 20, 42,

43, 606

R
\r escape sequence, 41t

radians: converting angles

to, 111

rand() function, 287, 288

RAND_MAX constant,

287, 289

random file access, 416–419

random numbers:

generating, 287–288

scaling, 289

random_shuffle algorithm

(STL), 577t

ranges of values:

for floating-point data

types, 45t

for integer data types,

43–44+t, 73+t

rbegin() method (STL

classes), 583t, 594t

read mode (input mode) (of

files), 393

reading from text files/input

streams, 406–410, 407t, 411,

424–425t, 627, 628+t, 629–

632, 667t, 668–670, 671–672

data transfer mechanism, 426

real numbers. See floating-point

numbers

recipes: classes as, 436–438

records, 701

in STL lists, 575

See also structure variables

reference declarations, 258–259,

349, 350, 370

reference parameters, 265, 348

arguments and, 259–262

exchanging values in,

262–265, 369–374

in operator functions, 493

passing addresses to func-

tions with, 257–260, 348,

350–351, 369, 370, 514,

517–518; returning

multiple values, 260–267

See also references

references (reference variables),

348, 349–350, 384, 511

declarations of, 258–259, 349,

350, 370

as parameters. See reference

parameters

vs. pointers, 348, 350–351,

374, 511

register variables, 279–280,

283, 384

registers, 280

relational expressions, 137–143

evaluating, 141, 142–143

See also conditions

relational operators, 138–139+t

precedence and associativity,

140–141+t

in STL classes, 583–584t,

594–595t

in string class, 614t,

615–616

remainder operator. See modu-

lus operator

remove algorithm (STL), 577t

rend() method (STL classes),

583t, 594t

repetition (iteration) (of opera-

tions), 31, 179–224

See also repetition statements

repetition statements: common

programming errors, 220–222

See also conditions;

do–while statements;

for statements; while

statements

replace() method (string

class), 614t, 619, 620

W_C7785_Index.1c 776W_C7785_Index.1c 776 1/18/11 11:23 AM1/18/11 11:23 AM

777Index

replace algorithm (STL), 577t

replacing characters in strings,

614t, 619, 620

report symbol (on flowcharts), 7

reserved words (keywords), 14+t

resize() methods (STL

classes), 583t, 594t

retrieving characters from

strings, 613t, 616–618

return statements, 246

assignment operator method

with, 511–512

return values (of functions), 16,

108+t, 109t, 228

assigning to variables, 247

data types, 246

displaying, 247

error processing function

values, 634

returning objects from meth-

ods, 511–514

returning structures from func-

tions, 718–720

returning values from function

templates, 251–253

returning values from functions,

244–257

multiple values, 257–267

reverse algorithm (STL), 577t

Reverse Polish Notation

(RPN), 592

reverse() method (list

class), 583t

Reynolds numbers, 163

right flag, 98, 99t

right manipulator, 94t

right-justifying strings, 98

robust programs, 121–122

RoomType class, 464–466

rounding of floating-point num-

bers, 50

RPN (Reverse Polish

Notation), 592

runtime errors, 134

See also logic errors

runtime initialization (of vari-

ables), 278

rvalues, 84, 694

S
scalar variables, 291

scaling random numbers, 289

scientific flag, 98t

scientific manipulator, 93t

scientific notation, 45, 46t

scope:

of class members, 473–474

vs. data types, 270

of variables, 148–149,

267–268, 276, 473, 474

See also global variables; local

variables

scope extension of global vari-

ables, 280–283

scope resolution operator (::):

specifying global variables

with, 271

specifying methods with, 443

specifying static class vari-

ables with, 475

screen (standard output

device), 411–412

search algorithms, 325–333

season array, 693–696

second-level structure dia-

grams, 30

seek() methods (I/O files),

416t, 417–419, 423

selection (of operations), 31,

137–176

See also selection statements

selection sort algorithm,

333–336

Big O, 336

vs. bubble sort algorithm, 339

selection statements: common

programming errors, 173–174

See also conditions; if state-

ments; if–else state-

ments; switch statements

selectionSort() function,

334–336

semicolon (;):

in for statements, 201,

205, 221

null statement, 198, 221

See also statement terminator

sentinels:

in do–while statements,

218–219

in while statements,

194–196, 217

See also EOF sentinel/

marker; null character

sequence lists, 574+t

sequence of instructions, 31

sequencing through one-

dimensional arrays, 295–296

sequential file access, 416

sequential file organization, 416

sequential search algorithm. See
linear search algorithm

serving queues, 599–600

setDate() method, 444

setf() method, 100, 103t, 405

setfill manipulator, 93t,

444, 445

setiosflags manipulator, 93t,

96, 97–99, 100, 103t

setprecision manipulator,

93t, 96, 97t, 100, 405

setw manipulator, 93t, 94–96,

97t, 444, 445

seven-dimensional array

analogy, 320

short int data type, 44t, 73t

shortcut assignment operators,

86, 614t

precedence and

associativity, 141t

showabs() function, 239–241

showbase manipulator, 93t

showDate() method, 444–445

showpoint flag, 98, 98t, 100

showpoint manipulator,

94t, 405

W_C7785_Index.1c 777W_C7785_Index.1c 777 1/18/11 11:23 AM1/18/11 11:23 AM

778 Index

showpos flag, 98t

showpos manipulator, 94t

signed data types, 43–44+t

significant digits, 46

simple inheritance, 540

See also inheritance

simulation languages, 5

sin() function, 108t, 111

single quote escape sequence

(\'), 41t

single quotes (''): character

delimiters, 42, 43

single-precision numbers/

values, 44

accuracy problem, 142

declaring variables for, 60, 65

six-dimensional array

analogy, 320

size() method (STL classes),

584t, 595t

size() method (string

class), 613t

sizeof operator, 42, 45

sizing arrays, 293, 297, 313,

315, 323

slash (/). See division operator

slash-asterisk (/*): begin com-

ment symbol, 24

slashes (//): comment

symbol, 24

software (computer programs), 3

software costs, 434

software development phases,

28–33

sort algorithm (STL), 577t

sort algorithms, 333–339

sort() method (list

class), 583t

source code:

extensibility, 537–538

individualized code, 657–658

reusability, 573

temporary code for displaying

variable values, 136, 173

source programs, 9

creating, 10–11

translation into machine lan-

guage, 9–10

splice() methods (list

class), 583t

sqrt() function, 107–108+t,

110–111

srand() function, 287, 288

src() methods (STL classes),

582t, 594t

stack arithmetic, 592

stacks, 590–598

common programming

errors, 602

counting items in, 592

implementing, 592–597

STL list type, 574t

See also deque class (STL)

standard error stream (cerr), 412

standard input file/stream/

device, 411, 412

standard library functions. See
library functions

standard log stream (clog), 412

standard output file/stream/

device, 411–412

Standard Template Library.

See STL

state (of an object), 435–436,

449, 487

statement delimiters ({}), 16, 23

for compound statements,

146, 149, 174, 204

for nested if statements,

159, 174

statement terminator (;), 17, 50,

60, 63, 83

in do–while statements,

217, 222

in if–else statements,

143–144

as not in for statements, 221

as not in while

statements, 222

statements:

#include statement (com-

mand), 19, 661, 662

accumulation. See accumula-

tion statements

assignment. See assignment

statements

break. See break statements

cin. See cin statements

compound. See compound

statements

continue. See continue

statements

counting statements, 88–90

cout. See cout statements

declaration. See declaring

(declaration statements)

definition statements, 64–65

delimiters. See statement

delimiters

executable and nonexecut-

able statements, 17

execution of: flow of control,

82, 137

if. See if statements;

if–else statements

invocation of, 31

null statement (;), 198, 221

placement of, 128–129, 234

return. See return

statements

selection. See selection

statements

switch statements, 167–172

terminator. See statement

terminator

using statement, 19, 661, 662

static binding, 549

static class variables, 474–476

static member methods,

476–477

static variables:

class variables, 474–476

global variables, 282–283;

initialization of, 278

W_C7785_Index.1c 778W_C7785_Index.1c 778 1/18/11 11:23 AM1/18/11 11:23 AM

779Index

local variables, 278, 283; ini-

tialization of, 278–279

std file, 19

STL (Standard Template

Library), 573, 574

STL algorithms, 576–577+t

STL classes, 576, 577

See also deque class; list

class

STL iterators, 577

STL lists, 573, 574–576

vs. arrays, 574–575, 579;

linked lists, 586

common programming

errors, 602

as data structures, 575

types, 574+t

See also linked lists; queues;

stacks; STL classes

storage:

of C-strings, 691–692

categories. See storage

categories

of characters, 626

of data files, 391, 404–405

of data members, 508

of dates, 442

of methods, 508

of numbers in memory,

72–77, 101, 102

of programs, 280–282, 388

of string objects, 667

storage areas in the CPU, 280

storage categories:

of class members: static

class variables, 474–476;

static member meth-

ods, 476–477

of variables, 276–284. See also

auto variables; extern

variables; register vari-

ables; static variables

storage size of data types:

determining, 42–43

floating-point types, 44, 45t

integer types, 43–44+t,

73–74+t

storing addresses, 344–345, 347

strcat() function, 681+t,

682–683, 683–684

strchr() function, 682t

strcmp() function, 682t,

683–684

strcopy() function, 680

end-of-C-string test, 676–679

with pointers, 679–680

with subscripts, 670–671,

676–679

strcpy() function, 680, 681+t,

682, 683–684, 694

stream manipulators. See
manipulators

stream methods. See file stream

methods; output stream

methods

stream objects, 391

See also cin object; cout

object; file stream objects

streambuf class, 426, 428t

derived classes, 427, 428t

streams, 391, 426

in-memory streams, 428–429

See also file streams

string class, 606–622

string class methods/

functions, 605, 667

constructors, 607–609t

I/O methods, 609–613+t

processing methods,

613–621+t

string class objects. See string

objects

string data type vs. char data

type, 612

string delimiters (””), 20, 42, 43

string header file, 399,

608, 622

string objects:

accessing, 606

bounds checks on, 667

vs. C-strings, 667

character offset values,

606, 609

common programming

errors, 656

converting C-strings to,

614t, 667

converting to C-strings, 396,

397, 613t, 667

prompting and storing user

input into, 397–398

storage of, 667

See also strings

string variables: assigning file-

names to, 395–397

See also C-strings; string

objects

string[ind] method, 614t

strings (string literals), 20,

428, 606

accessing characters in, 613t,

616–618, 624, 626

vs. C-strings, 605

comparing, 613t, 614t,

615–616

concatenating, 614t, 616,

619, 620

converting C-strings to,

614t, 667

converting to C-strings, 396,

397, 613t, 667

determining the length of,

613t, 615–616

displaying, 49–50

empty strings, 608, 612

extracting substrings from,

614t, 620, 621

finding characters in, 614t,

620, 621

initialization of, 608

input methods, 609–613+t

inserting characters in, 614t,

618, 619–620

as literal values, 38

W_C7785_Index.1c 779W_C7785_Index.1c 779 1/18/11 11:23 AM1/18/11 11:23 AM

780 Index

as numerical input, 635, 639

as objects as well as

values, 504

output method. See cout

object

processing methods,

613–621+t

replacing characters in, 614t,

619, 620

retrieving characters from,

613t, 616–618

right-justifying, 98

strlen() function, 681t, 683

strncmp() function, 682t

strncpy() function, 682+t

Stroustrup, Bjarne, 5

strstream class, 428

strstream objects: attaching

to buffers, 428–429

strstreambuf class, 428

base class, 427

strtok() function, 682t

structure data types, 704–705

structure members, 702, 706

initialization of, 705

structure variables, 703–704

structured data types, 297

See also data structures

structures, 701–724

arrays. See arrays of structures

vs. classes, 704n

common programming

errors, 727

declaration statements,

702, 703

dynamic structures, 721–724

initialization of, 705

linked lists of, 722

populating, 702–703, 723–724

returning, 718–720

in structures, 706

stub functions, 234–235

style. See programming style

subscript operator function,

529–533

subscripts (indexes): processing

C-strings with, 670–673,

676–679

See also one-dimensional

array element subscripts

substr() method (string

class), 614t, 621

substrings: extracting from

strings, 614t, 620, 621

subtracting numbers from

pointers, 365

subtracting numbers from vari-

ables, 90

subtraction operator (-), 53t

precedence and associativity,

54–56+t, 141t

superclasses (base classes), 540

See also ios class;

streambuf class

swap algorithm (STL), 577t

swap() function, 262–265,

369–374

swap() method (STL classes),

583t, 594t

swap() method (string

class), 614t

switch statements, 167–172

symbolic constants (named con-

stants), 127–131

for array size values, 293,

297, 315, 323

EPSILON, 142

as global variables, 272, 309

PI, 543

RAND_MAX, 287, 289

references as, 511

symbols:

flowchart symbols, 7

power-of-ten symbols and

prefixes, 46t

See also Symbols section, above
syntax, 20

syntax errors, 134–135

T
T data type representation,

239–241, 253

\t escape sequence, 41t

tab escape sequences (\t,

\v), 41t

tail pointer, 599

tan() function, 108t, 111

tell() methods (I/O files),

416t, 417–419

template header, 239

template prefix, 240

templates for functions,

238–241

temporary code: displaying vari-

able values, 136, 173

tempvert() function, 249–250,

250–251

terminal symbol (on

flowcharts), 7

test data: creating, 32

testauto() function, 277–278

testing programs, 31–32, 132,

135–136

comprehensive testing as

practically impossible,

176–177

isolation testing, 236

minimum requirements, 177

not testing floating-point

numbers/variables with

the equality operator,

142, 221

teststatic() function, 279

text files, 389

reading from, 406–410,

407t, 411

writing to, 403–405, 406

See also data files

this pointer, 509–511, 533

returning objects from meth-

ods with, 511–514

three-dimensional array

analogy, 319

W_C7785_Index.1c 780W_C7785_Index.1c 780 1/18/11 11:23 AM1/18/11 11:23 AM

781Index

throwing exceptions, 635+t,

636–637, 637–639, 641–644

tilde (~): destructor prefix, 458

time() function, 287, 288

tokens, 15

parsing C-strings into, 682t

tolower() method/function,

623t, 686t

top-level structure diagrams, 30

toupper() method/function,

623t, 625, 686t, 687–688

tracing programs, 136

trigonometric functions,

108t, 111

true value, 153–154

as a do–while statement

expression, 219

try blocks, 636–639, 641, 644

nested blocks, 647–648

Turing test, 599

two-dimensional array elements:

accessing (cycling through),

316, 379

displaying the values of,

315–317, 317–319

initialization of, 314

processing, 316–317

referencing, 313, 378–379

two-dimensional arrays,

313–319

declaration statements,

313–314, 380

elements. See two-dimensional

array elements

initialization of, 314

passing to functions,

317–319, 379–380

sizing, 313, 315, 323

as specified in function pro-

totypes and headers,

317–318, 319

twos complement representa-

tion, 74–75

type conversion constructors,

522–524

U
UML (Unified Modeling

Language), 486, 569

UML class and object dia-

grams, 569–572

unary operators, 52, 53t

See also NOT operator

underscore (_): name character, 14

Unicode codes, 40

Unified Modeling Language.

See UML

union variables, 724, 725

unions, 724–727

common programming

errors, 727

unique algorithm (STL), 577t

unique() method (list

class), 583t

unsigned data types,

43–44+t, 73t

uppercase letters:

converting lowercase to,

623t, 625, 686t, 687–688

in identifiers, 15, 442

uppercase manipulator, 94t

user input, 117–127

character class methods,

628–629+t, 666–670,

667–668t; get(), 629–

632, 671–672. See also

getaline() function;

getline() method

(fstream class)

as character-by-character, 627

errors in program execution

from, 635

prompting. See prompting

and storing user input

string class methods,

609–613+t

validating. See validating user

input

See also cin statements

user-defined data types. See
classes

user-defined default construc-

tors, 459, 460

user-defined functions, 16

user-defined objects: construct-

ing linked lists using,

586–589

user-input validation. See vali-

dating user input

using statement, 19, 661, 662

V
\v escape sequence, 41t

valfun() function, 268–270

validating user input, 121–122,

632–633, 649–656

with do–while

statements, 219

with exception handling,

652–655

value boxes, 74, 75

values (of variables):

assigning. See assigning

values to variables

Boolean values, 153–154

displaying temporarily,

136, 173

exchanging in reference

parameters, 262–265,

369–374

literal, 38. See also characters;

constants; numbers;

strings

numeric. See numbers

vs. objects, 504

passing to functions. See pass-

ing values to functions

returning from functions,

244–257; multiple values,

257–267

strings as objects as well

as, 504

verifying values accessed by

painters, 370–371

See also data

W_C7785_Index.1c 781W_C7785_Index.1c 781 1/18/11 11:23 AM1/18/11 11:23 AM

782 Index

variable-condition while loops,

194, 196

variables, 57–70, 606

adding numbers to, 85–86,

86–87, 88–89

addition operation with,

58–59

assigning values to. See
assigning values to

variables

associated items, 341–342

atomic/scalar variables, 291

Boolean. See Boolean

variables

of classes. See data members;

objects

common programming

errors, 285

confusion regarding, 384–385

declaring. See declaring

variables

decrementing, 90

global. See global variables

incrementing, 88–89

indirect addressing, 345

initialization of, 63–64, 278,

279, 303–307, 314; static

variables, 278–279

instance. See data members

(of classes)

local. See local variables

as lvalues or rvalues, 84

naming (names), 58–59,

59–60

passing values of to func-

tions. See passing values to

functions

pointer. See pointers

reference. See references

scope, 148–149, 267–268,

276, 473, 474. See also

global variables; local

variables

storage categories, 276–284.

See also auto variables;

extern variables;

register variables;

static variables

union variables, 724, 725

unique identity, 504

values. See values (of

variables)

See also addresses

vectors (STL list type),

574t, 586

verifying values accessed by

painters, 370–371

vertical tab escape sequence

(\v), 41t

virtual functions, 549–551, 568

visibility of attributes, 572

void keyword, 228, 229

W
weighted-sign code, 75

while statements, 180–188

do–while statements vs.,

217, 219

fixed-count loops, 185,

194, 196

for statements vs., 203–204,

207–208

interactive input loops,

188–201, 217

sentinels in, 194–196, 217

variable-condition loops,

194, 196

white space (in programs), 23

words (byte groups), 72

write mode (output mode) (of

files), 391–392

writing to text files/output

streams, 403–405, 406, 425t,

627, 628+t, 667t, 668

data transfer mechanism, 426

X
\xhhhh escape sequence, 41t

Z
zero. See 0

W_C7785_Index.1c 782W_C7785_Index.1c 782 1/18/11 11:23 AM1/18/11 11:23 AM

	A First Book of C++
	Brief Table of Contents
	Contents
	Preface
	Part One: Fundamentals of C++ Programming
	Chapter 1 Getting Started
	1.1 Introduction to Programming
	1.2 Function and Class Names
	1.3 The cout Object
	1.4 Programming Style
	1.5 Common Programming Errors
	1.6 Chapter Summary
	1.7 Chapter Supplement: Software Development

	Chapter 2 Data Types, Declarations, and Displays
	2.1 Data Types
	2.2 Arithmetic Operations
	2.3 Variables and Declarations
	2.4 Common Programming Errors
	2.5 Chapter Summary
	2.6 Chapter Supplement: Bits, Bytes, and Binary Number Representations

	Chapter 3 Assignment and Interactive Input
	3.1 Assignment Operators
	3.2 Formatted Output
	3.3 Mathematical Library Functions
	3.4 Interactive Keyboard Input
	3.5 Symbolic Constants
	3.6 Common Programming Errors
	3.7 Chapter Summary
	3.8 Chapter Supplement: Errors, Testing, and Debugging

	Chapter 4 Selection
	4.1 Relational Expressions
	4.2 The if-else Statement
	4.3 Nested if Statements
	4.4 The switch Statement
	4.5 Common Programming Errors
	4.6 Chapter Summary
	4.7 Chapter Supplement: A Closer Look at Testing

	Chapter 5 Repetition
	5.1 The while Statement
	5.2 Interactive while Loops
	5.3 The for Statement
	5.4 The do-while Statement
	5.5 Common Programming Errors
	5.6 Chapter Summary

	Chapter 6 Modularity Using Functions
	6.1 Function and Parameter Declarations
	6.2 Returning a Single Value
	6.3 Returning Multiple Values
	6.4 Variable Scope
	6.5 Variable Storage Category
	6.6 Common Programming Errors
	6.7 Chapter Summary
	6.8 Chapter Supplement: Generating Random Numbers

	Chapter 7 Arrays
	7.1 One-Dimensional Arrays
	7.2 Array Initialization
	7.3 Arrays as Arguments
	7.4 Two-Dimensional Arrays
	7.5 Common Programming Errors
	7.6 Chapter Summary
	7.7 Chapter Supplement: Searching and Sorting Methods

	Chapter 8 Arrays and Pointers
	8.1 Introduction to Pointers
	8.2 Array Names as Pointers
	8.3 Pointer Arithmetic
	8.4 Passing Addresses
	8.5 Common Programming Errors
	8.6 Chapter Summary

	Chapter 9 I/O Streams and Data Files
	9.1 I/O File Stream Objects and Methods
	9.2 Reading and Writing Text Files
	9.3 Random File Access
	9.4 File Streams as Function Arguments
	9.5 Common Programming Errors
	9.6 Chapter Summary
	9.7 Chapter Supplement: The iostream Class Library

	Part Two: Object-Oriented Programming
	Chapter 10 Introduction to Classes
	10.1 Object-Based Programming
	10.2 Creating Your Own Classes
	10.3 Constructors
	10.4 Examples
	10.5 Class Scope and Duration Categories
	10.6 Common Programming Errors
	10.7 Chapter Summary
	10.8 Chapter Supplement: Thinking in Terms of Objects

	Chapter 11 Adding Functionality to Your Classes
	11.1 Creating Class Operators
	11.2 How Methods Are Shared
	11.3 Data Type Conversions
	11.4 Two Useful Alternatives: operator() and operator[]
	11.5 Common Programming Errors
	11.6 Chapter Summary
	11.7 Chapter Supplement: Insides and Outsides

	Chapter 12 Extending Your Classes
	12.1 Class Inheritance
	12.2 Polymorphism
	12.3 Dynamic Object Creation and Deletion
	12.4 Pointers as Class Members
	12.5 Common Programming Errors
	12.6 Chapter Summary
	12.7 Chapter Supplement: UML Class and Object Diagrams

	Chapter 13 The Standard Template Library
	13.1 The Standard Template Library
	13.2 Linked Lists
	13.3 Stacks
	13.4 Queues
	13.5 Common Programming Errors
	13.6 Chapter Summary

	Part Three: Additional Topics
	Chapter 14 The string Class and Exception Handling
	14.1 The string Class
	14.2 Character Manipulation Methods
	14.3 Exception Handling
	14.4 Exceptions and File Checking
	14.5 Input Data Validation
	14.6 Common Programming Errors
	14.7 Chapter Summary
	14.8 Chapter Supplement: Namespaces and Creating a Personal Library

	Chapter 15 Strings as Character Arrays
	15.1 C-String Fundamentals
	15.2 Pointers and C-String Library Functions
	15.3 C-String Definitions and Pointer Arrays
	15.4 Common Programming Errors
	15.5 Chapter Summary

	Chapter 16 Data Structures
	16.1 Single Structures
	16.2 Arrays of Structures
	16.3 Structures as Function Arguments
	16.4 Dynamic Structure Allocation
	16.5 Unions
	16.6 Common Programming Errors
	16.7 Chapter Summary

	Appendixes
	Appendix A: Operator Precedence Table
	Appendix B: ASCII Character Codes
	Appendix C: Bit Operations
	Appendix D: Floating-Point Number Storage
	Appendix E: Solutions to Selected Exercises

	Index

